Potential Mechanism of Action of Current Point-of-Care Autologous Therapy Treatments for Osteoarthritis of the Knee—A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Platelet-Rich Plasma
3.2. Autologous Anti-Inflammatory
3.3. Concentrated Bone Marrow Aspirate
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aigner, T.; Schmitz, N. Pathogenesis and pathology of osteoarthritis. Rheumatology 2011, 7, 1741–1759. [Google Scholar]
- Lequesne, M.G.; Dang, N.; Lane, N.E. Sport practice and osteoarthritis of the limbs. Osteoarthr. Cartil. 1997, 5, 75–86. [Google Scholar] [CrossRef] [Green Version]
- Brzusek, D.; Petron, D. Treating knee osteoarthritis with intra-articular hyaluronans. Curr. Med. Res. Opin. 2008, 24, 3307–3322. [Google Scholar] [CrossRef]
- Fernandes, J.C.; Martel-Pelletier, J.; Pelletier, J.P. The role of cytokines in osteoarthritis pathophysiology. Biorheology 2002, 39, 237–246. [Google Scholar] [PubMed]
- Goldring, M.B.; Otero, M.; Tsuchimochi, K.; Ijiri, K.; Li, Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann. Rheum. Dis. 2008, 67 (Suppl. 3), iii75–iii82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shlopov, B.V.; Gumanovskaya, M.L.; Hasty, K.A. Autocrine regulation of collagenase 3 (matrix metalloproteinase 13) during osteoarthritis. Arthritis Rheumatol. 2000, 43, 195–205. [Google Scholar] [CrossRef]
- Goldring, S.R.; Goldring, M.B. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin. Orthop. Relat. Res. 2004, 427, S27–S36. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. The role of the interleukin-1-receptor antagonist in blocking inflammation mediated by interleukin-1. N. Eng. J. Med. 2000, 343, 732–734. [Google Scholar] [CrossRef]
- Symons, J.A.; Young, P.R.; Duff, G.W. Soluble type II interleukin 1 (IL-1) receptor binds and blocks processing of IL-1 beta precursor and loses affinity for IL-1 receptor antagonist. Proc. Natl. Acad. Sci. USA 1995, 92, 1714–1718. [Google Scholar] [CrossRef] [Green Version]
- Van Zee, K.J.; Kohno, T.; Fischer, E.; Rock, C.S.; Moldawer, L.L.; Lowry, S.F. Tumor necrosis factor soluble receptors circulate during experimental and clinical inflammation and can protect against excessive tumor necrosis factor alpha in vitro and in vivo. Proc. Natl. Acad. Sci. USA 1992, 89, 4845–4849. [Google Scholar] [CrossRef] [Green Version]
- Giudice, A.; Esposito, M.; Bennardo, F.; Brancaccio, Y.; Buti, J.; Fortunato, L. Dental extractions for patients on oral antiplatelet: A within-person randomised controlled trial comparing haemostatic plugs, advanced-platelet-rich fibrin (A-PRF+) plugs, leukocyte- and platelet-rich fibrin (L-PRF) plugs and suturing alone. Int. J. Oral Implant. 2019, 12, 77–87. [Google Scholar]
- King, W.J.; Steckbeck, K.; O’Shaughnessey, K.M.; Woodell-May, J. Effect of Preparation Technique on Anti-Inflammatory Properties of Autologous Therapies; Orthopaedic Research Society: Las Vegas, NV, USA, 2015. [Google Scholar]
- Steckbeck, K.; Woodell-May, J. Characterization Comparison of Patient-Matched Autologous Therapy Product Concentrations; Orthopaedic Research Society: Phoenix, AZ, USA, 2020. [Google Scholar]
- King, W.; Tan, M.; Ponticiello, M.; Woodell-May, J. Anti-Inflammatory Properties of the Output of an Autologous Bone Marrow Concentrating Device; Orthopaedic Research Society: Orlando, FL, USA, 2016. [Google Scholar]
- Akeda, K.; An, H.S.; Okuma, M.; Attawia, M.; Miyamoto, K.; Thonar, E.J.; Lenz, M.E.; Sah, R.L.; Masuda, K. Platelet-Rich Plasma Stimulates Porcine Articular Chondrocyte Proliferation and Matrix Biosynthesis. Osteoarthr. Cartil. 2006, 14, 1272–1280. [Google Scholar] [CrossRef] [Green Version]
- Cavallo, C.; Filardo, G.; Mariani, E.; Kon, E.; Marcacci, M.; Pereira Ruiz, M.T.; Facchini, A.; Grigolo, B. Comparison of platelet-rich plasma formulations for cartilage healing: An in vitro study. J. Bone Jt. Surg. Am. 2014, 96, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Sundman, E.A.; Cole, B.J.; Fortier, L.A. Growth factor and catabolic cytokine concentrations are influenced by the cellular composition of platelet-rich plasma. Am. J. Sports Med. 2011, 39, 2135–2140. [Google Scholar] [CrossRef] [PubMed]
- Arend, W.P.; Malyak, M.; Guthridge, C.J.; Gabay, C. Interleukin-1 receptor antagonist: Role in biology. Annu. Rev. Immunol. 1998, 16, 27–55. [Google Scholar] [CrossRef]
- McColl, S.R.; Paquin, R.; Menard, C.; Beaulieu, A.D. Human neutrophils produce high levels of the interleukin 1 receptor antagonist in response to granulocyte/macrophage colony-stimulating factor and tumor necrosis factor alpha. J. Exp. Med. 1992, 176, 593–598. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A.; Thompson, R.C. Blocking IL-1: Interleukin 1 receptor antagonist in vivo and in vitro. Immunol. Today 1991, 12, 404–410. [Google Scholar] [CrossRef]
- Braun, H.J.; Kim, H.J.; Chu, C.R.; Dragoo, J.L. The effect of platelet-rich plasma formulations and blood products on human synoviocytes implications for intra-articular injury and therapy. Am. J. Sports Med. 2014, 42, 1204–1210. [Google Scholar] [CrossRef] [Green Version]
- Mariani, E.; Canella, V.; Cattini, L.; Kon, E.; Marcacci, M.; Di Matteo, B.; Pulsatelli, L.; Filardo, G. Leukocyte-Rich Platelet-Rich Plasma Injections Do Not. Up-Modulate Intra-Articular Pro-Inflammatory Cytokines in the Osteoarthritic Knee. PLoS ONE 2016, 11, e0156137. [Google Scholar] [CrossRef]
- Arend, W.P. The mode of action of cytokine inhibitors. J. Rheumatol. Suppl. 2002, 65, 16–21. [Google Scholar] [PubMed]
- Cuéllar, J.M.; Cuéllar, V.G.; Scuderi, G.J. α(2)-Macroglobulin: Autologous Protease Inhibition Technology. Phys. Med. Rehabil. Clin. N. Am. 2016, 27, 909–918. [Google Scholar] [CrossRef]
- Milano, G.; Deriu, L.; Sanna, P.E.; Masala, G.; Manunta, A.; Postacchini, R.; Saccomanno, M.F.; Fabbriciani, C. Repeated platelet concentrate injections enhance reparative response of microfractures in the treatment of chondral defects of the knee: An experimental study in an animal model. Arthroscopy 2012, 28, 688–701. [Google Scholar] [CrossRef]
- Sun, Y.; Feng, Y.; Zhang, C.Q.; Chen, S.B.; Cheng, X.G. The regenerative effect of platelet-rich plasma on healing in large osteochondral defects. Int. Orthop. 2010, 34, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Kwon, D.R.; Park, G.Y.; Lee, S.U. The effects of intra-articular platelet-rich plasma injection according to the severity of collagenase-induced knee osteoarthritis in a rabbit model. Ann. Rehabil. Med. 2012, 36, 458–465. [Google Scholar] [CrossRef] [Green Version]
- Saito, M.; Takahashi, K.A.; Arai, Y.; Inoue, A.; Sakao, K.; Tonomura, H.; Honjo, K.; Nakagawa, S.; Inoue, H.; Tabata, Y.; et al. Intraarticular administration of platelet-rich plasma with biodegradable gelatin hydrogel microspheres prevents osteoarthritis progression in the rabbit knee. Clin. Exp. Rheumatol. 2009, 27, 201–207. [Google Scholar]
- Fahie, M.A.; Ortolano, G.A.; Guercio, V.; Schaffer, J.A.; Johnston, G.; Au, J.; Hettlich, B.A.; Phillips, T.; Allen, M.J.; Bertone, A.L. A randomized controlled trial of the efficacy of autologous platelet therapy for the treatment of osteoarthritis in dogs. J. Am. Vet. Med. Assoc. 2013, 243, 1291–1297. [Google Scholar] [CrossRef] [PubMed]
- Cole, B.J.; Karas, V.; Hussey, K.; Merkow, D.B.; Pilz, K.; Fortier, L.A. Hyaluronic Acid Versus Platelet-Rich Plasma: A Prospective, Double-Blind. Randomized Controlled Trial Comparing Clinical Outcomes and Effects on Intra-articular Biology for the Treatment of Knee Osteoarthritis. Am. J. Sports Med. 2017, 45, 339–346. [Google Scholar] [CrossRef] [PubMed]
- Filardo, G.; Kon, E.; Pereira Ruiz, M.T.; Vaccaro, F.; Guitaldi, R.; Di, M.A.; Cenacchi, A.; Fornasari, P.M.; Marcacci, M. Platelet-rich plasma intra-articular injections for cartilage degeneration and osteoarthritis: Single- versus double-spinning approach. Knee Surg. Sports Traumatol. Arthrosc. 2011, 20, 2082–2091. [Google Scholar] [CrossRef]
- Wehling, P.; Moser, C.; Frisbie, D.; McIlwraith, C.W.; Kawcak, C.E.; Krauspe, R.; Reinecke, J.A. Autologous conditioned serum in the treatment of orthopedic diseases: The orthokine therapy. BioDrugs 2007, 21, 323–332. [Google Scholar] [CrossRef]
- O’Shaughnessey, K.; Matuska, A.; Hoeppner, J.; Farr, J.; Klaassen, M.; Kaeding, C.; Lattermann, C.; King, W.; Woodell-May, J. Autologous protein solution prepared from the blood of osteoarthritic patients contains an enhanced profile of anti-inflammatory cytokines and anabolic growth factors. J. Orthop. Res. 2014, 32, 1349–1355. [Google Scholar] [CrossRef]
- King, W.J.; Toler, K.; Woodell-May, J. White Blood Cell Concentration Correlates with Increased Concentrations of IL-1ra and Changes in WOMAC Pain Scores in an Open-Label. Safety Study of Autologous Protein Solution. Exp. Orthop. 2016, 3, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woodell-May, J.E.; Matuska, A.; Oyster, M.; Welch, Z.; O’Shaughnessey, K.M.; Hoeppner, J. Autologous protein solution inhibits MMP-13 production by IL-1beta and TNFalpha-stimulated human articular chondrocytes. J. Orthop. Res. 2011, 29, 1320–1326. [Google Scholar] [CrossRef] [PubMed]
- Kon, E.; Engebretsen, L.; Verdonk, P.; Nehrer, S.; Filardo, G. Clinical outcomes of knee osteoarthritis treated with an autologous protein solution injection: A 1-year pilot double-blinded randomized controlled trial. Am. J. Sports Med. 2018, 46, 171–180. [Google Scholar] [CrossRef]
- Hix, J.; Klaassen, M.; Foreman, R.; Cullen, E.; Toler, K.; King, W.; Woodell-May, J.A. Autologous Anti-Inflammatory Protein Solution Yielded a Favorable Safety Profile and Significant Pain Relief in an Open-Label. Pilot Study of Patients with Osteoarthritis. Biores. Open Access. 2017, 6, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matuska, A.; O’Shaughnessey, K.; King, W.; Woodell-May, J. Autologous solution protects bovine cartilage explants from IL-1α-and TNFα-induced cartilage degradation. J. Orthop. Res. 2013, 31, 1929–1935. [Google Scholar] [CrossRef] [PubMed]
- Wojdasiewicz, P.A.; Poniatowski, Ł.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediat. Inflamm. 2014, 2014, 561459. [Google Scholar] [CrossRef] [Green Version]
- O’Shaughnessey, K.M.; Panitch, A.; Woodell-May, J.E. Blood-derived anti-inflammatory protein solution blocks the effect of IL-1b on human macrophages in vitro. Inflamm. Res. 2011, 60, 929–936. [Google Scholar] [CrossRef]
- Velloso Alvarez, A.; Boone, L.H.; Pondugula, S.R.; Caldwell, F.; Wooldridge, A.A. Effects of Autologous Conditioned Serum, Autologous Protein Solution, and Triamcinolone on Inflammatory and Catabolic Gene Expression in Equine Cartilage and Synovial Explants Treated With IL-1β in Co-culture. Front. Vet. Sci. 2020, 7, 323. [Google Scholar] [CrossRef]
- King, W.; Bendele, A.; Marohl, T.; Woodell-May, J. Human blood-based anti-inflammatory solution inhibits osteoarthritis progression in a meniscal-tear rat study. J. Orthop. Res. 2017, 35, 2260–2268. [Google Scholar] [CrossRef] [Green Version]
- King, W.J.; Han, B.; Woodell-May, J. Autologous Protein Solution Inhibits Osteoarthritis Disease Progression in a IL-1β–Induced Animal Model; Orthopaedic Research Society Meeting: San Diego, CA, USA, 2017. [Google Scholar]
- Bertone, A.L.; Ishihara, A.; Zekas, L.J.; Wellman, M.L.; Lewis, K.B.; R, S.; Barnaba, A.; Schmall, M.L.; Kanter, P.M.; Genovese, R.L. Evaluation of a single intra-articular injection of autologous protein solution for treatment of osteoarthritis in horses. Am. J. Vet. Res. 2014, 75, 141–151. [Google Scholar] [CrossRef]
- Wanstrath, A.; Hettlich, B.A.; Su, L.; Smith, A.; Zekas, L.J.; Allen, A.J.; Bertone, A.L. Evaluation of a single intra-articular injection of autologous protein solution for treatment of osteoarthritis in a canine population. Vet. Surg. 2016, 45, 764–774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wasai, S.; Sato, M.; Maehara, M.; Toyoda, E.; Uchiyama, R.; Takahashi, T.; Okada, E.; Iwasaki, Y.; Suzuki, S.; Watanabe, M. Characteristics of autologous protein solution and leucocyte-poor platelet-rich plasma for the treatment of osteoarthritis of the knee. Sci. Rep. 2020, 10, 10572. [Google Scholar] [CrossRef] [PubMed]
- King, W.J.; VanDerWeegen, W.; Van Drumpt, R.; Soons, H.; Toler, K.; Woodell-May, J.E. Characterizing the Relationship between White Blood Cell and IL-1ra Concentration in Whole Blood and Decreased Osteoarthritis Pain in an Open-Label. Study of Autologous Protein Solution. In Proceedings of the European Federation of National Associations of Orthopaedics & Traumatology Congress, 16th Annual Meeting, Prague, Czech Republic, 27–29 May 2015. [Google Scholar]
- Darshan, S.A.; Navraj Atwal, H.M. Autologous cell-free serum preparations in the management of knee osteoarthritis: What is the current clinical evidence? Knee Surg. Relat. Res. 2020, 32, 1–10. [Google Scholar]
- Yang, K.G.; Raijmakers, N.J.; van Arkel, E.R.; Caron, J.J.; Rijk, P.C.; Willems, W.J.; Zijl, J.A.; Verbout, A.J.; Dhert, W.J.; Saris, D.B. Autologous interleukin-1 receptor antagonist improves function and symptoms in osteoarthritis when compared to placebo in a prospective randomized controlled trial. Osteoarthr. Cartil. 2008, 16, 498–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltzer, A.W.; Moser, C.; Jansen, S.A.; Krauspe, R. Autologous conditioned serum (Orthokine) is an effective treatment for knee osteoarthritis. Osteoarthr. Cartil. 2008, 17, 152–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Drumpt, R.A.M.; van Der Weegen, W.; King, W.J.; Toler, K.; Macenski, M.M. Safety and Treatment Effectiveness of a Single Autologous Protein Solution Injection in Patients with Knee Osteoarthritis. Biores. Open Access 2016, 5, 261–268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Genechten, W.; Vuylsteke, K.; Swinnen, L.; Martinez, P.R.; Verdonk, P. Autologous protein solution as selective treatment for advanced patellofemoral osteoarthritis in the middle-aged female patient: 54% response rate at 1 year follow-up. Knee Surg. Sports Traumatol. Arthrosc. 2021, 29, 988–997. [Google Scholar] [CrossRef]
- Kon, E.; Engebretsen, L.; Verdonk, P.; Nehrer, S.; Filardo, G. Autologous Protein Solution Injections for the Treatment of Knee Osteoarthritis: 3-Year Results. Am. J. Sports Med. 2020, 48, 2703–2710. [Google Scholar] [CrossRef] [PubMed]
- Jagodzinski, M.; Liu, C.; Guenther, D.; Burssens, A.; Petri, M.; Abedian, R.; Willbold, E.; Krettek, C.; Haasper, C.; Witte, F. Bone marrow-derived cell concentrates have limited effects on osteochondral reconstructions in the mini pig. Tissue Eng. Part C Methods 2014, 20, 215–226. [Google Scholar] [CrossRef]
- Desando, G.; Bartolotti, I.; Cavallo, C.; Schiavinato, A.; Secchieri, C.; Kon, E.; Filardo, G.; Paro, M.; Grigolo, B. Short-term homing of hyaluronan-primed cells: Therapeutic implications for osteoarthritis treatment. Tissue Eng. Part C Methods 2018, 24, 121–133. [Google Scholar] [CrossRef]
- Wang, Z.; Zhai, C.; Fei, H.; Hu, J.; Cui, W.; Wang, Z.; Li, Z.; Fan, W. Intraarticular injection autologous platelet-rich plasma and bone marrow concentrate in a goat osteoarthritis model. J. Orthop. Res. 2018, 36, 2140–2146. [Google Scholar] [CrossRef]
- Song, F.; Tang, J.; Geng, R.; Hu, H.; Zhu, C.; Cui, W.; Fan, W. Comparison of the efficacy of bone marrow mononuclear cells and bone mesenchymal stem cells in the treatment of osteoarthritis in a sheep model. Int. J. Clin. Exp. Pathol. 2014, 7, 1415. [Google Scholar] [PubMed]
- Singh, A.; Goel, S.; Gupta, K.; Kumar, M.; Arun, G.; Patil, H.; Kumaraswamy, V.; Jha, S. The role of stem cells in osteoarthritis: An experimental study in rabbits. Bone Jt. Res. 2014, 3, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, S.A.; Kazmerchak, S.E.; Heckman, M.G.; Zubair, A.C.; O’Connor, M.I. A prospective, single-blind, placebo-controlled trial of bone marrow aspirate concentrate for knee osteoarthritis. Am. J. Sports Med. 2017, 45, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Chahla, J.; Dean, C.S.; Moatshe, G.; Pascual-Garrido, C.; Serra Cruz, R.; LaPrade, R.F. Concentrated bone marrow aspirate for the treatment of chondral injuries and osteoarthritis of the knee: A systematic review of outcomes. Orthop. J. Sports Med. 2016, 4, 2325967115625481. [Google Scholar] [CrossRef] [Green Version]
- Mautner, K.; Bowers, R.; Easley, K.; Fausel, Z.; Robinson, R. Functional Outcomes Following Microfragmented Adipose Tissue Versus Bone Marrow Aspirate Concentrate Injections for Symptomatic Knee Osteoarthritis. Stem Cells Transl. Med. 2019, 8, 1149–1156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Themistocleous, G.S.; Chloros, G.D.; Kyrantzoulis, I.M.; Georgokostas, I.A.; Themistocleous, M.S.; Papagelopoulos, P.J.; Savvidou, O.D. Effectiveness of a single intra-articular bone marrow aspirate concentrate (BMAC) injection in patients with grade 3 and 4 knee osteoarthritis. Heliyon 2018, 4, e00871. [Google Scholar] [CrossRef] [Green Version]
- Hernigou, P.; Bouthors, C.; Bastard, C.; Lachaniette, C.H.F.; Rouard, H.; Dubory, A. Subchondral bone or intra-articular injection of bone marrow concentrate mesenchymal stem cells in bilateral knee osteoarthritis: What better postpone knee arthroplasty at fifteen years? A randomized study. Int. Orthop. 2020, 45, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Ha, C.-W.; Park, Y.-B. Editorial Commentary: Considering Clinical Application of Bone Marrow Aspirate Concentrate for Restoration of Cartilage Defects in the Knee? Is It a Kind of Stem Cell Therapy? Arthroscopy 2019, 35, 1878–1879. [Google Scholar] [CrossRef] [Green Version]
- King, W.; Toler, K.; Woodell-May, J. Role of White Blood Cells in Blood-and Bone Marrow-Based Autologous Therapies. Biomed. Res. Int. 2018, 2018. [Google Scholar] [CrossRef]
- Cheshier, S.H.; Morrison, S.J.; Liao, X.; Weissman, I.L. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 1999, 96, 3120–3125. [Google Scholar] [CrossRef] [Green Version]
- Pittenger, M.F.; Mackay, A.M.; Beck, S.C.; Jaiswal, R.K.; Douglas, R.; Mosca, J.D.; Moorman, M.A.; Simonetti, D.W.; Craig, S.; Marshak, D.R. Multilineage potential of adult human mesenchymal stem cells. Science 1999, 284, 143–147. [Google Scholar] [CrossRef] [Green Version]
- Asahara, T.; Masuda, H.; Takahashi, T.; Kalka, C.; Pastore, C.; Silver, M.; Kearne, M.; Magner, M.; Isner, J.M. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ. Res. 1999, 85, 221–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caplan, A.I. Mesenchymal stem cells: Cell–based reconstructive therapy in orthopedics. Tissue Eng. 2005, 11, 1198–1211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sacchetti, B.; Funari, A.; Michienzi, S.; Di Cesare, S.; Piersanti, S.; Saggio, I.; Tagliafico, E.; Ferrari, S.; Robey, P.G.; Riminucci, M. Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 2007, 131, 324–336. [Google Scholar] [CrossRef] [Green Version]
- Hernigou, P.; Homma, Y.; Lachaniette, C.H.F.; Poignard, A.; Allain, J.; Chevallier, N.; Rouard, H. Benefits of small volume and small syringe for bone marrow aspirations of mesenchymal stem cells. Int. Orthop. 2013, 37, 2279–2287. [Google Scholar] [CrossRef]
- Marx, R.E.; Tursun, R. A qualitative and quantitative analysis of autologous human multipotent adult stem cells derived from three anatomic areas by marrow aspiration: Tibia, anterior ilium, and posterior ilium. Int. J. Oral Maxillofac. Implant. 2013, 28, e290–e294. [Google Scholar] [CrossRef] [Green Version]
- Richardson, S.M.; Curran, J.M.; Chen, R.; Vaughan-Thomas, A.; Hunt, J.A.; Freemont, A.J.; Hoyland, J.A. The differentiation of bone marrow mesenchymal stem cells into chondrocyte-like cells on poly-L-lactic acid (PLLA) scaffolds. Biomaterials 2006, 27, 4069–4078. [Google Scholar] [CrossRef] [PubMed]
- Van Buul, G.; Villafuertes, E.; Bos, P.; Waarsing, J.; Kops, N.; Narcisi, R.; Weinans, H.; Verhaar, J.; Bernsen, M.; Van Osch, G. Mesenchymal stem cells secrete factors that inhibit inflammatory processes in short-term osteoarthritic synovium and cartilage explant culture. Osteoarthr. Cartil. 2012, 20, 1186–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, J.M.; Fink, D.J.; Hunziker, E.B.; Barry, F.P. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2003, 48, 3464–3474. [Google Scholar] [CrossRef]
- Vangsness, C.T., Jr.; Farr, J.I.; Boyd, J.; Dellaero, D.T.; Mills, C.R.; LeRoux-Williams, M. Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy: A randomized, double-blind, controlled study. JBJS 2014, 96, 90–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barry, F. MSC therapy for osteoarthritis: An unfinished story. J. Orthop. Res. 2019, 37, 1229–1235. [Google Scholar] [CrossRef]
- Cassano, J.M.; Kennedy, J.G.; Ross, K.A.; Fraser, E.J.; Goodale, M.B.; Fortier, L.A. Bone marrow concentrate and platelet-rich plasma differ in cell distribution and interleukin 1 receptor antagonist protein concentration. Knee Surg. Sports Traumatol. Arthrosc. 2018, 26, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Arrigoni, C.; D’Arrigo, D.; Rossella, V.; Candrian, C.; Albertini, V.; Moretti, M. Umbilical Cord MSCs and Their Secretome in the Therapy of Arthritic Diseases: A Research and Industrial Perspective. Cells 2020, 9, 1343. [Google Scholar] [CrossRef]
- Han, B.; Tan, M.; King, W.; Woodell-May, J. White blood cell concentration correlates with CFU-F concentration in the output of a point-of-care bone marrow concentrating device. In TERMIS; European Cells and Materials: Uppsala, Sweden, 2016. [Google Scholar]
- Friedenstein, A.J.; Gorskaja, J.; Kulagina, N. Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp. Hematol. 1976, 4, 267. [Google Scholar]
- Woodell-May, J.E.; Tan, M.L.; King, W.J.; Swift, M.J.; Welch, Z.R.; Murphy, M.P.; McKale, J.M. Characterization of the cellular output of a point-of-care device and the implications for addressing critical limb ischemia. Biores. Open Access 2015, 4, 417–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, J.M.; Saleh, K.S.; Burdick, J.A.; Mauck, R.L. Bioactive factors for cartilage repair and regeneration: Improving delivery, retention, and activity. Acta Biomater. 2019, 93, 222–238. [Google Scholar] [CrossRef]
- Skowroński, J.; Rutka, M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells-results. Ortop. Traumatol. Rehabil. 2013, 15, 195–204. [Google Scholar] [CrossRef] [Green Version]
- De Girolamo, L.; Schönhuber, H.; Viganò, M.; Bait, C.; Quaglia, A.; Thiebat, G.; Volpi, P. Autologous matrix-induced chondrogenesis (amic) and amic enhanced by autologous concentrated bone marrow aspirate (bmac) allow for stable clinical and functional improvements at up to 9 years follow-up: Results from a randomized controlled study. J. Clin. Med. 2019, 8, 392. [Google Scholar] [CrossRef] [Green Version]
- Enea, D.; Cecconi, S.; Calcagno, S.; Busilacchi, A.; Manzotti, S.; Gigante, A. One-step cartilage repair in the knee: Collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. Knee 2015, 22, 30–35. [Google Scholar] [CrossRef] [Green Version]
- Radin, E.L.; Rose, R.M. Role of subchondral bone in the initiation and progression of cartilage damage. Clin. Orthop. Relat. Res. 1986, 213, 34–40. [Google Scholar] [CrossRef]
- Madry, H.; van Dijk, C.N.; Mueller-Gerbl, M. The basic science of the subchondral bone. Knee Surg. Sports Traumatol. Arthrosc. 2010, 18, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Buckwalter, J. Articular cartilage injuries. Clin. Orthop. Relat. Res. 2002, 402, 21–37. [Google Scholar] [CrossRef]
- Koo, K.-H.; Ahn, I.-O.; Kim, R.; Song, H.-R.; Jeong, S.-T.; Na, J.-B.; Kim, Y.-S.; Cho, S.-H. Bone marrow edema and associated pain in early stage osteonecrosis of the femoral head: Prospective study with serial MR images. Radiology 1999, 213, 715–722. [Google Scholar] [CrossRef]
- Felson, D.T.; Chaisson, C.E.; Hill, C.L.; Totterman, S.M.; Gale, M.E.; Skinner, K.M.; Kazis, L.; Gale, D.R. The association of bone marrow lesions with pain in knee osteoarthritis. Ann. Intern. Med. 2001, 134, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Niu, J.; Guermazi, A.; Roemer, F.; Aliabadi, P.; Clancy, M.; Torner, J.; Lewis, C.E.; Nevitt, M.C. Correlation of the development of knee pain with enlarging bone marrow lesions on magnetic resonance imaging. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2007, 56, 2986–2992. [Google Scholar] [CrossRef] [PubMed]
- Stoker, A.M.; Baumann, C.A.; Stannard, J.P.; Cook, J.L. Bone marrow aspirate concentrate versus platelet rich plasma to enhance osseous integration potential for osteochondral allografts. J. Knee Surg. 2018, 31, 314–320. [Google Scholar]
- Oliver, H.A.; Bozynski, C.C.; Cook, C.R.; Kuroki, K.; Sherman, S.L.; Stoker, A.M.; Cook, J.L. Enhanced Subchondroplasty Treatment for Post-Traumatic Cartilage and Subchondral Bone Marrow Lesions in a Canine Model. J. Orthop. Res. 2020, 38, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Martin, J.R.; Houdek, M.T.; Sierra, R.J. Use of concentrated bone marrow aspirate and platelet rich plasma during minimally invasive decompression of the femoral head in the treatment of osteonecrosis. Croat. Med. J. 2013, 54, 219–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kasik, C.S.; Martinkovich, S.; Mosier, B.; Akhavan, S. Short-Term Outcomes for the Biologic Treatment of Bone Marrow Edema of the Knee Using Bone Marrow Aspirate Concentrate and Injectable Demineralized Bone Matrix. Arthrosc. Sports Med. Rehabil. 2019, 1, e7–e14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ankem, H.K.; Diulus, S.C.; Maldonado, D.R.; Ortiz-Declet, V.; Rosinsky, P.J.; Meghpara, M.B.; Shapira, J.; Lall, A.C.; Domb, B.G. Arthroscopic-Assisted Intraosseous Bioplasty of the Acetabulum. Arthrosc. Tech. 2020, 9, e1531–e1539. [Google Scholar] [CrossRef] [PubMed]
- Hood, J.R.C.R.; Miller, J.R. The triad of osteobiology–Rehydrating calcium phosphate with bone marrow aspirate concentrate for the treatment of bone marrow lesions. Bone 2016, 5, 8. [Google Scholar]
WBC (k/ul) | PLT (k/ul) | RBC (M/ul) | IL-1ra (pg/mL) | sIL-1RII (pg/mL) | sTNF-RII (pg/mL) | IL-1β (pg/mL) | IL-1ra:IL-1 ratio | |
---|---|---|---|---|---|---|---|---|
Whole blood [12] | 5.4 ± 1.8 | 175 ± 70 | 5.5 ± 1.1 | 5665 ± 2318 | 7135 ± 1766 | 1125 ± 253 | 3.4 ± 2.0 | 4842 ± 2756 |
PPP [13] | 0.1 ±0.0 | 28 ± 9.3 | 0.00 ± 0.00 | 296 ± 141 | 19,922 ± 2938 | 3080 ± 635 | BL | NC |
LP-PRP [13] | 1.5 ± 2.0 | 399 ± 108 | 0.04 ± 0.06 | 673 ± 741 | 15,596 ± 2159 | 2894 ± 689 | BL | NC |
LR-PRP [12] | 28.1 ± 6.9 | 1745 ± 439 | 0.9 ± 0.3 | 22,395 ± 12,900 | NM | NM | 3.5 ± 1.0 | 6369 ± 2321 |
APS [12] | 46.5 ± 14.0 | 707 ± 444 | 1.5 ± 1.1 | 30,853 ± 16,734 | 20,483 ± 5819 | 9492 ± 1387 | 3.8 ± 0.8 | 8535 ± 3999 |
ACS [12] | 0.0 ± 0.0 | 14 ± 6 | 0.0 ± 0.0 | 1618 ± 675 | 15,678 ± 2356 | 2696 ± 679 | 14.7 ± 14.8 | 291 ± 256 |
BMA [14] | 22 ± 10 | 116 ± 30 | 4.1 ± 0.3 | 18,110 ± 6681 | 6768 ± 1995 | 1292 ± 153 | 3.0 ± 1.1 | 6154 ± 1357 |
cBMA [14] | 133 ± 91 | 885 ± 201 | 1.3 ± 0.2 | 73,978 ± 39,464 | 9814 ± 3199 | 3932 ± 1301 | 14.5 ± 11.4 | 5856 ± 2745 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woodell-May, J.; Steckbeck, K.; King, W. Potential Mechanism of Action of Current Point-of-Care Autologous Therapy Treatments for Osteoarthritis of the Knee—A Narrative Review. Int. J. Mol. Sci. 2021, 22, 2726. https://doi.org/10.3390/ijms22052726
Woodell-May J, Steckbeck K, King W. Potential Mechanism of Action of Current Point-of-Care Autologous Therapy Treatments for Osteoarthritis of the Knee—A Narrative Review. International Journal of Molecular Sciences. 2021; 22(5):2726. https://doi.org/10.3390/ijms22052726
Chicago/Turabian StyleWoodell-May, Jennifer, Kathleen Steckbeck, and William King. 2021. "Potential Mechanism of Action of Current Point-of-Care Autologous Therapy Treatments for Osteoarthritis of the Knee—A Narrative Review" International Journal of Molecular Sciences 22, no. 5: 2726. https://doi.org/10.3390/ijms22052726
APA StyleWoodell-May, J., Steckbeck, K., & King, W. (2021). Potential Mechanism of Action of Current Point-of-Care Autologous Therapy Treatments for Osteoarthritis of the Knee—A Narrative Review. International Journal of Molecular Sciences, 22(5), 2726. https://doi.org/10.3390/ijms22052726