A Modified Actin (Gly65Val Substitution) Expressed in Cotton Disrupts Polymerization of Actin Filaments Leading to the Phenotype of Ligon Lintless-1 (Li1) Mutant
Abstract
:1. Introduction
2. Results
2.1. Fine Mapping and Sequence Analysis Indicated That GhACT17D Was a Promising Candidate Gene for the Li1 Mutation
2.2. Gly65 Is Highly Conserved and Crucial to GhACT17D
2.3. Over-Expression of GhACT17DM in Transgenic Upland Cotton Results in the Li1 Mutant Phenotype
2.4. An Abnormal F-actin Structure Results in Defective Growth and Development of the Li1 Mutant
3. Discussion
3.1. Dominant-Negative Mutation of the Gh_D04G0865 Gene Causes the Li1 Phenotype
3.2. Incorporation of the Mutated Version of GhACT17DM Impaired Actin Polymerization and Cotton Growth with a Dosage-Related Effect
4. Materials and Methods
4.1. Plant Materials and Fine Genetic Mapping
4.2. Gene Cloning and Sequence Analysis
4.3. cDNA Preparation and RT-PCR
4.4. Quantitative Real-Time PCR (qRT-PCR)
4.5. Phylogenetic Analysis
4.6. Vector Construction and Genetic Transformation in Cotton
4.7. Southern Blotting in Transgenic Cotton
4.8. Analyzing the Dynamic Behavior of F-actin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Griffee, F.; Ligon, L.L. Occurrence of lintless cotton plants and the inheritance of the character ‘lintless’. J. Am. Soc. Agr. 1929, 21, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Kohel, R.; Benedict, C.; Jividen, G. Incorporation of (14C) glucose into crystalline cellulose in aberrant fibers of a cotton mutant. Crop Sci. 1993, 33, 1036–1040. [Google Scholar] [CrossRef]
- Narbuth, E.V.; Kohel, R.J. Inheritance and linkage analysis of a new fiber mutant in cotton. J. Hered. 1990, 81, 131–133. [Google Scholar]
- Gilbert, M.; Turley, R.; Kim, H.; Li, P.; Thyssen, G.; Tang, Y.; Delhom, C.; Naoumkina, M.; Fang, D. Transcript profiling by microarray and marker analysis of the short cotton (Gossypium hirsutum L.) fiber mutant Ligon lintless-1 (Li1). BMC Genom. 2013, 14, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karaca, M.; Saha, S.; Jenkins, J.N.; Zipf, A.; Kohel, R.; Stelly, D.M. Simple Sequence Repeat (SSR) Markers Linked to the Ligon Lintless (Li1) Mutant in Cotton. J. Hered. 2002, 93, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rong, J.; Pierce, G.; Waghmare, V.; Rogers, C.; Desai, A.; Chee, P.; May, O.; Gannaway, J.; Wendel, J.; Wilkins, T. Genetic mapping and comparative analysis of seven mutants related to seed fiber development in cotton. Theor. Appl. Gen. 2005, 111, 1137–1146. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Jiang, Y.; Cao, Y.; Lin, L.; He, S.; Zhou, W.; Rong, J. Gene expression profile analysis of Ligon lintless-1 (Li1) mutant reveals important genes and pathways in cotton leaf and fiber development. Gene 2014, 535, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, M.K.; Kim, H.J.; Tang, Y.; Naoumkina, M.; Fang, D.D. Comparative transcriptome analysis of short fiber mutants Ligon-lintless 1 and 2 reveals common mechanisms pertinent to fiber elongation in cotton (Gossypium hirsutum L.). PLoS ONE 2014, 9, e95554. [Google Scholar] [CrossRef]
- Liu, K.; Sun, J.; Yao, L.; Yuan, Y. Transcriptome analysis reveals critical genes and key pathways for early cotton fiber elongation in Ligon lintless-1 mutant. Genomics 2012, 100, 42–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Ding, M.; Cao, Y.; Yang, F.; Zhang, H.; He, S.; Dai, H.; Hao, H.; Rong, J. Genetic fine mapping and candidate gene analysis of the Gossypium hirsutum Ligon lintless-1 (Li1) mutant on chromosome 22(D). Mol. Genet. Genom. 2015, 290, 2199–2211. [Google Scholar] [CrossRef]
- Thyssen, G.N.; Fang, D.D.; Turley, R.B.; Florane, C.B.; Li, P.; Mattison, C.P.; Naoumkina, M. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and F-actin organization resulting in dwarf, lintless cotton plants. Plant, J. 2017, 90, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Liang, W.; Shen, W.; Feng, H.; Chen, J.; Si, Z.; Hu, Y.; Zhang, T. G65V Substitution in Actin Disturbs Polymerization Leading to Inhibited Cell Elongation in Cotton. Front. Plant Sci. 2019, 10, 1486. [Google Scholar] [CrossRef] [Green Version]
- Janda, M.; Matoušková, J.; Burketová, L.; Valentová, O. Interconnection between action cytoskeleton and plant defense signaling. Plant Signal Behav. 2014, 9, e976486. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Du, Q.; Xu, B.; Zhang, Z.; Zhang, D. The actin multigene family in Populus: Organization, expression and phylogenetic analysis. Mol. Genet. Genom. 2010, 284, 105–119. [Google Scholar] [CrossRef]
- Kandasamy, M.K.; McKinney, E.C.; Meagher, R.B. The late pollen-specific actins in angiosperms. Plant, J. 1999, 18, 681–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDowell, J.M.; Huang, S.; McKinney, E.C.; An, Y.Q.; Meagher, R.B. Structure and evolution of the actin gene family in Arabidopsis thaliana. Genetics 1996, 142, 587–602. [Google Scholar] [CrossRef]
- McKinney, E.C.; Meagher, R.B. Members of the Arabidopsis actin gene family are widely dispersed in the genome. Genetics 1998, 149, 663–675. [Google Scholar]
- Kandasamy, M.K.; McKinney, E.C.; Meagher, R.B. Functional nonequivalency of actin isovariants in Arabidopsis. Mol. Biol. Cell 2002, 13, 251–261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, J.; Mathur, N.; Kernebeck, B.; Hülskamp, M. Mutations in Actin-Related Proteins 2 and 3 Affect Cell Shape Development in Arabidopsis. Plant Cell 2003, 15, 1632–1645. [Google Scholar] [CrossRef] [PubMed]
- Mathur, J.; Mathur, N.; Kirik, V.; Kernebeck, B.; Srinivas, B.P.; Hulskamp, M. Arabidopsis CROOKED encodes for the smallest subunit of the ARP2/3 complex and controls cell shape by region specific fine F-actin formation. Development 2003, 130, 3137–3146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, T.; Yokota, E.; Wada, T.; Shimmen, T.; Okada, K. An Arabidopsis ACT2 dominant-negative mutation, which disturbs F-actin polymerization, reveals its distinctive function in root development. Plant Cell Physiol. 2003, 44, 1131–1140. [Google Scholar] [CrossRef] [Green Version]
- Kato, T.; Morita, M.T.; Tasaka, M. Defects in Dynamics and Functions of Actin Filament in Arabidopsis Caused by the Dominant-Negative Actin fiz1-Induced Fragmentation of Actin Filament. Plant Cell Physiol. 2010, 51, 333–338. [Google Scholar] [CrossRef]
- Li, X.-B.; Fan, X.-P.; Wang, X.-L.; Cai, L.; Yang, W.-C. The Cotton ACTIN1 Gene Is Functionally Expressed in Fibers and Participates in Fiber Elongation. Plant Cell 2005, 17, 859–875. [Google Scholar] [CrossRef] [Green Version]
- Zhao, P.-M.; Wang, L.-L.; Han, L.-B.; Wang, J.; Yao, Y.; Wang, H.-Y.; Du, X.-M.; Luo, Y.-M.; Xia, G.-X. Proteomic Identification of Differentially Expressed Proteins in the Ligon lintless Mutant of Upland Cotton (Gossypium hirsutum L.). J. Proteome Res. 2010, 9, 1076–1087. [Google Scholar] [CrossRef]
- Zhang, T.; Hu, Y.; Jiang, W.; Fang, L.; Guan, X.; Chen, J.; Zhang, J.A.; Saski, C.E.; Scheffler, B.; Stelly, D.M.; et al. Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nat. Biotechnol. 2015, 33, 531–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettigrew, D.W. Oligomeric interactions provide alternatives to direct steric modes of control of sugar kinase/actin/hsp70 superfamily functions by heterotropic allosteric effectors: Inhibition of E. coli glycerol kinase. Arch. Biochem. Biophys. 2009, 492, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Tu, L.; Ye, Z.; Wang, M.; Gao, W.; Zhang, X. A cotton fiber-preferential promoter, PGbEXPA2, is regulated by GA and ABA in Arabidopsis. Plant Cell Rep. 2015, 34, 1539–1549. [Google Scholar] [CrossRef] [PubMed]
- Marina, N.; Thyssen, G.N.; Fang, D.D. RNA-seq analysis of short fiber mutants Ligon-lintless-1 (Li1) and -2 (Li2) revealed important role of aquaporins in cotton (Gossypium hirsutum L.) fiber elongation. BMC Plant Biol. 2015, 15, 65. [Google Scholar]
- Marina, N.; Thyssen, G.N.; Fang, D.D.; Hinchliffe, D.J.; Florane, C.B.; Jenkins, J.N. Small RNA sequencing and degradome analysis of developing fibers of short fiber mutants Ligon-lintles-1 (Li1) and -2 (Li2) revealed a role for miRNAs and their targets in cotton fiber elongation. BMC Genom. 2016, 17, 360. [Google Scholar]
- Thyssen, G.N.; Fang, D.D.; Turley, R.B.; Florane, C.; Li, P.; Naoumkina, M. Mapping-by-sequencing of Ligon-lintless-1 (Li 1) reveals a cluster of neighboring genes with correlated expression in developing fibers of Upland cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2015, 128, 1703–1712. [Google Scholar] [CrossRef]
- Yu, Y.; Wu, S.; Nowak, J.; Wang, G.; Han, L.; Feng, Z.; Mendrinna, A.; Ma, Y.; Wang, H.; Zhang, X.; et al. Live-cell imaging of the cytoskeleton in elongating cotton fibres. Nat. Plants 2019, 5, 498–504. [Google Scholar] [CrossRef]
- Murray, M.; Thompson, W. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980, 8, 4321–4326. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; He, S.; Li, F.; Li, Z.; Ding, M.; Liu, Q.; Rong, J. Analyses of the sucrose synthase gene family in cotton: Structure, phylogeny and expression patterns. BMC Plant Biol. 2012, 12, 85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hao, J.; Tu, L.; Hu, H.; Tan, J.; Deng, F.; Tang, W.; Nie, Y.; Zhang, X. GbTCP, a cotton TCP transcription factor, confers fibre elongation and root hair development by a complex regulating system. J. Exp. Bot. 2012, 63, 6267–6281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, J.D.; Higgins, D.G.; Gibson, T.J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673–4680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholas, K.B.; Nicholas, H.B. GeneDoc: A tool for editing and annotating multiple sequence alignments. EMBnet J. 1997. [Google Scholar]
- Tamura, K.; Peterson, N.; Stecher, G.; Nei, M.; Kumar, S. MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Mol. Biol. Evol. 2011, 28, 2731–2739. [Google Scholar] [CrossRef] [Green Version]
- Sim, N.-L.; Kumar, P.; Hu, J.; Henikoff, S.; Schneider, G.; Ng, P.C. SIFT web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Res. 2012, 40, W452–W457. [Google Scholar] [CrossRef]
- Arnold, K.; Bordoli, L.; Kopp, J.; Schwede, T. The SWISS-MODEL workspace: A web-based environment for protein structure homology modelling. Bioinformatics 2005, 22, 195–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, T.; Suzuki, T.; Murata, S.; Nakamura, S.; Hino, T.; Maeo, K.; Tabata, R.; Kawai, T.; Tanaka, K.; Niwa, Y.; et al. Improved Gateway Binary Vectors: High-Performance Vectors for Creation of Fusion Constructs in Transgenic Analysis of Plants. Biosci. Biotechnol. Biochem. 2007, 71, 2095–2100. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Liang, S.; Zhang, X.; Nie, Y.; Guo, X. An efficient grafting system for transgenic plant recovery in cotton (Gossypium hirsutum L.). Plant Cell Tissue Organ Cult. 2006, 85, 181–185. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, X.; Nie, Y.; Guo, X.; Liang, S.; Zhu, H. Identification of a novel elite genotype for in vitro culture and genetic transformation of cotton. Biol. Plant. 2006, 50, 519–524. [Google Scholar] [CrossRef]
- Henty, J.L.; Bledsoe, S.W.; Khurana, P.; Meagher, R.B.; Day, B.; Blanchoin, L.; Staiger, C.J. Arabidopsis Actin Depolymerizing Factor4 Modulates the Stochastic Dynamic Behavior of Actin Filaments in the Cortical Array of Epidermal Cells. Plant Cell 2011, 23, 3711–3726. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Henty-Ridilla, J.L.; Huang, S.; Wang, X.; Blanchoin, L.; Staiger, C.J. Capping Protein Modulates the Dynamic Behavior of Actin Filaments in Response to Phosphatidic Acid in Arabidopsis. Plant Cell 2012, 24, 3742–3754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henty-Ridilla, J.L.; Li, J.; Day, B.; Staiger, C.J. Actin depolymerizing factor 4 regulates actin dynamics during innate immune signaling in Arabidopsis. Plant Cell 2014, 26, 340–352. [Google Scholar] [CrossRef] [Green Version]
- Higaki, T.; Kutsuna, N.; Sano, T.; Kondo, N.; Hasezawa, S. Quantification and cluster analysis of actin cytoskeletal structures in plant cells: Role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells. Plant J. 2010, 61, 156–165. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Huang, H.; Yu, Y.; Dai, H.; Hao, H.; Zhang, H.; Jiang, Y.; Ding, M.; Li, F.; Tu, L.; et al. A Modified Actin (Gly65Val Substitution) Expressed in Cotton Disrupts Polymerization of Actin Filaments Leading to the Phenotype of Ligon Lintless-1 (Li1) Mutant. Int. J. Mol. Sci. 2021, 22, 3000. https://doi.org/10.3390/ijms22063000
Cao Y, Huang H, Yu Y, Dai H, Hao H, Zhang H, Jiang Y, Ding M, Li F, Tu L, et al. A Modified Actin (Gly65Val Substitution) Expressed in Cotton Disrupts Polymerization of Actin Filaments Leading to the Phenotype of Ligon Lintless-1 (Li1) Mutant. International Journal of Molecular Sciences. 2021; 22(6):3000. https://doi.org/10.3390/ijms22063000
Chicago/Turabian StyleCao, Yuefen, Hui Huang, Yanjun Yu, Huaqin Dai, Huanfeng Hao, Hua Zhang, Yurong Jiang, Mingquan Ding, Feifei Li, Lili Tu, and et al. 2021. "A Modified Actin (Gly65Val Substitution) Expressed in Cotton Disrupts Polymerization of Actin Filaments Leading to the Phenotype of Ligon Lintless-1 (Li1) Mutant" International Journal of Molecular Sciences 22, no. 6: 3000. https://doi.org/10.3390/ijms22063000
APA StyleCao, Y., Huang, H., Yu, Y., Dai, H., Hao, H., Zhang, H., Jiang, Y., Ding, M., Li, F., Tu, L., Kong, Z., & Rong, J. (2021). A Modified Actin (Gly65Val Substitution) Expressed in Cotton Disrupts Polymerization of Actin Filaments Leading to the Phenotype of Ligon Lintless-1 (Li1) Mutant. International Journal of Molecular Sciences, 22(6), 3000. https://doi.org/10.3390/ijms22063000