Leptin Modulates the Response of Brown Adipose Tissue to Negative Energy Balance: Implication of the GH/IGF-I Axis
Abstract
:1. Introduction
2. Results
2.1. General Characteristics of Experimental Groups
2.2. Effects of Food Deprivation and Leptin Infusion on the GH/IGF-I Axis
2.3. Effects of Central Leptin Infusion on BAT
2.4. Leptin and IGF Signaling in BAT
2.5. Central Leptin Infusion Effects on BAT Inflammatory Markers
2.6. Changes in Variables Involved in Lipid Metabolism
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Animals
4.3. Experimental Design
4.4. Tissue Homogenization and Protein Quantification
4.5. ELISAs
4.5.1. Phosphorylation of Insulin Receptor
4.5.2. Phosphorylation of IGF-I Receptor
4.5.3. Hypothalamic SRIF Concentrations
4.5.4. Pituitary GH and Serum GH and Insulin Levels
4.5.5. Free and Total IGF-I in Tissue Samples
4.6. Western Blotting
4.7. Immunoprecipitation
4.8. Multiplexed Bead Immunoassay
4.9. Enzyme Activity Assay
4.10. RNA Purification and Real-Time PCR Analysis
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACCα | Acetyl CoA carboxylase-α |
ACL | ATP-citrate lyase |
Akt | Protein kinase B |
BAT | Brown adipose tissue |
CREB | cAMP response element binding protein |
FASN | Fatty acid synthase |
GH | Growth hormone |
GHR | GH receptor |
GLUT4 | Glucose transporter 4 |
IGF-I | Insulin-like growth factor-I |
IGF-IR | IGF-I receptor |
IL | Interleukin |
IR | Insulin receptor |
IRS1 | Insulin receptor substrate 1 |
JNK | c-Jun N-terminal kinase |
LPL | Lipoprotein lipase |
NFkB | Nuclear factor kappa B |
ObRb | Long form of the leptin receptor |
PF | Pair-fed |
PPARγ | Peroxisome proliferator-activated receptor-γ |
PTP1B | Protein tyrosine phosphatase 1B |
SOCS3 | Suppressor of cytokine signaling 3 |
SRIF | Somatostatin |
sst2 | Somatostatin receptor 2 |
STAT | Signal transducer and activator of transcription |
UCP-1 | Uncoupling protein-1 |
References
- Jezek, P.; Garlid, K.D. Mammalian mitochondrial uncoupling proteins. Int. J. Biochem. Cell. Biol. 1998, 30, 1163–1168. [Google Scholar] [CrossRef]
- Song, Z.; Xiaoli, A.M.; Yang, F. Regulation and metabolic significance of de novo lipogenesis in adipose tissues. Nutrients 2018, 10, 1383. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.B.; Zhou, J.; Redmann, S.M., Jr.; Smagin, G.N.; Smith, S.R.; Rodgers, E.; Zachwieja, J.J. A leptin dose-response study in obese (ob/ob) and lean (+/?) mice. Endocrinology 1998, 139, 8–19. [Google Scholar] [CrossRef]
- Dube, M.G.; Beretta, E.; Dhillon, H.; Ueno, N.; Kalra, P.S.; Kalra, S.P. Central leptin gene therapy blocks high-fat diet-induced weight gain, hyperleptinemia, and hyperinsulinemia: Increase in serum ghrelin levels. Diabetes 2002, 51, 1729–1736. [Google Scholar] [CrossRef] [Green Version]
- Rezai-Zadeh, K.; Münzberg, H. Integration of sensory information via central thermoregulatory leptin targets. Physiol. Behav. 2013, 121, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Watanobe, H.; Habu, S. Leptin regulates growth hormone-releasing factor, somatostatin, and alpha-melanocyte-stimulating hormone but not neuropeptide Y release in rat hypothalamus in vivo: Relation with growth hormone secretion. J. Neurosci. 2002, 22, 6265–6271. [Google Scholar] [CrossRef] [Green Version]
- Quintela, M.; Señaris, R.; Heiman, M.L.; Casanueva, F.F.; Dieguez, C. Leptin inhibits in vitro hypothalamic somatostatin secretion and somatostatin mRNA levels. Endocrinology 1997, 138, 5641–5644. [Google Scholar] [CrossRef] [PubMed]
- Acunzo, J.; Thirion, S.; Roche, C.; Saveanu, A.; Gunz, G.; Germanetti, A.L.; Couderc, B.; Cohen, R.; Figarella-Branger, D.; Dufour, H.; et al. Somatostatin receptor sst2 decreases cell viability and hormonal hypersecretion and reverses octreotide resistance of human pituitary adenomas. Cancer Res. 2008, 68, 10163–10170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Viana-Huete, V.; Guillén, C.; García-Aguilar, A.; García, G.; Fernández, S.; Kahn, C.R.; Benito, M. Essential role of IGFIR in the onset of male brown fat thermogenic function: Regulation of glucose homeostasis by differential organ-specific insulin sensitivity. Endocrinology 2016, 157, 1495–1511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, M.J.; Enderle, J.; Pourhassan, M.; Braun, W.; Eggeling, B.; Lagerpusch, M.; Glüer, C.C.; Kehayias, J.J.; Kiosz, D.; Bosy-Westphal, A. Metabolic adaptation to caloric restriction and subsequent refeeding: The Minnesota Starvation Experiment revisited. Am. J. Clin. Nutr. 2015, 102, 807–819. [Google Scholar] [CrossRef]
- Burgos-Ramos, E.; Canelles, S.; Rodríguez, A.; Gómez-Ambrosi, J.; Frago, L.M.; Chowen, J.A.; Frühbeck, G.; Argente, J.; Barrios, V. Chronic central leptin infusion modulates the glycemia response to insulin administration in male rats through regulation of hepatic glucose metabolism. Mol. Cell. Endocrinol. 2015, 415, 157–172. [Google Scholar] [CrossRef] [PubMed]
- Saxena, N.K.; Taliaferro-Smith, L.; Knight, B.B.; Merlin, D.; Anania, F.A.; O’Regan, R.M.; Sharma, D. Bidirectional crosstalk between leptin and insulin-like growth factor-I signaling promotes invasion and migration of breast cancer cells via transactivation of epidermal growth factor receptor. Cancer Res. 2008, 68, 9712–9722. [Google Scholar] [CrossRef] [Green Version]
- Suman, S.; Kallakury, B.V.; Fornace, A.J., Jr.; Datta, K. Protracted upregulation of leptin and IGF1 is associated with activation of PI3K/Akt and JAK2 pathway in mouse intestine after ionizing radiation exposure. Int. J. Biol. Sci. 2015, 11, 274–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Wan, X.; Hao, Y.; Zhao, Y.; Du, L.; Huang, Y.; Liu, Z.; Wang, Y.; Wang, N.; Zhang, P. NR6A1 regulates lipid metabolism through mammalian target of rapamycin complex 1 in HepG2 cells. Cell Commun. Signal. 2019, 17, 77. [Google Scholar] [CrossRef] [Green Version]
- Ben-Shlomo, A.; Pichurin, O.; Khalafi, R.; Zhou, C.; Chesnokova, V.; Ren, S.G.; Liu, N.A.; Melmed, S. Constitutive somatostatin receptor subtype 2 activity attenuates GH synthesis. Endocrinology 2013, 154, 2399–2409. [Google Scholar] [CrossRef]
- Du, K.; Montminy, M. CREB is a regulatory target for the protein kinase Akt/PKB. J. Biol. Chem. 1998, 273, 32377–32379. [Google Scholar] [CrossRef] [Green Version]
- Rim, J.S.; Kozak, L.P. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene. J. Biol. Chem. 2002, 277, 34589–34600. [Google Scholar] [CrossRef] [Green Version]
- Dey, B.R.; Furlanetto, R.W.; Nissley, P. Suppressor of cytokine signaling (SOCS)-3 protein interacts with the insulin-like growth factor-I receptor. Biochem. Biophys. Res. Commun. 2000, 278, 38–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallardo, N.; Bonzón-Kulichenko, E.; Fernández-Agulló, T.; Moltó, E.; Gómez-Alonso, S.; Blanco, P.; Carrascosa, J.M.; Ros, M.; Andrés, A. Tissue-specific effects of central leptin on the expression of genes involved in lipid metabolism in liver and white adipose tissue. Endocrinology 2007, 148, 5604–5610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parmar, R.M.; Chan, W.W.; Dashkevicz, M.; Hayes, E.C.; Rohrer, S.P.; Smith, R.G.; Schaeffer, J.M.; Blake, A.D. Nonpeptidyl somatostatin agonists demonstrate that sst2 and sst5 inhibit stimulated growth hormone secretion from rat anterior pituitary cells. Biochem. Biophys. Res. Commun. 1999, 263, 276–280. [Google Scholar] [CrossRef]
- Cocchi, D.; De Gennaro Colonna, V.; Bagnasco, M.; Bonacci, D.; Müller, E.E. Leptin regulates GH secretion in the rat by acting on GHRH and somatostatinergic functions. J. Endocrinol. 1999, 162, 95–99. [Google Scholar] [CrossRef] [Green Version]
- Eigler, T.; Ben-Shlomo, A. Somatostatin system: Molecular mechanisms regulating anterior pituitary hormones. J. Mol. Endocrinol. 2014, 53, R1–R19. [Google Scholar] [CrossRef] [Green Version]
- Eleswarapu, S.; Gu, Z.; Jiang, H. Growth hormone regulation of insulin-like growth factor-I gene expression may be mediated by multiple distal signal transducer and activator of transcription 5 binding sites. Endocrinology 2008, 149, 2230–2240. [Google Scholar] [CrossRef] [Green Version]
- Sanchez-Alavez, M.; Osborn, O.; Tabarean, I.V.; Holmberg, K.H.; Eberwine, J.; Kahn, C.R.; Bartfai, T. Insulin-like growth factor 1-mediated hyperthermia involves anterior hypothalamic insulin receptors. J. Biol. Chem. 2011, 286, 14983–14990. [Google Scholar] [CrossRef] [Green Version]
- Yin, Y.; Hua, H.; Li, M.; Liu, S.; Kong, Q.; Shao, T.; Wang, J.; Luo, Y.; Wang, Q.; Luo, T.; et al. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res. 2016, 26, 46–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valverde, A.M.; Arribas, M.; Mur, C.; Navarro, P.; Pons, S.; Cassard-Doulcier, A.M.; Kahn, C.R.; Benito, M. Insulin-induced up-regulated uncoupling protein-1 expression is mediated by insulin receptor substrate 1 through the phosphatidylinositol 3-kinase/Akt signaling pathway in fetal brown adipocytes. J. Biol. Chem. 2003, 278, 10221–10231. [Google Scholar] [CrossRef] [Green Version]
- Alessi, D.R.; Andjelkovic, M.; Caudwell, B.; Cron, P.; Morrice, N.; Cohen, P.; Hemmings, B.A. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 1996, 15, 6541–6551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walton, M.R.; Dragunow, I. Is CREB a key to neuronal survival? Trends Neurosci. 2000, 23, 48–53. [Google Scholar] [CrossRef]
- Villarroya, F.; Peyrou, M.; Giralt, M. Transcriptional regulation of the uncoupling protein-1 gene. Biochimie 2017, 134, 86–92. [Google Scholar] [CrossRef]
- Mano-Otagiri, A.; Iwasaki-Sekino, A.; Nemoto, T.; Ohata, H.; Shuto, Y.; Nakabayashi, H.; Sugihara, H.; Oikawa, S.; Shibasaki, T. Genetic suppression of ghrelin receptors activates brown adipocyte function and decreases fat storage in rats. Regul. Pept. 2010, 160, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Sachithanandan, N.; Fam, B.C.; Fynch, S.; Dzamko, N.; Watt, M.J.; Wormald, S.; Honeyman, J.; Galic, S.; Proietto, J.; Andrikopoulos, S.; et al. Liver-specific suppressor of cytokine signaling-3 deletion in mice enhances hepatic insulin sensitivity and lipogenesis resulting in fatty liver and obesity. Hepatology 2010, 52, 1632–1642. [Google Scholar] [CrossRef] [PubMed]
- Côté, I.; Green, S.M.; Toklu, H.Z.; Morgan, D.; Carter, C.S.; Tümer, N.; Scarpace, P.J. Differential physiological responses to central leptin overexpression in male and female rats. J. Neuroendocrinol. 2017, 29. [Google Scholar] [CrossRef] [PubMed]
- Bartell, S.M.; Rayalam, S.; Ambati, S.; Gaddam, D.R.; Hartzell, D.L.; Hamrick, M.; She, J.X.; Della-Fera, M.A.; Baile, C.A. Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J. Bone Miner. Res. 2011, 26, 1710–1720. [Google Scholar] [CrossRef]
- Bunn, R.C.; Fowlkes, J.L. Insulin-like growth factor binding protein proteolysis. Trends Endocrinol. Metab. 2003, 14, 176–181. [Google Scholar] [CrossRef]
- Kanety, H.; Feinstein, R.; Papa, M.Z.; Hemi, R.; Karasik, A. Tumor necrosis factor alpha-induced phosphorylation of insulin receptor substrate-1 (IRS-1). Possible mechanism for suppression of insulin-stimulated tyrosine phosphorylation of IRS-1. J. Biol. Chem. 1995, 270, 23780–23784. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, T.; Nitta, T.; Maruno, K.; Yeh, Y.S.; Kuwata, H.; Tomita, K.; Goto, T.; Takahashi, N.; Kawada, T. Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E676–E687. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Delfín, J.; Hondares, E.; Iglesias, R.; Giralt, M.; Caelles, C.; Villarroya, F. TNF-α represses β-Klotho expression and impairs FGF21 action in adipose cells: Involvement of JNK1 in the FGF21 pathway. Endocrinology 2012, 153, 4238–4245. [Google Scholar] [CrossRef]
- Nguyen, K.D.; Qiu, Y.; Cui, X.; Goh, Y.P.; Mwangi, J.; David, T.; Mukundan, L.; Brombacher, F.; Locksley, R.M.; Chawla, A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 2011, 480, 104–108. [Google Scholar] [CrossRef] [Green Version]
- Stafeev, I.S.; Michurina, S.S.; Podkuychenko, N.V.; Vorotnikov, A.V.; Menshikov, M.Y.; Parfyonova, Y.V. Interleukin-4 restores insulin sensitivity in lipid-induced insulin-resistant adipocytes. Biochemistry 2018, 83, 498–506. [Google Scholar] [CrossRef]
- Calderon-Dominguez, M.; Mir, J.F.; Fucho, R.; Weber, M.; Serra, D.; Herrero, L. Fatty acid metabolism and the basis of brown adipose tissue function. Adipocyte 2015, 5, 98–118. [Google Scholar] [CrossRef] [Green Version]
- Martins, F.F.; Bargut, T.C.L.; Aguila, M.B.; Mandarim-de-Lacerda, C.A. Thermogenesis, fatty acid synthesis with oxidation, and inflammation in the brown adipose tissue of ob/ob (-/-) mice. Ann. Anat. 2017, 210, 44–51. [Google Scholar] [CrossRef]
- Balland, E.; Chen, W.; Dodd, G.T.; Conductier, G.; Coppari, R.; Tiganis, T.; Cowley, M.A. Leptin Signaling in the Arcuate Nucleus Reduces Insulin’s Capacity to Suppress Hepatic Glucose Production in Obese Mice. Cell Rep. 2019, 26, 346–355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanchez-Gurmaches, J.; Martinez-Calejman, C.; Jung, S.M.; Li, H.; Guertin, D.A. Brown fat organogenesis and maintenance requires AKT1 and AKT2. Mol. Metab. 2019, 23, 60–74. [Google Scholar] [CrossRef]
- Cusin, I.; Zakrzewska, K.E.; Boss, O.; Muzzin, P.; Giacobino, J.P.; Ricquier, D.; Jeanrenaud, B.; Rohner-Jeanrenaud, F. Chronic central leptin infusion enhances insulin-stimulated glucose metabolism and favors the expression of uncoupling proteins. Diabetes 1998, 47, 1014–1019. [Google Scholar] [CrossRef] [PubMed]
- Valverde, A.M.; Navarro, P.; Teruel, T.; Conejo, R.; Benito, M.; Lorenzo, M. Insulin and insulin-like growth factor I up-regulate GLUT4 gene expression in fetal brown adipocytes, in a phosphoinositide 3-kinase-dependent manner. Biochem. J. 1999, 337, 397–405. [Google Scholar] [CrossRef]
- Kochan, Z.; Karbowska, J.; Swierczynski, J. The effects of weight cycling on serum leptin levels and lipogenic enzyme activities in adipose tissue. J. Physiol. Pharmacol. 2006, 57, 115–127. [Google Scholar]
- Burgos-Ramos, E.; Canelles, S.; Rodríguez, A.; Frago, L.M.; Gómez-Ambrosi, J.; Chowen, J.A.; Frühbeck, G.; Argente, J.; Barrios, V. The increase in fiber size in male rat gastrocnemius after chronic central leptin infusion is related to activation of insulin signaling. Mol. Cell. Endocrinol. 2018, 470, 48–59. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.S.; Smith, M.S.; Reda, D.; Suffredini, A.F.; McCoy, J.P., Jr. Multiplex bead array assays for detection of soluble cytokines: Comparisons of sensitivity and quantitative values among kits from multiple manufacturers. Cytometry B Clin. Cytom. 2004, 61, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Geer, B.W.; Krochko, D.; Oliver, M.J.; Walker, V.K.; Williamson, J.H. A comparative study of the NADP-malic enzymes from Drosophila and chick liver. Comp. Biochem. Physiol. 1980, 65, 25–34. [Google Scholar] [CrossRef]
- Chomczynski, P. A reagent for the single-step simultaneous isolation of RNA, DNA and proteins from cell and tissue samples. Biotechniques 1993, 15, 532–534, 536–537. [Google Scholar]
Control | Pair-Fed | Leptin | |
---|---|---|---|
Free IGF-I (ng/mg protein) | ND | ND | 0.17 ± 0.02 |
Glucose (mg/dL) | 78.3 ± 4.2 | 75.0 ± 5.6 | 84.1 ± 4.9 |
Insulin (ng/mL) | 0.68 ± 0.12 | 0.70 ± 0.13 | 0.89 ± 0.24 |
IRβ | 100.0 ± 24.8 | 83.0 ± 5.6 | 74.8 ± 10.5 |
PPARγ | 100.0 ± 10.4 | 111.9 ± 16.5 | 102.7 ± 9.1 |
PTP1B | 100.0 ± 13.2 | 90.0 ± 5.5 | 87.3 ± 3.9 |
pTyr694-STAT5 | 100.0 ± 14.7 | 81.2 ± 11.5 | 106.0 ± 12.6 |
Weight (g) | 0.69 ± 0.08 | 0.45 ± 0.08 * | 0.56 ± 0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barrios, V.; Frago, L.M.; Canelles, S.; Guerra-Cantera, S.; Arilla-Ferreiro, E.; Chowen, J.A.; Argente, J. Leptin Modulates the Response of Brown Adipose Tissue to Negative Energy Balance: Implication of the GH/IGF-I Axis. Int. J. Mol. Sci. 2021, 22, 2827. https://doi.org/10.3390/ijms22062827
Barrios V, Frago LM, Canelles S, Guerra-Cantera S, Arilla-Ferreiro E, Chowen JA, Argente J. Leptin Modulates the Response of Brown Adipose Tissue to Negative Energy Balance: Implication of the GH/IGF-I Axis. International Journal of Molecular Sciences. 2021; 22(6):2827. https://doi.org/10.3390/ijms22062827
Chicago/Turabian StyleBarrios, Vicente, Laura M. Frago, Sandra Canelles, Santiago Guerra-Cantera, Eduardo Arilla-Ferreiro, Julie A. Chowen, and Jesús Argente. 2021. "Leptin Modulates the Response of Brown Adipose Tissue to Negative Energy Balance: Implication of the GH/IGF-I Axis" International Journal of Molecular Sciences 22, no. 6: 2827. https://doi.org/10.3390/ijms22062827
APA StyleBarrios, V., Frago, L. M., Canelles, S., Guerra-Cantera, S., Arilla-Ferreiro, E., Chowen, J. A., & Argente, J. (2021). Leptin Modulates the Response of Brown Adipose Tissue to Negative Energy Balance: Implication of the GH/IGF-I Axis. International Journal of Molecular Sciences, 22(6), 2827. https://doi.org/10.3390/ijms22062827