Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation
Abstract
:1. Introduction
2. Anesthetic Conditioning and Organ Protection with Volatile Anesthetic Agents
2.1. Prevention of Opening of the mPTP
2.2. Protective Effects on the Glycocalyx
2.3. Upregulation of Hypoxia Inducible Factors (HIFs)
2.4. Effect on Renal Tubular Cells and Sphingosine-1-Phosphate Signaling Pathway
2.5. Effect on Circulating Immune Cells
2.5.1. Innate Immunity
2.5.2. Adaptive Immunity
2.5.3. Effect on Lymphocyte Function Antigen-1
3. Clinical Trials on the Potential of Volatile Anesthetic Protection in Kidney Transplantation
4. Summary
Author Contributions
Funding
Conflicts of Interest
References
- Siedlecki, A.; Irish, W.; Brennan, D.C. Delayed Graft Function in the Kidney Transplant. Am. J. Transplant. 2011, 11, 2279–2296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snoeijs, M.G.J.; Winkens, B.; Heemskerk, M.B.A.; Hoitsma, A.J.; Christiaans, M.H.L.; Buurman, W.A.; van Heurn, L.W.E. Kidney Transplantation From Donors After Cardiac Death: A 25-Year Experience. Transplantation 2010, 90, 1106–1112. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijs-Moeke, G.J.; Pischke, S.E.; Berger, S.P.; Sanders, J.S.F.; Pol, R.A.; Struys, M.M.R.F.; Ploeg, R.J.; Leuvenink, H.G.D. Ischemia and Reperfusion Injury in Kidney Transplantation: Relevant Mechanisms in Injury and Repair. J. Clin. Med. 2020, 9, 253. [Google Scholar] [CrossRef] [Green Version]
- Meissner, M.; Viehmann, S.F.; Kurts, C. DAMPening sterile inflammation of the kidney. Kidney Int. 2019, 95, 489–491. [Google Scholar] [CrossRef] [PubMed]
- Eltzschig, H.K.; Eckle, T. Ischemia and reperfusion--from mechanism to translation. Nat. Med. 2011, 17, 1391–1401. [Google Scholar] [CrossRef] [Green Version]
- Gunaratnam, L.; Bonventre, J.V. HIF in Kidney Disease and Development. J. Am. Soc. Nephrol. 2008, 20, 1877–1887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murry, C.E.; Jennings, R.B.; Reimer, K.A. Preconditioning with Ischemia: A Delay of Lethal Cell Injury in Ischemic Myocardium. Circulation 1986, 74, 1124–1136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heusch, G. Molecular Basis of Cardioprotection. Circ. Res. 2015, 116, 674–699. [Google Scholar] [CrossRef]
- Crimi, G.; Pica, S.; Raineri, C.; Bramucci, E.; De Ferrari, G.M.; Klersy, C.; Ferlini, M.; Marinoni, B.; Repetto, A.; Romeo, M.; et al. Remote Ischemic Post-Conditioning of the Lower Limb During Primary Percutaneous Coronary Intervention Safely Reduces Enzymatic Infarct Size in Anterior Myocardial Infarction. JACC Cardiovasc. Interv. 2013, 6, 1055–1063. [Google Scholar] [CrossRef] [Green Version]
- Czigány, Z.; Turóczi, Z.; Ónody, P.; Harsányi, L.; Lotz, G.; Hegedüs, V.; Szijártó, A. Remote Ischemic Perconditioning Protects the Liver from Ischemia–Reperfusion Injury. J. Surg. Res. 2013, 185, 605–613. [Google Scholar] [CrossRef] [PubMed]
- Song, S.-Q.; Gan, H.-L.; Zhang, J.-Q.; Feng, L.; Sun, J.-C.; Wang, S.-X. Post-Conditioning through Lower Limb Ischemia-Reperfusion Can Alleviate Lung Ischemia-Reperfusion Injury. Int. J. Clin. Exp. Med. 2015, 8, 14953–14961. [Google Scholar] [PubMed]
- Wang, Y.; Reis, C.; Applegate, R.; Stier, G.; Martin, R.; Zhang, J.H. Ischemic Conditioning-Induced Endogenous Brain Protection: Applications Pre-, per- or Post-Stroke. Exp. Neurol. 2015, 272, 26–40. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-H.; Hsiao, T.-Y.; Chien, C.-T.; Lai, M.-K. Ischemic Conditioning by Short Periods of Reperfusion Attenuates Renal Ischemia/Reperfusion Induced Apoptosis and Autophagy in the Rat. J. Biomed. Sci. 2009, 16, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamashita, N.; Hoshida, S.; Otsu, K.; Taniguchi, N.; Kuzuya, T.; Hori, M. Involvement of Cytokines in the Mechanism of Whole-Body Hyperthermia-Induced Cardioprotection. Circulation 2000, 102, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Szekeres, L.; Papp, J.G.; Szilvassy, Z.; Udvary, E.; Vegh, A. Moderate Stress by Cardiac Pacing May Induce Both Short Term and Long Term Cardioprotection. Cardiovasc. Res. 1993, 27, 593–596. [Google Scholar] [CrossRef] [PubMed]
- Kalenka, A.; Maurer, M.H.; Feldmann, R.E.; Kuschinsky, W.; Waschke, K.F. Volatile Anesthetics Evoke Prolonged Changes in the Proteome of the Left Ventricule Myocardium: Defining a Molecular Basis of Cardioprotection? Acta Anaesthesiol. Scand. 2006, 50, 414–427. [Google Scholar] [CrossRef]
- Lin, D.; Li, G.; Zuo, Z. Volatile Anesthetic Post-Treatment Induces Protection via Inhibition of Glycogen Synthase Kinase 3β in Human Neuron-like Cells. Neuroscience 2011, 179, 73–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, J.-T.; Li, Y.-S.; Xia, Z.-Q.; Wen, S.-H.; Yao, X.; Yang, W.-J.; Li, C.; Liu, K.-X. Remifentanil Preconditioning Protects the Small Intestine against Ischemia/Reperfusion Injury via Intestinal δ- and μ-Opioid Receptors. Surgery 2016, 159, 548–559. [Google Scholar] [CrossRef]
- Liu, X.; Pan, Z.; Su, D.; Yang, Z.; Zheng, B.; Wang, X.; Tian, J. Remifentanil Ameliorates Liver Ischemia-Reperfusion Injury Through Inhibition of Interleukin-18 Signaling. Transplantation 2015, 99, 2109–2117. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, A.Q.; Cherry, B.H.; Scott, G.F.; Ryou, M.-G.; Mallet, R.T. Erythropoietin: Powerful Protection of Ischemic and Post-Ischemic Brain. Exp. Biol. Med. 2014, 239, 1461–1475. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, L.A.; Salem, H.A.; Attia, A.S.; Agha, A.M. Pharmacological Preconditioning with Nicorandil and Pioglitazone Attenuates Myocardial Ischemia/Reperfusion Injury in Rats. Eur. J. Pharmacol. 2011, 663, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Gaylord, H.; Simpson, B. The Effect of Certain Anesthetics and Loss of Blood upon the Growth of Transplanted Mouse Cancer. J. Cancer Res. 1916, 1, 379–382. [Google Scholar]
- Graham, E.A. The Influence of Ether and Ether Anesthesia on Bacteriolysis, Agglutination, and Phagocytosis. J. Infect. Dis. 1911, 8, 147–175. [Google Scholar] [CrossRef]
- Urner, M.; Limbach, L.K.; Herrmann, I.K.; Müller-Edenborn, B.; Roth-Z’Graggen, B.; Schlicker, A.; Reyes, L.; Booy, C.; Hasler, M.; Stark, W.J.; et al. Fluorinated Groups Mediate the Immunomodulatory Effects of Volatile Anesthetics in Acute Cell Injury. Am. J. Respir. Cell Mol. Biol. 2011, 45, 617–624. [Google Scholar] [CrossRef] [PubMed]
- Bland, J.H.L.; Lowenstein, E. Halothane-Induced Decrease in Experimental Myocardial Ischemia in the Non-Failing Canine Heart. Anesthesiology 1976, 45, 287–292. [Google Scholar] [CrossRef]
- Warltier, D.C.; Al-Wathiqui, M.H.; Kampine, J.P.; Schmeling, W.T. Recovery of Contractile Function of Stunned Myocardium in Chronically Instrumented Dogs Is Enhanced by Halothane or Isoflurane. Anesthesiology 1988, 69, 552–565. [Google Scholar] [CrossRef]
- Jiao, X.; Lin, X.; Ni, X.; Li, H.; Zhang, C.; Yang, C.; Song, H.; Yi, Q.; Zhang, L. Volatile Anesthetics versus Total Intravenous Anesthesia in Patients Undergoing Coronary Artery Bypass Grafting: An Updated Meta-Analysis and Trial Sequential Analysis of Randomized Controlled Trials. PLoS ONE 2019, 14, e0224562. [Google Scholar] [CrossRef] [PubMed]
- Symons, J.A.; Myles, P.S. Myocardial Protection with Volatile Anaesthetic Agents during Coronary Artery Bypass Surgery: A Meta-Analysis. Br. J. Anaesth. 2006, 97, 127–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landoni, G.; Greco, T.; Biondi-Zoccai, G.; Nigro Neto, C.; Febres, D.; Pintaudi, M.; Pasin, L.; Cabrini, L.; Finco, G.; Zangrillo, A. Anaesthetic Drugs and Survival: A Bayesian Network Meta-Analysis of Randomized Trials in Cardiac Surgery. Br. J. Anaesth. 2013, 111, 886–896. [Google Scholar] [CrossRef] [Green Version]
- Bonanni, A.; Signori, A.; Alicino, C.; Mannucci, I.; Grasso, M.A.; Martinelli, L.; Deferrari, G. Volatile Anesthetics versus Propofol for Cardiac Surgery with Cardiopulmonary Bypass. Anesthesiology 2020, 132, 1429–1446. [Google Scholar] [CrossRef]
- Li, Q.F.; Zhu, Y.S.; Jiang, H.; Xu, H.; Sun, Y. Isoflurane Preconditioning Ameliorates Endotoxin-Induced Acute Lung Injury and Mortality in Rats. Anesth. Analg. 2009, 109, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Ohsumi, A.; Marseu, K.; Slinger, P.; McRae, K.; Kim, H.; Guan, Z.; Hwang, D.M.; Liu, M.; Keshavjee, S.; Cypel, M. Sevoflurane Attenuates Ischemia-Reperfusion Injury in a Rat Lung Transplantation Model. Ann. Thorac. Surg. 2017, 103, 1578–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casanova, J.; Simon, C.; Vara, E.; Sanchez, G.; Rancan, L.; Abubakra, S.; Calvo, A.; Gonzalez, F.J.; Garutti, I. Sevoflurane Anesthetic Preconditioning Protects the Lung Endothelial Glycocalyx from Ischemia Reperfusion Injury in an Experimental Lung Autotransplant Model. J. Anesth. 2016, 30, 755–762. [Google Scholar] [CrossRef]
- Figueira, E.R.R.; Rocha-Filho, J.A.; Lanchotte, C.; Coelho, A.M.M.; Nakatani, M.; Tatebe, E.R.; Lima, J.A.V.; Mendes, C.O.; de Araujo, B.C.R.P.; Abdo, E.E.; et al. Sevoflurane Preconditioning plus Postconditioning Decreases Inflammatory Response with Hemodynamic Recovery in Experimental Liver Ischemia Reperfusion. Gastroenterol. Res. Pract. 2019, 2019, 5758984. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck-Schimmer, B.; Roth Z’graggen, B.; Booy, C.; Köppel, S.; Spahn, D.R.; Schläpfer, M.; Schadde, E. Sevoflurane Protects Hepatocytes From Ischemic Injury by Reducing Reactive Oxygen Species Signaling of Hepatic Stellate Cells. Anesth. Analg. 2018, 127, 1058–1065. [Google Scholar] [CrossRef] [Green Version]
- Zhou, S.-P.; Jiang, P.; Liu, L.; Liu, H. Protective Effect of Sevoflurane on Hepatic Ischaemia/Reperfusion Injury in the Rat. Eur. J. Anaesthesiol. 2013, 30, 612–617. [Google Scholar] [CrossRef]
- Zhu, Y.-M.; Gao, X.; Ni, Y.; Li, W.; Kent, T.A.; Qiao, S.-G.; Wang, C.; Xu, X.-X.; Zhang, H.-L. Sevoflurane Postconditioning Attenuates Reactive Astrogliosis and Glial Scar Formation after Ischemia–Reperfusion Brain Injury. Neuroscience 2017, 356, 125–141. [Google Scholar] [CrossRef] [PubMed]
- Wen, X.-R.; Fu, Y.-Y.; Liu, H.-Z.; Wu, J.; Shao, X.-P.; Zhang, X.-B.; Tang, M.; Shi, Y.; Ma, K.; Zhang, F.; et al. Neuroprotection of Sevoflurane against Ischemia/Reperfusion-Induced Brain Injury through Inhibiting JNK3/Caspase-3 by Enhancing Akt Signaling Pathway. Mol. Neurobiol. 2015, 53, 1661–1671. [Google Scholar] [CrossRef]
- Zhong, H.; Chen, H.; Gu, C. Sevoflurane Post-Treatment Upregulated MiR-203 Expression to Attenuate Cerebral Ischemia-Reperfusion-Induced Neuroinflammation by Targeting MyD88. Inflammation 2020, 43, 651–663. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Chen, S.W.C.; Doetschman, T.C.; Deng, C.; D’Agati, V.D.; Kim, M. Sevoflurane Protects against Renal Ischemia and Reperfusion Injury in Mice via the Transforming Growth Factor-Β1 Pathway. Am. J. Physiol. Ren. Physiol. 2008, 295, F128–F136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.T.; Kim, M.; Song, J.H.; Chen, S.W.C.; Gubitosa, G.; Emala, C.W. Sevoflurane-Mediated TGF-Β1 Signaling in Renal Proximal Tubule Cells. Am. J. Physiol. Ren. Physiol. 2008, 294, F371–F378. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.T.; Ota-Setlik, A.; Fu, Y.; Nasr, S.H.; Emala, C.W. Differential Protective Effects of Volatile Anesthetics against Renal Ischemia–Reperfusion Injury In Vivo. Anesthesiology 2004, 101, 1313–1324. [Google Scholar] [CrossRef]
- Lee, H.T.; Kim, M.; Kim, M.; Kim, N.; Billings, F.T.; D’Agati, V.D.; Emala, C.W. Isoflurane Protects against Renal Ischemia and Reperfusion Injury and Modulates Leukocyte Infiltration in Mice. Am. J. Physiol. Ren. Physiol. 2007, 293, F713–F722. [Google Scholar] [CrossRef] [Green Version]
- Ko, J.S.; Gwak, M.S.; Choi, S.J.; Kim, G.S.; Kim, J.A.; Yang, M.; Lee, S.M.; Cho, H.S.; Chung, I.S.; Kim, M.H. The Effects of Desflurane and Propofol-Remifentanil on Postoperative Hepatic and Renal Functions after Right Hepatectomy in Liver Donors. Liver Transplant. 2008, 14, 1150–1158. [Google Scholar] [CrossRef]
- Martin, J.L.; Gruszczyk, A.V.; Beach, T.E.; Murphy, M.P.; Saeb-Parsy, K. Mitochondrial Mechanisms and Therapeutics in Ischaemia Reperfusion Injury. Pediatr. Nephrol. 2018, 34, 1167–1174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Riess, M.L.; Eells, J.T.; Kevin, L.G.; Camara, A.K.S.; Henry, M.M.; Stowe, D.F. Attenuation of Mitochondrial Respiration by Sevoflurane in Isolated Cardiac Mitochondria Is Mediated in Part by Reactive Oxygen Species. Anesthesiology 2004, 100, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Riess, M.L.; Kevin, L.G.; McCormick, J.; Jiang, M.T.; Rhodes, S.S.; Stowe, D.F. Anesthetic Preconditioning: The Role of Free Radicals in Sevoflurane-Induced Attenuation of Mitochondrial Electron Transport in Guinea Pig Isolated Hearts. Anesth. Analg. 2005, 100, 46–53. [Google Scholar] [CrossRef]
- Paradies, G.; Petrosillo, G.; Pistolese, M.; Di Venosa, N.; Federici, A.; Ruggiero, F.M. Decrease in Mitochondrial Complex I Activity in Ischemic/Reperfused Rat Heart. Circ. Res. 2004, 94, 53–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kevin, L.G.; Novalija, E.; Riess, M.L.; Camara, A.K.S.; Rhodes, S.S.; Stowe, D.F. Sevoflurane Exposure Generates Superoxide but Leads to Decreased Superoxide During Ischemia and Reperfusion in Isolated Hearts. Anesth. Analg. 2003, 96, 949–955. [Google Scholar] [CrossRef] [Green Version]
- Novalija, E.; Kevin, L.G.; Camara, A.K.S.; Bosnjak, Z.J.; Kampine, J.P.; Stowe, D.F. Reactive Oxygen Species Precede the ε Isoform of Protein Kinase C in the Anesthetic Preconditioning Signaling Cascade. Anesthesiology 2003, 99, 421–428. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Fang, N.; Shi, C.; Li, L. Sevoflurane Postconditioning Protects Isolated Rat Hearts against Ischemia-Reperfusion Injury. Chin. Med. J. 2010, 123, 1320–1328. [Google Scholar] [PubMed]
- Hausenloy, D.J.; Tsang, A.; Yellon, D.M. The reperfusion injury salvage kinase pathway: A common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc. Med. 2005, 15, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Andrews, D.T.; Royse, C.F.; Royse, A.G. The Mitochondrial Permeability Transition Pore and Its Role in Anaesthesia-Triggered Cellular Protection during Ischaemia-Reperfusion Injury. Anaesth. Intensive Care 2012, 40, 46–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argaud, L.; Gateau-Roesch, O.; Raisky, O.; Loufouat, J.; Robert, D.; Ovize, M. Postconditioning Inhibits Mitochondrial Permeability Transition. Circulation 2005, 111, 194–197. [Google Scholar] [CrossRef]
- Lemoine, S.; Zhu, L.; Beauchef, G.; Lepage, O.; Babatasi, G.; Ivascau, C.; Massetti, M.; Galera, P.; Gérard, J.-L.; Hanouz, J.-L. Role of 70-KDa Ribosomal Protein S6 Kinase, Nitric Oxide Synthase, Glycogen Synthase Kinase-3β, and Mitochondrial Permeability Transition Pore in Desflurane-Induced Postconditioning in Isolated Human Right Atria. Anesthesiology 2010, 112, 1355–1363. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.-T.; Li, L.-H.; Chen, L.; Wang, W.-P.; Li, L.-B.; Gao, C.-Q. Sevoflurane Postconditioning Protects Isolated Rat Hearts against Ischemia-Reperfusion Injury: The Role of Radical Oxygen Species, Extracellular Signal-Related Kinases 1/2 and Mitochondrial Permeability Transition Pore. Mol. Biol. Rep. 2009, 37, 2439–2446. [Google Scholar] [CrossRef]
- Yao, Y.; Li, L.; Li, L.; Gao, C.; Shi, C. Sevoflurane Postconditioning Protects Chronically-Infarcted Rat Hearts against Ischemia-Reperfusion Injury by Activation of Pro-Survival Kinases and Inhibition of Mitochondrial Permeability Transition Pore Opening upon Reperfusion. Biol. Pharm. Bull. 2009, 32, 1854–1861. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krolikowski, J.G.; Weihrauch, D.; Bienengraeber, M.; Kersten, J.R.; Warltier, D.C.; Pagel, P.S. Role of Erk1/2, P70s6K, and ENOS in Isofluraneinduced Cardioprotection during Early Reperfusionin Vivo. Can. J. Anesth. J. Can. Anesthésie 2006, 53, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Ge, Z.-D.; Pravdic, D.; Bienengraeber, M.; Pratt, P.F.; Auchampach, J.A.; Gross, G.J.; Kersten, J.R.; Warltier, D.C. Isoflurane Postconditioning Protects against Reperfusion Injury by Preventing Mitochondrial Permeability Transition by an Endothelial Nitric Oxide Synthase–Dependent Mechanism. Anesthesiology 2010, 112, 73–85. [Google Scholar] [CrossRef] [Green Version]
- Venkatapuram, S.; Wang, C.; Krolikowski, J.G.; Weihrauch, D.; Kersten, J.R.; Warltier, D.C.; Pratt, P.F.; Pagel, P.S. Inhibition of Apoptotic Protein P53 Lowers the Threshold of Isoflurane-Induced Cardioprotection During Early Reperfusion in Rabbits. Anesth. Analg. 2006, 103, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Pagel, P.S.; Krolikowski, J.G.; Neff, D.A.; Weihrauch, D.; Bienengraeber, M.; Kersten, J.R.; Warltier, D.C. Inhibition of Glycogen Synthase Kinase Enhances Isoflurane-Induced Protection Against Myocardial Infarction During Early Reperfusion In Vivo. Anesth. Analg. 2006, 102, 1348–1354. [Google Scholar] [CrossRef] [PubMed]
- Lecour, S. Activation of the protective Survivor Activating Factor Enhancement (SAFE) pathway against reperfusion injury: Does it go beyond the RISK pathway? J. Mol. Cell Cardiol. 2009, 47, 32–40. [Google Scholar] [CrossRef]
- Wang, J.-K.; Yu, L.-N.; Zhang, F.-J.; Yang, M.-J.; Yu, J.; Yan, M.; Chen, G. Postconditioning with Sevoflurane Protects against Focal Cerebral Ischemia and Reperfusion Injury via PI3K/Akt Pathway. Brain Res. 2010, 1357, 142–151. [Google Scholar] [CrossRef]
- Yu, L.; Yu, J.; Zhang, F.; Yang, M.; Ding, T.; Wang, J.; He, W.; Fang, T.; Chen, G.; Yan, M. Sevoflurane Postconditioning Reduces Myocardial Reperfusion Injury in Rat Isolated Hearts via Activation of PI3K/Akt Signaling and Modulation of Bcl-2 Family Proteins. J. Zhejiang Univ. Sci. B 2010, 11, 661–672. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Neff, D.A.; Krolikowski, J.G.; Weihrauch, D.; Bienengraeber, M.; Warltier, D.C.; Kersten, J.R.; Pagel, P.S. The Influence of B-Cell Lymphoma 2 Protein, an Antiapoptotic Regulator of Mitochondrial Permeability Transition, on Isoflurane-Induced and Ischemic Postconditioning in Rabbits. Anesth. Analg. 2006, 102, 1355–1360. [Google Scholar] [CrossRef]
- Wu, W.; Zhou, X.; Liu, P.; Fei, W.; Li, L.; Yun, H. Isoflurane Reduces Hypoxia/Reoxygenation-Induced Apoptosis and Mitochondrial Permeability Transition in Rat Primary Cultured Cardiocytes. BMC Anesthesiol. 2014, 14, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pravdic, D.; Mio, Y.; Sedlic, F.; Pratt, P.; Warltier, D.; Bosnjak, Z.; Bienengraeber, M. Isoflurane Protects Cardiomyocytes and Mitochondria by Immediate and Cytosol-Independent Action at Reperfusion. Br. J. Pharmacol. 2010, 160, 220–232. [Google Scholar] [CrossRef] [Green Version]
- Cohen, M.V.; Yang, X.-M.; Downey, J.M. Acidosis, Oxygen, and Interference with Mitochondrial Permeability Transition Pore Formation in the Early Minutes of Reperfusion Are Critical to Postconditioning’s Success. Basic Res. Cardiol. 2008, 103, 464–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inserte, J.; Barba, I.; Hernando, V.; Abellan, A.; Ruiz-Meana, M.; Rodriguez-Sinovas, A.; Garcia-Dorado, D. Effect of Acidic Reperfusion on Prolongation of Intracellular Acidosis and Myocardial Salvage. Cardiovasc. Res. 2007, 77, 782–790. [Google Scholar] [CrossRef] [Green Version]
- Abad, M.F.C.; Di Benedetto, G.; Magalhães, P.J.; Filippin, L.; Pozzan, T. Mitochondrial PH Monitored by a New Engineered Green Fluorescent Protein Mutant. J. Biol. Chem. 2003, 279, 11521–11529. [Google Scholar] [CrossRef] [Green Version]
- Brennan, J.; Berry, R.; Baghai, M.; Duchen, M.; Shattock, M. FCCP Is Cardioprotective at Concentrations That Cause Mitochondrial Oxidation without Detectable Depolarisation. Cardiovasc. Res. 2006, 72, 322–330. [Google Scholar] [CrossRef]
- Dlasková, A.; Hlavatá, L.; Ježek, J.; Ježek, P. Mitochondrial Complex I Superoxide Production Is Attenuated by Uncoupling. Int. J. Biochem. Cell Biol. 2008, 40, 2098–2109. [Google Scholar] [CrossRef]
- Becker, B.F.; Chappell, D.; Bruegger, D.; Annecke, T.; Jacob, M. Therapeutic Strategies Targeting the Endothelial Glycocalyx: Acute Deficits, but Great Potential. Cardiovasc. Res. 2010, 87, 300–310. [Google Scholar] [CrossRef] [Green Version]
- Ebong, E.E.; Macaluso, F.P.; Spray, D.C.; Tarbell, J.M. Imaging the Endothelial Glycocalyx In Vitro by Rapid Freezing/Freeze Substitution Transmission Electron Microscopy. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1908–1915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, B.F.; Chappell, D.; Jacob, M. Endothelial Glycocalyx and Coronary Vascular Permeability: The Fringe Benefit. Basic Res. Cardiol. 2010, 105, 687–701. [Google Scholar] [CrossRef] [PubMed]
- Danielli, J.F. Capillary Permeability and Oedema in the Perfused Frog. J. Physiol. 1940, 98, 109–129. [Google Scholar] [CrossRef] [PubMed]
- Pries, A.R.; Secomb, T.W.; Gaehtgens, P. The Endothelial Surface Layer. Pflügers Arch. Eur. J. Physiol. 2000, 440, 653–666. [Google Scholar] [CrossRef] [PubMed]
- Becker, B.F.; Jacob, M.; Leipert, S.; Salmon, A.H.J.; Chappell, D. Degradation of the Endothelial Glycocalyx in Clinical Settings: Searching for the Sheddases. Br. J. Clin. Pharmacol. 2015, 80, 389–402. [Google Scholar] [CrossRef]
- Tanaka, T.; Takabuchi, S.; Nishi, K.; Oda, S.; Wakamatsu, T.; Daijo, H.; Fukuda, K.; Hirota, K. The Intravenous Anesthetic Propofol Inhibits Lipopolysaccharide-Induced Hypoxia-Inducible Factor 1 Activation and Suppresses the Glucose Metabolism in Macrophages. J. Anesth. 2009, 24, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Reitsma, S.; Slaaf, D.W.; Vink, H.; van Zandvoort, M.A.M.J.; Oude Egbrink, M.G.A. The Endothelial Glycocalyx: Composition, Functions, and Visualization. Pflügers Arch. Eur. J. Physiol. 2007, 454, 345–359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alphonsus, C.S.; Rodseth, R.N. The Endothelial Glycocalyx: A Review of the Vascular Barrier. Anaesthesia 2014, 69, 777–784. [Google Scholar] [CrossRef] [PubMed]
- Annecke, T.; Chappell, D.; Chen, C.; Jacob, M.; Welsch, U.; Sommerhoff, C.P.; Rehm, M.; Conzen, P.F.; Becker, B.F. Sevoflurane Preserves the Endothelial Glycocalyx against Ischaemia–Reperfusion Injury. Br. J. Anaesth. 2010, 104, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Chappell, D.; Heindl, B.; Jacob, M.; Annecke, T.; Chen, C.; Rehm, M.; Conzen, P.; Becker, B.F. Sevoflurane Reduces Leukocyte and Platelet Adhesion after Ischemia-Reperfusion by Protecting the Endothelial Glycocalyx. Anesthesiology 2011, 115, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Becker, B.F.; Chen, C.; Chappell, D.; Annecke, T.; Conzen, P.; Jacob, M.; Welsch, U.; Zwissler, B. Sevoflurane Mitigates Shedding of Hyaluronan from the Coronary Endothelium, Also during Ischemia/Reperfusion: An Ex Vivo Animal Study. Hypoxia 2016, 4, 81–90. [Google Scholar] [CrossRef] [Green Version]
- Annecke, T.; Rehm, M.; Bruegger, D.; Kubitz, J.C.; Kemming, G.I.; Stoekelhuber, M.; Becker, B.F.; Conzen, P.F. Ischemia–Reperfusion-Induced Unmeasured Anion Generation and Glycocalyx Shedding: Sevoflurane versus Propofol Anesthesia. J. Investig. Surg. 2012, 25, 162–168. [Google Scholar] [CrossRef]
- Rosenberger, C. Expression of Hypoxia-Inducible Factor-1 and -2 in Hypoxic and Ischemic Rat Kidneys. J. Am. Soc. Nephrol. 2002, 13, 1721–1732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesener, M.S.; Jürgensen, J.S.; Rosenberger, C.; Scholze, C.; Hörstrup, J.H.; Warnecke, C.; Mandriota, S.; Bechmann, I.; Frei, U.A.; Pugh, C.W.; et al. Widespread, Hypoxia-inducible Expression of HIF-2α in Distinct Cell Populations of Different Organs. Faseb J. 2002, 17, 271–273. [Google Scholar] [CrossRef] [Green Version]
- Eltzschig, H.K.; Carmeliet, P. Hypoxia and Inflammation. N. Engl. J. Med. 2011, 364, 656–665. [Google Scholar] [CrossRef] [Green Version]
- Oda, T.; Ishimura, T.; Yokoyama, N.; Ogawa, S.; Miyake, H.; Fujisaw, M. Hypoxia-Inducible Factor-1α Expression in Kidney Transplant Biopsy Specimens After Reperfusion Is Associated With Early Recovery of Graft Function After Cadaveric Kidney Transplantation. Transpl. Proc. 2017, 49, 68–72. [Google Scholar] [CrossRef]
- Kojima, I.; Tanaka, T.; Inagi, R.; Kato, H.; Yamashita, T.; Sakiyama, A.; Ohneda, O.; Takeda, N.; Sata, M.; Miyata, T.; et al. Protective Role of Hypoxia-Inducible Factor-2α against Ischemic Damage and Oxidative Stress in the Kidney. J. Am. Soc. Nephrol. 2007, 18, 1218–1226. [Google Scholar] [CrossRef]
- Yang, L.; Xie, P.; Wu, J.; Yu, J.; Yu, T.; Wang, H.; Wang, J.; Xia, Z.; Zheng, H. Sevoflurane Postconditioning Improves Myocardial Mitochondrial Respiratory Function and Reduces Myocardial Ischemia-Reperfusion Injury by up-Regulating HIF-1. Am. J. Transl. Res. 2016, 8, 4415–4424. [Google Scholar] [PubMed]
- Zheng, B.; Zhan, Q.; Chen, J.; Xu, H.; He, Z. Sevoflurane Pretreatment Enhance HIF-2α Expression in Mice after Renal Ischemia/Reperfusion Injury. Int. J. Clin. Exp. Pathol. 2015, 8, 13114–13119. [Google Scholar]
- Zhao, H.; Watts, H.R.; Chong, M.; Huang, H.; Tralau-Stewart, C.; Maxwell, P.H.; Maze, M.; George, A.J.T.; Ma, D. Xenon Treatment Protects Against Cold Ischemia Associated Delayed Graft Function and Prolongs Graft Survival in Rats. Am. J. Transpl. 2013, 13, 2006–2018. [Google Scholar] [CrossRef]
- Ye, Z.; Guo, Q.; Xia, P.; Wang, N.; Wang, E.; Yuan, Y. Sevoflurane Postconditioning Involves an Up-Regulation of HIF-1α and HO-1 Expression via PI3K/Akt Pathway in a Rat Model of Focal Cerebral Ischemia. Brain Res. 2012, 1463, 63–74. [Google Scholar] [CrossRef] [PubMed]
- Chiari, P.C.; Bienengraeber, M.W.; Pagel, P.S.; Krolikowski, J.G.; Kersten, J.R.; Warltier, D.C. Isoflurane Protects against Myocardial Infarction during Early Reperfusion by Activation of Phosphatidylinositol-3-Kinase Signal Transduction: Evidence for Anesthetic-Induced Postconditioning in Rabbits. Anesthesiology 2005, 102, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Benzonana, L.L.; Zhao, H.; Watts, H.R.; Perry, N.J.S.; Bevan, C.; Brown, R.; Ma, D. Prostate Cancer Cell Malignancy via Modulation of HIF-1α Pathway with Isoflurane and Propofol Alone and in Combination. Br. J. Cancer 2014, 111, 1338–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeh, C.-H.; Cho, W.; So, E.C.; Chu, C.-C.; Lin, M.-C.; Wang, J.-J.; Hsing, C.-H. Propofol Inhibits Lipopolysaccharide-Induced Lung Epithelial Cell Injury by Reducing Hypoxia-Inducible Factor-1α Expression. Br. J. Anaesth. 2011, 106, 590–599. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.T.; Kim, M.; Kim, J.; Kim, N.; Emala, C.W. TGF-Beta1 Release by Volatile Anesthetics Mediates Protection against Renal Proximal Tubule Cell Necrosis. Am. J. Nephrol. 2007, 27, 416–424. [Google Scholar] [CrossRef] [PubMed]
- Huynh, M.-L.N.; Fadok, V.A.; Henson, P.M. Phosphatidylserine-Dependent Ingestion of Apoptotic Cells Promotes TGF-Beta1 Secretion and the Resolution of Inflammation. J. Clin. Investig. 2002, 109, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Kim, M.; Park, S.W.; Chen, S.W.C.; Pitson, S.M.; Lee, H.T. Isoflurane via TGF-Β1 Release Increases Caveolae Formation and Organizes Sphingosine Kinase Signaling in Renal Proximal Tubules. Am. J. Physiol. Ren. Physiol. 2010, 298, F1041–F1050. [Google Scholar] [CrossRef] [Green Version]
- Xiao, Y.Q.; Malcolm, K.; Worthen, G.S.; Gardai, S.; Schiemann, W.P.; Fadok, V.A.; Bratton, D.L.; Henson, P.M. Cross-Talk between ERK and P38 MAPK Mediates Selective Suppression of Pro-Inflammatory Cytokines by Transforming Growth Factor-β. J. Biol. Chem. 2002, 277, 14884–14893. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hart, M.L.; Jacobi, B.; Schittenhelm, J.; Henn, M.; Eltzschig, H.K. Cutting Edge: A2B Adenosine Receptor Signaling Provides Potent Protection during Intestinal Ischemia/Reperfusion Injury. J. Immunol. 2009, 182, 3965–3968. [Google Scholar] [CrossRef] [PubMed]
- Grenz, A.; Zhang, H.; Eckle, T.; Mittelbronn, M.; Wehrmann, M.; Köhle, C.; Kloor, D.; Thompson, L.F.; Osswald, H.; Eltzschig, H.K. Protective Role of Ecto-5′-Nucleotidase (CD73) in Renal Ischemia. J. Am. Soc. Nephrol. 2007, 18, 833–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckle, T.; Krahn, T.; Grenz, A.; Köhler, D.; Mittelbronn, M.; Ledent, C.; Jacobson, M.A.; Osswald, H.; Thompson, L.F.; Unertl, K.; et al. Cardioprotection by Ecto-5′-Nucleotidase (CD73) and A2BAdenosine Receptors. Circulation 2007, 115, 1581–1590. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Kim, M.; Park, S.W.; Pitson, S.M.; Lee, H.T. Isoflurane Protects Human Kidney Proximal Tubule Cells against Necrosis via Sphingosine Kinase and Sphingosine-1-Phosphate Generation. Am. J. Nephrol. 2010, 31, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Park, S.W.; Kim, M.; Kim, J.Y.; Brown, K.M.; Haase, V.H.; D’Agati, V.D.; Lee, H.T. Proximal Tubule Sphingosine Kinase-1 Has a Critical Role in A1 Adenosine Receptor-Mediated Renal Protection from Ischemia. Kidney Int. 2012, 82, 878–891. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Kim, M.; Ham, A.; Brown, K.M.; Greene, R.W.; D’Agati, V.D.; Lee, H.T. IL-11 Is Required for A1Adenosine Receptor–Mediated Protection against Ischemic AKI. J. Am. Soc. Nephrol. 2013, 24, 1558–1570. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Lekic, T.; Fathali, N.; Ostrowski, R.P.; Martin, R.D.; Tang, J.; Zhang, J.H. Isoflurane Posttreatment Reduces Neonatal Hypoxic–Ischemic Brain Injury in Rats by the Sphingosine-1-Phosphate/Phosphatidylinositol-3-Kinase/Akt Pathway. Stroke 2010, 41, 1521–1527. [Google Scholar] [CrossRef] [PubMed]
- Olivera, A.; Kohama, T.; Edsall, L.; Nava, V.; Cuvillier, O.; Poulton, S.; Spiegel, S. Sphingosine Kinase Expression Increases Intracellular Sphingosine-1-Phosphate and Promotes Cell Growth and Survival. J. Cell Biol. 1999, 147, 545–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spiegel, S.; Milstien, S. Sphingosine-1-Phosphate: An Enigmatic Signalling Lipid. Nat. Rev. Mol. Cell Biol. 2003, 4, 397–407. [Google Scholar] [CrossRef]
- Davaille, J.; Li, L.; Mallat, A.; Lotersztajn, S. Sphingosine 1-Phosphate Triggers Both Apoptotic and Survival Signals for Human Hepatic Myofibroblasts. J. Biol. Chem. 2002, 277, 37323–37330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakar, A.M.; Park, S.W.; Kim, M.; Lee, H.T. Isoflurane Protects Against Human Endothelial Cell Apoptosis by Inducing Sphingosine Kinase-1 via ERK MAPK. Int. J. Mol. Sci. 2012, 13, 977–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somers, S.J.; Frias, M.; Lacerda, L.; Opie, L.H.; Lecour, S. Interplay Between SAFE and RISK Pathways in Sphingosine-1-Phosphate–Induced Cardioprotection. Cardiovasc. Drugs Ther. 2012, 26, 227–237. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.; Kim, N.; D’Agati, V.D.; Emala, C.W.; Lee, H.T. Isoflurane Mediates Protection from Renal Ischemia-Reperfusion Injury via Sphingosine Kinase and Sphingosine-1-Phosphate-Dependent Pathways. Am. J. Physiol. Ren. Physiol. 2007, 293, F1827–F1835. [Google Scholar] [CrossRef] [Green Version]
- Bajwa, A.; Jo, S.-K.; Ye, H.; Huang, L.; Dondeti, K.R.; Rosin, D.L.; Haase, V.H.; Macdonald, T.L.; Lynch, K.R.; Okusa, M.D. Activation of Sphingosine-1-Phosphate 1 Receptor in the Proximal Tubule Protects Against Ischemia-Reperfusion Injury. J. Am. Soc. Nephrol. 2010, 21, 955–965. [Google Scholar] [CrossRef] [Green Version]
- Fuller, T.F.; Hoff, U.; Kong, L.; Naether, M.; Wagner, P.; Nieminen-Kelhä, M.; Nolting, J.; Luft, F.C.; Hegner, B.; Dragun, D. Cytoprotective Actions of FTY720 Modulate Severe Preservation Reperfusion Injury in RatRenal Transplants. Transplantation 2010, 89, 402–408. [Google Scholar] [CrossRef]
- Damman, J.; Seelen, M.A.; Moers, C.; Daha, M.R.; Rahmel, A.; Leuvenink, H.G.; Paul, A.; Pirenne, J.; Ploeg, R.J. Systemic Complement Activation in Deceased Donors Is Associated With Acute Rejection After Renal Transplantation in the Recipient. Transplantation 2011, 92, 163–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damman, J.; Daha, M.R.; van Son, W.J.; Leuvenink, H.G.; Ploeg, R.J.; Seelen, M.A. Crosstalk between Complement and Toll-like Receptor Activation in Relation to Donor Brain Death and Renal Ischemia-Reperfusion Injury. Am. J. Transpl. 2011, 11, 660–669. [Google Scholar] [CrossRef]
- Land, W.; Schneeberger, H.; Schleibner, S.; Illner, W.-D.; Abendroth, D.; Rutili, G.; Arfors, K.E.; Messmer, K. The Beneficial Effect of Human Recombinant Superoxide Dismutase On Acute And Chronic Rejection Events In Recipients Of Cadaveric Renal Transplants. Transplantation 1994, 57, 211–217. [Google Scholar] [CrossRef]
- Matzinger, P. Tolerance, Danger, and the Extended Family. Annu. Rev. Immunol. 1994, 12, 991–1045. [Google Scholar] [CrossRef] [PubMed]
- Halloran, P.; Melk, A.; Barth, C. Rethinking Chronic Allograft Nephropathy: The Concept of Accelerated Senescence. J. Am. Soc. Nephrol. 1999, 10, 167–181. [Google Scholar]
- Halloran, P.F.; Reeve, J.P.; Pereira, A.B.; Hidalgo, L.G.; Famulski, K.S. Antibody-Mediated Rejection, T Cell–Mediated Rejection, and the Injury-Repair Response: New Insights from the Genome Canada Studies of Kidney Transplant Biopsies. Kidney Int. 2014, 85, 258–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, H.R.; Rabb, H. The Innate Immune Response in Ischemic Acute Kidney Injury. Clin. Immunol. 2009, 130, 41–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fröhlich, D.; Rothe, G.; Schwall, B.; Schmid, P.; Schmitz, G.; Taeger, K.; Hobbhahn, J. Effects of Volatile Anaesthetics on Human Neutrophil Oxidative Response to the Bacterial Peptide FMLP. Br. J. Anaesth. 1997, 78, 718–723. [Google Scholar] [CrossRef]
- Mobert, J.; Zahler, S.; Becker, B.F.; Conzen, P.F. Inhibition of Neutrophil Activation by Volatile Anesthetics Decreases Adhesion to Cultured Human Endothelial Cells. Anesthesiology 1999, 90, 1372–1381. [Google Scholar] [CrossRef] [PubMed]
- Kong, H.Y.; Zhu, S.M.; Wang, L.Q.; He, Y.; Xie, H.Y.; Zheng, S.S. Sevoflurane Protects against Acute Kidney Injury in a Small-Size Liver Transplantation Model. Am. J. Nephrol. 2010, 32, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Abbas, A.K.; Lichtman, A.H.; Pillai, S.; Baker, A.; Baker, D.L. Cellular and Molecular Immunology, 8th ed.; Elsevier Saunders: Philadelphia, PA, USA, 2014. [Google Scholar]
- Jo, S.-K.; Sung, S.-A.; Cho, W.-Y.; Go, K.-J.; Kim, H.-K. Macrophages Contribute to the Initiation of Ischaemic Acute Renal Failure in Rats. Nephrol. Dial. Transpl. 2006, 21, 1231–1239. [Google Scholar] [CrossRef] [Green Version]
- Cho, E.J.; Yoon, J.H.; Hong, S.J.; Lee, S.H.; Sim, S.B. The Effects of Sevoflurane on Systemic and Pulmonary Inflammatory Responses after Cardiopulmonary Bypass. J. Cardiothorac. Vasc. Anesth. 2009, 23, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Flondor, M.; Hofstetter, C.; Boost, K.A.; Betz, C.; Homann, M.; Zwissler, B. Isoflurane Inhalation after Induction of Endotoxemia in Rats Attenuates the Systemic Cytokine Response. Eur. Surg. Res. 2007, 40, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Tschaikowsky, K.; Ritter, J.; Schröppel, K.; Kühn, M. Volatile Anesthetics Differentially Affect Immunostimulated Expression of Inducible Nitric Oxide Synthase. Anesthesiology 2000, 92, 1093–1102. [Google Scholar] [CrossRef]
- Huen, S.C.; Cantley, L.G. Macrophages in Renal Injury and Repair. Annu. Rev. Physiol. 2017, 79, 449–469. [Google Scholar] [CrossRef]
- Mark, L.A.; Robinson, A.V.; Schulak, J.A. Inhibition of Nitric Oxide Synthase Reduces Renal Ischemia/Reperfusion Injury. J. Surg. Res. 2005, 129, 236–241. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.K.; Patel, N.S.A.; Kvale, E.O.; Cuzzocrea, S.; Brown, P.A.J.; Stewart, K.N.; Mota-Filipe, H.; Thiemermann, C. Inhibition of Inducible Nitric Oxide Synthase Reduces Renal Ischemia/Reperfusion Injury. Kidney Int. 2002, 61, 862–871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Toda, N.; Toda, H.; Hatano, Y. Anesthetic Modulation of Immune Reactions Mediated by Nitric Oxide. J. Anesth. 2008, 22, 155–162. [Google Scholar] [CrossRef]
- Zha, H.; Matsunami, E.; Blazon-Brown, N.; Koutsogiannaki, S.; Hou, L.; Bu, W.; Babazada, H.; Odegard, K.C.; Liu, R.; Eckenhoff, R.G.; et al. Volatile Anesthetics Affect Macrophage Phagocytosis. PLoS ONE 2019, 14, e0216163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angka, L.; Khan, S.; Kilgour, M.; Xu, R.; Kennedy, M.; Auer, R. Dysfunctional Natural Killer Cells in the Aftermath of Cancer Surgery. Int. J. Mol. Sci. 2017, 18, 1787. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.-X.; Wang, S.; Huang, X.; Min, W.-P.; Sun, H.; Liu, W.; Garcia, B.; Jevnikar, A.M. NK Cells Induce Apoptosis in Tubular Epithelial Cells and Contribute to Renal Ischemia-Reperfusion Injury. J. Immunol. 2008, 181, 7489–7498. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Han, C.; Dai, H.; Hou, J.; Dong, Y.; Cui, X.; Xu, L.; Zhang, M.; Xia, Q. Hypoxia-Inducible Factor-2αLimits Natural Killer T Cell Cytotoxicity in Renal Ischemia/Reperfusion Injury. J. Am. Soc. Nephrol. 2015, 27, 92–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Huang, L.; Sung, S.J.; Lobo, P.I.; Brown, M.G.; Gregg, R.K.; Engelhard, V.H.; Okusa, M.D. NKT Cell Activation Mediates Neutrophil IFN-γ Production and Renal Ischemia-Reperfusion Injury. J. Immunol. 2007, 178, 5899–5911. [Google Scholar] [CrossRef]
- Welden, B.; Gates, G.; Mallari, R.; Garrett, N. Effects of Anesthetics and Analgesics on Natural Killer Cell Activity. AANA J 2009, 77, 287–292. [Google Scholar]
- Melamed, R.; Bar-Yosef, S.; Shakhar, G.; Shakhar, K.; Ben-Eliyahu, S. Suppression of Natural Killer Cell Activity and Promotion of Tumor Metastasis by Ketamine, Thiopental, and Halothane, but Not by Propofol: Mediating Mechanisms and Prophylactic Measures. Anesth. Analg. 2003, 1331–1339. [Google Scholar] [CrossRef]
- Wada, H.; Seki, S.; Takahashi, T.; Kawarabayashi, N.; Higuchi, H.; Habu, Y.; Sugahara, S.; Kazama, T. Combined Spinal and General Anesthesia Attenuates Liver Metastasis by Preserving Th1/Th2 Cytokine Balance. Anesthesiology 2007, 106, 499–506. [Google Scholar] [CrossRef]
- Markovic, S.N.; Knight, P.R.; Murasko, D.M. Inhibition of Interferon Stimulation of Natural Killer Cell Activity in Mice Anesthetized with Halothane or Isoflurane. Anesthesiology 1993, 78, 700–706. [Google Scholar] [CrossRef] [PubMed]
- Sessler, D.I. Does Regional Analgesia Reduce the Risk of Cancer Recurrence? A Hypothesis. Eur. J. Cancer Prev. 2008, 17, 269–272. [Google Scholar] [CrossRef]
- Brand, J.-M.; Kirchner, H.; Poppe, C.; Schmucker, P. The Effects of General Anesthesia on Human Peripheral Immune Cell Distribution and Cytokine Production. Clin. Immunol. Immunopathol. 1997, 83, 190–194. [Google Scholar] [CrossRef]
- Ai, L.; Wang, H. Effects of Propofol and Sevoflurane on Tumor Killing Activity of Peripheral Blood Natural Killer Cells in Patients with Gastric Cancer. J. Int. Med. Res. 2020, 48, 030006052090486. [Google Scholar] [CrossRef] [PubMed]
- Ysebaert, D.K.; De Greef, K.E.; De Beuf, A.; Van Rompay, A.N.R.; Vercauteren, S.; Persy, V.P.; De Broe, M.E. T Cells as Mediators in Renal Ischemia/Reperfusion Injury. Kidney Int. 2004, 66, 491–496. [Google Scholar] [CrossRef] [Green Version]
- de Perrot, M.; Young, K.; Imai, Y.; Liu, M.; Waddell, T.K.; Fischer, S.; Zhang, L.; Keshavjee, S. Recipient T Cells Mediate Reperfusion Injury after Lung Transplantation in the Rat. J. Immunol. 2003, 171, 4995–5002. [Google Scholar] [CrossRef] [Green Version]
- Fiorina, P.; Ansari, M.J.; Jurewicz, M.; Barry, M.; Ricchiuti, V.; Smith, R.N.; Shea, S.; Means, T.K.; Auchincloss, H.; Luster, A.D.; et al. Role of CXC Chemokine Receptor 3 Pathway in Renal Ischemic Injury. J. Am. Soc. Nephrol. 2006, 17, 716–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabb, H. The T Cell as a Bridge between Innate and Adaptive Immune Systems: Implications for the Kidney. Kidney Int. 2002, 61, 1935–1946. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rabb, H.; Daniels, F.; O’Donnell, M.; Haq, M.; Saba, S.R.; Keane, W.; Tang, W.W. Pathophysiological Role of T Lymphocytes in Renal Ischemia-Reperfusion Injury in Mice. Am. J. Physiol. Ren. Physiol. 2000, 279, F525–F531. [Google Scholar] [CrossRef] [Green Version]
- Burne, M.J.; Daniels, F.; El Ghandour, A.; Mauiyyedi, S.; Colvin, R.B.; O’Donnell, M.P.; Rabb, H. Identification of the CD4+ T Cell as a Major Pathogenic Factor in Ischemic Acute Renal Failure. J. Clin. Investig. 2001, 108, 1283–1290. [Google Scholar] [CrossRef] [PubMed]
- Day, Y.-J.; Huang, L.; Ye, H.; Li, L.; Linden, J.; Okusa, M.D. Renal Ischemia-Reperfusion Injury and Adenosine 2A Receptor-Mediated Tissue Protection: The Role of CD4+T Cells and IFN-γ. J. Immunol. 2006, 176, 3108–3114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ko, G.J.; Linfert, D.; Jang, H.R.; Higbee, E.; Watkins, T.; Cheadle, C.; Liu, M.; Racusen, L.; Grigoryev, D.N.; Rabb, H. Transcriptional Analysis of Infiltrating T Cells in Kidney Ischemia-Reperfusion Injury Reveals a Pathophysiological Role for CCR5. Am. J. Physiol. Ren. Physiol. 2012, 302, F762–F773. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Lee, H.H.; Noriega, M.D.L.M.; Paust, H.J.; Zahner, G.; Thaiss, F. Lymphocyte-Specific Deletion of IKK2 or NEMO Mediates an Increase in Intrarenal Th17 Cells and Accelerates Renal Damage in an Ischemia-Reperfusion Injury Mouse Model. Am. J. Physiol. Ren. Physiol. 2016, 311, F1005–F1014. [Google Scholar] [CrossRef]
- Zhang, M.-Z.; Wang, X.; Wang, Y.; Niu, A.; Wang, S.; Zou, C.; Harris, R.C. IL-4/IL-13–Mediated Polarization of Renal Macrophages/Dendritic Cells to an M2a Phenotype Is Essential for Recovery from Acute Kidney Injury. Kidney Int. 2017, 91, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Ren, X.F.; Li, W.Z.; Meng, F.Y.; Lin, C.F. Differential Effects of Propofol and Isoflurane on the Activation of T-Helper Cells in Lung Cancer Patients. Anaesthesia 2010, 65, 478–482. [Google Scholar] [CrossRef]
- Inada, T.; Yamanouchi, Y.; Jomura, S.; Sakamoto, S.; Takahashi, M.; Kambara, T.; Shingu, K. Effect of Propofol and Isoflurane Anaesthesia on the Immune Response to Surgery. Anaesthesia 2004, 59, 954–959. [Google Scholar] [CrossRef] [PubMed]
- Woo, J.H.; Baik, H.J.; Kim, C.H.; Chung, R.K.; Kim, D.Y.; Lee, G.Y.; Chun, E.H. Effect of Propofol and Desflurane on Immune Cell Populations in Breast Cancer Patients: A Randomized Trial. J. Korean Med Sci. 2015, 30, 1503. [Google Scholar] [CrossRef] [Green Version]
- Wood, K.J.; Sakaguchi, S. Regulatory T Cells in Transplantation Tolerance. Nat. Rev. Immunol. 2003, 3, 199–210. [Google Scholar] [CrossRef]
- Ferrer, I.R.; Hester, J.; Bushell, A.; Wood, K.J. Induction of Transplantation Tolerance through Regulatory Cells: From Mice to Men. Immunol. Rev. 2014, 258, 102–116. [Google Scholar] [CrossRef]
- Jun, C.; Qingshu, L.; Ke, W.; Ping, L.; Jun, D.; Jie, L.; Su, M. Protective Effect of CXCR3+CD4+CD25+Foxp3+Regulatory T Cells in Renal Ischemia-Reperfusion Injury. Mediat. Inflamm. 2015, 2015, 360973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, C.-S.; Lee, J.; Yoon, T.-G.; Seo, E.-H.; Park, H.-J.; Piao, L.; Lee, S.-H.; Kim, S.-H. Effect of Equipotent Doses of Propofol versus Sevoflurane Anesthesia on Regulatory T Cells after Breast Cancer Surgery. Anesthesiology 2018, 129, 921–931. [Google Scholar] [CrossRef]
- Chutipongtanate, A.; Prukviwat, S.; Pongsakul, N.; Srisala, S.; Kamanee, N.; Arpornsujaritkun, N.; Gesprasert, G.; Apiwattanakul, N.; Hongeng, S.; Ittichaikulthol, W.; et al. Effects of Desflurane and Sevoflurane Anesthesia on Regulatory T Cells in Patients Undergoing Living Donor Kidney Transplantation: A Randomized Intervention Trial. BMC Anesthesiol. 2020, 20. [Google Scholar] [CrossRef]
- Loop, T.; Dovi-Akue, D.; Frick, M.; Roesslein, M.; Egger, L.; Humar, M.; Hoetzel, A.; Schmidt, R.; Borner, C.; Pahl, H.L.; et al. Volatile Anesthetics Induce Caspase-Dependent, Mitochondria-Mediated Apoptosis in Human T Lymphocytes In Vitro. Anesthesiology 2005, 102, 1147–1157. [Google Scholar] [CrossRef] [PubMed]
- Matsuoka, H.; Kurosawa, S.; Horinouchi, T.; Kato, M.; Hashimoto, Y. Inhalation Anesthetics Induce Apoptosis in Normal Peripheral Lymphocytes In Vitro. Anesthesiology 2001, 95, 1467–1472. [Google Scholar] [CrossRef]
- Jang, H.R.; Gandolfo, M.T.; Ko, G.J.; Satpute, S.R.; Racusen, L.; Rabb, H. B Cells Limit Repair after Ischemic Acute Kidney Injury. J. Am. Soc. Nephrol. 2010, 21, 654–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martins, H.L.; Silva, C.; Martini, D.; Noronha, I.L. Detection of B Lymphocytes (CD20+) in Renal Allograft Biopsy Specimens. Transpl. Proc. 2007, 39, 432–434. [Google Scholar] [CrossRef] [PubMed]
- Puig, N.R.; Ferrero, P.; Bay, M.L.; Hidalgo, G.; Valenti, J.; Amerio, N.; Elena, G. Effects of Sevoflurane General Anesthesia: Immunological Studies in Mice. Int. Immunopharmacol. 2002, 2, 95–104. [Google Scholar] [CrossRef]
- Liu, S.; Gu, X.; Zhu, L.; Wu, G.; Zhou, H.; Song, Y.; Wu, C. Effects of Propofol and Sevoflurane on Perioperative Immune Response in Patients Undergoing Laparoscopic Radical Hysterectomy for Cervical Cancer. Medicine 2016, 95, e5479. [Google Scholar] [CrossRef] [PubMed]
- Yuki, K.; Astrof, N.S.; Bracken, C.; Yoo, R.; Silkworth, W.; Soriano, S.G.; Shimaoka, M. The Volatile Anesthetic Isoflurane Perturbs Conformational Activation of Integrin LFA-1 by Binding to the Allosteric Regulatory Cavity. FASEB J. 2008, 22, 4109–4116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuki, K.; Astrof, N.S.; Bracken, C.; Soriano, S.G.; Shimaoka, M. Sevoflurane Binds and Allosterically Blocks Integrin Lymphocyte Function-Associated Antigen-1. Anesthesiology 2010, 113, 600–609. [Google Scholar] [CrossRef] [Green Version]
- Yuki, K.; Bu, W.; Xi, J.; Sen, M.; Shimaoka, M.; Eckenhoff, R.G. Isoflurane Binds and Stabilizes a Closed Conformation of the Leukocyte Function-associated Antigen-1. FASEB J. 2012, 26, 4408–4417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Springer, T.A. Traffic Signals for Lymphocyte Recirculation and Leukocyte Emigration: The Multistep Paradigm. Cell 1994, 76, 301–314. [Google Scholar] [CrossRef]
- Thomas, L.M.; Peterson, M.E.; Long, E.O. Cutting Edge: NK Cell Licensing Modulates Adhesion to Target Cells. J. Immunol. 2013, 191, 3981–3985. [Google Scholar] [CrossRef] [PubMed]
- Barber, D.F.; Faure, M.; Long, E.O. LFA-1 Contributes an Early Signal for NK Cell Cytotoxicity. J. Immunol. 2004, 173, 3653–3659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicolls, M.R.; Coulombe, M.; Yang, H.; Bolwerk, A.; Gill, R.G. Anti-LFA-1 Therapy Induces Long-Term Islet Allograft Acceptance in the Absence of IFN-γ or IL-4. J. Immunol. 2000, 164, 3627–3634. [Google Scholar] [CrossRef]
- Arefanian, H.; Tredget, E.B.; Rajotte, R.V.; Korbutt, G.S.; Gill, R.G.; Rayat, G.R. Combination of Anti-CD4 with Anti-LFA-1 and Anti-CD154 Monoclonal Antibodies Promotes Long-Term Survival and Function of Neonatal Porcine Islet Xenografts in Spontaneously Diabetic NOD Mice. Cell Transpl. 2007, 16, 787–798. [Google Scholar] [CrossRef] [Green Version]
- Badell, I.R.; Russell, M.C.; Thompson, P.W.; Turner, A.P.; Weaver, T.A.; Robertson, J.M.; Avila, J.G.; Cano, J.A.; Johnson, B.E.; Song, M.; et al. LFA-1–Specific Therapy Prolongs Allograft Survival in Rhesus Macaques. J. Clin. Investig. 2010, 120, 4520–4531. [Google Scholar] [CrossRef] [PubMed]
- Vincenti, F.; Mendez, R.; Pescovitz, M.; Rajagopalan, P.R.; Wilkinson, A.H.; Butt, K.; Laskow, D.; Slakey, D.P.; Lorber, M.I.; Garg, J.P.; et al. A Phase I/II Randomized Open-Label Multicenter Trial of Efalizumab, a Humanized Anti-CD11a, Anti-LFA-1 in Renal Transplantation. Am. J. Transplant. 2007, 7, 1770–1777. [Google Scholar] [CrossRef]
- Research, C. For D. E. and. Efalizumab (Marketed as Raptiva) Information; FDA: 2019. Available online: https://www.fda.gov/drugs/postmarket-drug-safety-information-patients-and-providers/efalizumab-marketed-raptiva-information (accessed on 24 February 2021).
- Yuki, K.; Bu, W.; Xi, J.; Shimaoka, M.; Eckenhoff, R. Propofol Shares the Binding Site with Isoflurane and Sevoflurane on Leukocyte Function–Associated Antigen-1. Anesth. Analg. 2013, 117, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Perez-Protto, S.; Nazemian, R.; Matta, M.; Patel, P.; Wagner, K.J.; Latifi, S.Q.; Lebovitz, D.J.; Reynolds, J.D. The effect of inhalational anaesthesia during deceased donor organ procurement on post-transplantation graft survival. Anaesth. Intensive Care 2018, 46, 178–184. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Joo, D.J.; Kim, J.M.; Park, J.H.; Kim, Y.S.; Koo, B.N. Preconditioning effects of the anesthetic administered to the donor on grafted kidney function in living donor kidney transplantation recipients. Minerva Anestesiol. 2013, 79, 504–514. [Google Scholar] [PubMed]
- Nieuwenhuijs-Moeke, G.J.; Nieuwenhuijs, V.B.; Seelen, M.A.J.; Berger, S.P.; van den Heuvel, M.C.; Burgerhof, J.G.M.; Ottens, P.J.; Ploeg, R.J.; Leuvenink, H.G.D.; Struys, M.M.R.F. Propofol-Based Anaesthesia versus Sevoflurane-Based Anaesthesia for Living Donor Kidney Transplantation: Results of the VAPOR-1 Randomized Controlled Trial. Br. J. Anaesth. 2017, 118, 720–732. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Brooks, C.R.; Xiao, S.; Sabbisetti, V.; Yeung, M.Y.; Hsiao, L.-L.; Ichimura, T.; Kuchroo, V.; Bonventre, J.V. KIM-1–Mediated Phagocytosis Reduces Acute Injury to the Kidney. J. Clin. Investig. 2015, 125, 1620–1636. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, T.; Brooks, C.R.; Bonventre, J.V. Kim-1/Tim-1 and Immune Cells: Shifting Sands. Kidney Int. 2012, 81, 809–811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Lee, J.H.; Joo, D.J.; Song, K.J.; Kim, Y.S.; Koo, B.N. Effect of sevoflurane on grafted kidney function in renal transplantation. Korean J. Anesth. 2012, 62, 529–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savran Karadeniz, M.; Senturk Ciftci, H.; Tefik, T.; Oktar, T.; Nane, I.; Turkmen, A.; Oguz, F.; Tugrul, K.M. Effects of Different Volatile Anesthetics on Cytokine and Chemokine Production After Ischemia-Reperfusion Injury in Patients Undergoing Living-Donor Kidney Transplant. Exp. Clin. Transplant. 2019, 17 (Suppl. 1), 68–74. [Google Scholar] [CrossRef] [PubMed]
Cell Type | Effect |
---|---|
Innate immune system | |
Neutrophils | ↓ cellular function ↓ ROS production ↓ expression of endothelial adhesion molecules ↓ adhesion to endothelium ↓ tissue infiltration |
Monocytes/macrophages | ↓ number ↓ release proinflammatory cytokines IL-1β, TNF-α, IL-6, IL-8 ↑ expression iNOS and NO production Influence on APC function unknown |
Natural Killer cells | ↓ cytotoxicity ↓ release proinflammatory cytokines |
Dendritic cells | Unknown |
Adaptive immune system | |
T cells | ↓ number and proliferation ↓ Th1/Th2 ratio Induction apoptosis ↓ release proinflammatory cytokines ↓ adhesion molecules |
B cells | ↓ number Induction B cell injury |
T regs | Unknown |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nieuwenhuijs-Moeke, G.J.; Bosch, D.J.; Leuvenink, H.G.D. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. Int. J. Mol. Sci. 2021, 22, 2727. https://doi.org/10.3390/ijms22052727
Nieuwenhuijs-Moeke GJ, Bosch DJ, Leuvenink HGD. Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. International Journal of Molecular Sciences. 2021; 22(5):2727. https://doi.org/10.3390/ijms22052727
Chicago/Turabian StyleNieuwenhuijs-Moeke, Gertrude J., Dirk J. Bosch, and Henri G.D. Leuvenink. 2021. "Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation" International Journal of Molecular Sciences 22, no. 5: 2727. https://doi.org/10.3390/ijms22052727
APA StyleNieuwenhuijs-Moeke, G. J., Bosch, D. J., & Leuvenink, H. G. D. (2021). Molecular Aspects of Volatile Anesthetic-Induced Organ Protection and Its Potential in Kidney Transplantation. International Journal of Molecular Sciences, 22(5), 2727. https://doi.org/10.3390/ijms22052727