The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration
Abstract
:1. Introduction
2. Results
2.1. Selectivity Inversion
2.2. Effect of Concentration Gradient and Stigmasterol on the Selectivity and the Conductance
2.2.1. Multi-Channel Experiments
2.2.2. Single-Channel Experiments
2.3. Deuteration Kinetics
3. Discussion
3.1. Selectivity Inversion in the Absence of Stigmasterol
3.2. VDAC Structure and Selectivity
3.3. Effect of Stigmasterol
4. Materials and Methods
4.1. VDAC Purification
4.2. VDAC Reconstitution and Electrophysiology
4.3. Kinetics of the Hydrogen/Deuterium Exchange
4.4. Statistics
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
VDAC | Voltage-Dependent Anion Channel |
MOM | Mitochondrial Outer Membrane |
ATR-FTIR | Attenuated Total Reflection-Fourier transform Infra-Red |
DOPC | 1,2-Dioleoyl-sn-Glycero-3-Phosphocholine |
DOPE | 1,2-Dioleoyl-sn-Glycero-3-Phosphoethanolamine |
DPPC | 1,2-Dipalmitoyl-sn-Glycero-3-Phosphocholine |
References
- Palmieri, F.; Pierri, C.L.; De Grassi, A.; Nunes-Nesi, A.; Fernie, A.R. Evolution, structure and function of mitochondrial carriers: A review with new insights. Plant J. 2011, 66, 161–181. [Google Scholar] [CrossRef] [PubMed]
- Trono, D.; Laus, M.N.; Soccio, M.; Alfarano, M.; Pastore, D. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria—An Amazing Defense Tool Against Hyperosmotic Stress. Front. Plant Sci. 2015, 6, 1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pang, K.; Li, Y.; Liu, M.; Meng, Z.; Yu, Y. Inventory and general analysis of the ATP-binding cassette (ABC) gene superfamily in maize (Zea mays L.). Gene 2013, 526, 411–428. [Google Scholar] [CrossRef]
- Schaedler, T.A.; Faust, B.; Shintre, C.A.; Carpenter, E.P.; Srinivasan, V.; van Veen, H.W.; Balk, J. Structures and functions of mitochondrial ABC transporters. Biochem. Soc. Trans. 2015, 43, 943–951. [Google Scholar] [CrossRef]
- Carraretto, L.; Teardo, E.; Checchetto, V.; Finazzi, G.; Uozumi, N.; Szabo, I. Ion Channels in Plant Bioenergetic Organelles, Chloroplasts and Mitochondria: From Molecular Identification to Function. Mol. Plant. 2016, 9, 371–395. [Google Scholar] [CrossRef] [Green Version]
- Homblé, F.; Krammer, E.-M.; Prévost, M. Plant VDAC: Facts and speculations. Biochim. Biophys. Acta Biomembr. 2012, 1818, 1486–1501. [Google Scholar] [CrossRef]
- Takahashi, Y.; Tateda, C. The functions of voltage-dependent anion channels in plants. Apoptosis 2013, 18, 917–924. [Google Scholar] [CrossRef]
- Qi, Y.-H.; Mao, F.-F.; Zhou, Z.-Q.; Liu, D.-C.; Min-Yu; Deng, X.-Y.; Li, J.-W.; Mei, F.-Z. The release of cytochrome c and the regulation of the programmed cell death progress in the endosperm of winter wheat (Triticum aestivum L.) under waterlogging. Protoplasma 2018, 255, 1651–1665. [Google Scholar] [CrossRef] [PubMed]
- Tateda, C.; Yamashita, K.; Takahashi, F.; Kusano, T.; Takahashi, Y. Plant voltage-dependent anion channels are involved in host defense against Pseudomonas cichorii and in Bax-induced cell death. Plant Cell Rep. 2009, 28, 41–51. [Google Scholar] [CrossRef]
- Sanyal, S.K.; Kanwar, P.; Fernandes, J.L.; Mahiwal, S.; Yadav, A.K.; Samtani, H.; Srivastava, A.K.; Suprasanna, P.; Pandey, G.K. Arabidopsis Mitochondrial Voltage-Dependent Anion Channels Are Involved in Maintaining Reactive Oxygen Species Homeostasis, Oxidative and Salt Stress Tolerance in Yeast. Front. Plant Sci. 2020, 11, 50. [Google Scholar] [CrossRef]
- Mannella, C.A. The Outer Membrane of Plant Mitochondria. In Higher Plant Cell Respiration, 1st ed.; Douce, R., Day, D.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 106–133. [Google Scholar]
- Sani, M.-A.; Keech, O.; Gardeström, P.; Dufourc, E.J.; Gröbner, G. Magic-angle phosphorus NMR of functional mitochondria: In situ monitoring of lipid response under apoptotic-like stress. FASEB J. 2009, 23, 2872–2878. [Google Scholar] [CrossRef]
- Harwood, J.L. Plant Mitochondrial Lipids: Structure, Function and Biosynthesis. In Higher Plant Cell Respiration, 1st ed.; Douce, R., Day, D.A., Eds.; Springer: Berlin/Heidelberg, Germany, 1985; pp. 37–71. [Google Scholar]
- Daum, G. Lipids of mitochondria. Biochim. Biophys. Acta Rev. Biomembr. 1985, 822, 1–42. [Google Scholar] [CrossRef]
- Meunier, D.; Mazliak, P. Différence de composition lipidique entre les deux membranes des mitochondries de Pomme de terre. C. R. Acad. Sci. Ser. D 1972, 275, 213–216. [Google Scholar]
- McCarty, R.E.; Douce, R.; Benson, A.A. The acyl lipids of highly purified plant mitochondria. Biochim. Biophys. Acta Lipids Lipid Metab. 1973, 316, 266–270. [Google Scholar] [CrossRef]
- Moreau, F.; Dupont, J.; Lance, C. Phospholipid and fatty acid composition of outer and inner membranes of plant mitochondria. Biochim. Biophys. Acta Biomembr. 1974, 345, 294–304. [Google Scholar] [CrossRef]
- Bligny, R.; Douce, R. A precise localization of cardiolipin in plant cells. Biochim. Biophys. Acta Lipids Lipid Metab. 1980, 617, 254–263. [Google Scholar] [CrossRef]
- Mlayeh, L.; Krammer, E.-M.; Léonetti, M.; Prévost, M.; Homblé, F. The mitochondrial VDAC of bean seeds recruits phosphatidylethanolamine lipids for its proper functioning. Biochim. Biophys. Acta Bioenerg. 2017, 1858, 786–794. [Google Scholar] [CrossRef]
- Mlayeh, L.; Chatkaew, S.; Léonetti, M.; Homblé, F. Modulation of Plant Mitochondrial VDAC by Phytosterols. Biophys. J. 2010, 99, 2097–2106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayrhuber, M.; Meins, T.; Habeck, M.; Becker, S.; Giller, K.; Villinger, S.; Vonrhein, C.; Griesinger, C.; Zweckstetter, M.; Zeth, K. Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA 2008, 105, 15370–15375. [Google Scholar] [CrossRef] [Green Version]
- Hiller, S.; Garces, R.G.; Malia, T.J.; Orekhov, V.Y.; Colombini, M.; Wagner, G. Solution Structure of the Integral Human Membrane Protein VDAC-1 in Detergent Micelles. Science 2008, 321, 1206–1210. [Google Scholar] [CrossRef] [Green Version]
- Ujwal, R.; Cascio, D.; Colletier, J.-P.; Faham, S.; Zhang, J.; Toro, L.; Ping, P.; Abramson, J. The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc. Natl. Acad. Sci. USA 2008, 105, 17742–17747. [Google Scholar] [CrossRef] [Green Version]
- Hoogenboom, B.W.; Suda, K.; Engel, A.; Fotiadis, D. The Supramolecular Assemblies of Voltage-dependent Anion Channels in the Native Membrane. J. Mol. Biol. 2007, 370, 246–255. [Google Scholar] [CrossRef]
- Abrecht, H.; Goormaghtigh, E.; Ruysschaert, J.-M.; Homblé, F. Structure and Orientation of Two Voltage-dependent Anion-selective Channel Isoforms. J. Biol. Chem. 2000, 275, 40992–40999. [Google Scholar] [CrossRef] [Green Version]
- Bay, D.C.; Hafez, M.; Young, M.J.; Court, D.A. Phylogenetic and coevolutionary analysis of the β-barrel protein family comprised of mitochondrial porin (VDAC) and Tom40. Biochim. Biophys. Acta Biomembr. 2012, 1818, 1502–1519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, R.P.; Buzhynskyy, N.; Prima, V.; Sturgis, J.N.; Scheuring, S. Supramolecular Assembly of VDAC in Native Mitochondrial Outer Membranes. J. Mol. Biol. 2007, 369, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Krammer, E.-M.; Saidani, H.; Prévost, M.; Homblé, F. Origin of ion selectivity in Phaseolus coccineus mitochondrial VDAC. Mitochondrion 2014, 19, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Saidani, H.; Grobys, D.; Léonetti, M.; Kmita, H.; Homblé, F. Towards understanding of plant mitochondrial VDAC proteins: An overview of bean (Phaseolus) VDAC proteins. AIMS Biophys. 2016, 4, 43–62. [Google Scholar] [CrossRef]
- Abrecht, H.; Wattiez, R.; Ruysschaert, J.M.; Homblé, F. Purification and characterization of two voltage-dependent anion channel isoforms from plant seeds. Plant Physiol. 2000, 124, 1181–1190. [Google Scholar] [CrossRef] [Green Version]
- Colombini, M. VDAC structure, selectivity, and dynamics. Biochim. Biophys. Acta Biomembr. 2012, 1818, 1457–1465. [Google Scholar] [CrossRef] [Green Version]
- Rostovtseva, T.; Colombini, M. ATP Flux Is Controlled by a Voltage-gated Channel from the Mitochondrial Outer Membrane. J. Biol. Chem. 1996, 271, 28006–28008. [Google Scholar] [CrossRef] [Green Version]
- Rostovtseva, T.; Colombini, M. VDAC channels mediate and gate the flow of ATP: Implications for the regulation of mitochondrial function. Biophys. J. 1997, 72, 1954–1962. [Google Scholar] [CrossRef] [Green Version]
- Doring, C.; Colombini, M. Voltage dependence and ion selectivity of the mitochondrial channel, VDAC, are modified by succinic anhydride. J. Membr. Biol. 1985, 83, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Colombini, M. The VDAC channel: Molecular basis for selectivity. Biochim. Biophys. Acta Mol. Cell Res. 2016, 1863, 2498–2502. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-W.; Colombini, M. Group IIIA-metal hydroxides indirectly neutralize the voltage sensor of the voltage-dependent mitochondrial channel, VDAC, by interacting with a dynamic binding site. Biochim. Biophys. Acta Biomembr. 1990, 1025, 127–134. [Google Scholar] [CrossRef]
- Troll, H.; Malchow, D.; Müller-Taubenberger, A.; Humbel, B.; Lottspeich, F.; Ecke, M.; Gerisch, G.; Schmid, A.; Benz, R. Purification, functional characterization, and cDNA sequencing of mitochondrial porin from Dictyostelium discoideum. J. Biol. Chem. 1992, 267, 21072–21079. [Google Scholar] [CrossRef]
- Pavlov, E.; Grigoriev, S.M.; Dejean, L.M.; Zweihorn, C.L.; Mannella, C.A.; Kinnally, K.W. The mitochondrial channel VDAC has a cation-selective open state. Biochim. Biophys. Acta Bioenerg. 2005, 1710, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Rostovtseva, T.K.; Komarov, A.; Bezrukov, S.M.; Colombini, M. Dynamics of Nucleotides in VDAC Channels: Structure-Specific Noise Generation. Biophys. J. 2002, 82, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Komarov, A.G.; Deng, D.; Craigen, W.J.; Colombini, M. New Insights into the Mechanism of Permeation through Large Channels. Biophys. J. 2005, 89, 3950–3959. [Google Scholar] [CrossRef] [Green Version]
- Hodge, T.; Colombini, M. Regulation of Metabolite Flux through Voltage-Gating of VDAC Channels. J. Membr. Biol. 1997, 157, 271–279. [Google Scholar] [CrossRef] [PubMed]
- Mannella, C.A.; Kinnally, K.W. Reflections on VDAC as a voltage-gated channel and a mitochondrial regulator. J. Bioenerg. Biomembr. 2008, 40, 149–155. [Google Scholar] [CrossRef]
- Goormaghtigh, E.; Cabiaux, V.; Ruysschaert, J.-M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy: I. Assignments and model compouds. In Physicochemical Methods in the Study of Biomembranes, 1st ed.; Hilderson, H.J., Ralston, G.B., Eds.; Springer: Boston, FL, USA, 1994; pp. 329–362. [Google Scholar]
- Goormaghtigh, E.; Cabiaux, V.; Ruysschaert, J.-M. Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. In Physicochemical Methods in the Study of Biomembranes, 1st ed.; Hilderson, H.J., Ralston, G.B., Eds.; Springer: Boston, FL, USA, 1994; pp. 363–403. [Google Scholar]
- Colombini, M. A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 1979, 279, 643–645. [Google Scholar] [CrossRef]
- Noskov, S.Y.; Rostovtseva, T.K.; Chamberlin, A.C.; Teijido, O.; Jiang, W.; Bezrukov, S.M. Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). Biochim. Biophys. Acta Biomembr. 2016, 1858, 1778–1790. [Google Scholar] [CrossRef] [PubMed]
- Zambrowicz, E.B.; Colombini, M. Zero-current potentials in a large membrane channel: A simple theory accounts for complex behavior. Biophys. J. 1993, 65, 1093–1100. [Google Scholar] [CrossRef] [Green Version]
- Ge, L.; Villinger, S.; Mari, S.A.; Giller, K.; Griesinger, C.; Becker, S.; Müller, D.J.; Zweckstetter, M. Molecular Plasticity of the Human Voltage-Dependent Anion Channel Embedded Into a Membrane. Structure 2016, 24, 585–594. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.I.; Rui, H.; Pastor, R.W.; Im, W. Brownian Dynamics Simulations of Ion Transport through the VDAC. Biophys. J. 2011, 100, 611–619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krammer, E.-M.; Homblé, F.; Prévost, M. Molecular origin of VDAC selectivity towards inorganic ions: A combined molecular and Brownian dynamics study. Biochim. Biophys. Acta Biomembr. 2013, 1828, 1284–1292. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, O.P.; Ujwal, R.; Kowallis, W.; Coalson, R.; Abramson, J.; Grabe, M. The Electrostatics of VDAC: Implications for Selectivity and Gating. J. Mol. Biol. 2010, 396, 580–592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rui, H.; Lee, K.I.; Pastor, R.W.; Im, W. Molecular Dynamics Studies of Ion Permeation in VDAC. Biophys. J. 2011, 100, 602–610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krammer, E.-M.; Homblé, F.; Prévost, M. Concentration dependent ion selectivity in VDAC: A molecular dynamics simulation study. PLoS ONE 2011, 6, e27994. [Google Scholar] [CrossRef] [Green Version]
- Noskov, S.Y.; Rostovtseva, T.K.; Bezrukov, S.M. ATP Transport through VDAC and the VDAC–Tubulin Complex Probed by Equilibrium and Nonequilibrium MD Simulations. Biochemistry 2013, 52, 9246–9256. [Google Scholar] [CrossRef]
- Amodeo, G.F.; Scorciapino, M.A.; Messina, A.; De Pinto, V.; Ceccarelli, M. Charged Residues Distribution Modulates Selectivity of the Open State of Human Isoforms of the Voltage Dependent Anion-Selective Channel. PLoS ONE 2014, 9, e103879. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, O.P.; Paz, A.; Adelman, J.L.; Colletier, J.-P.; Abramson, J.; Grabe, M. Structure-guided simulations illuminate the mechanism of ATP transport through VDAC1. Nat. Struct. Mol. Biol. 2014, 21, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Krammer, E.-M.; Vu, G.T.; Homblé, F.; Prévost, M. Dual Mechanism of Ion Permeation through VDAC Revealed with Inorganic Phosphate Ions and Phosphate Metabolites. PLoS ONE 2015, 10, e0121746. [Google Scholar] [CrossRef] [Green Version]
- Hartmann, M.-A.; Benveniste, P. Plant membrane sterols: Isolation, identification, and biosynthesis. In Methods in Enzymology, 1st ed.; Packer, L., Douce, R., Eds.; Academic Press: Cambridge, MA, USA, 1987; Volume 148, pp. 632–650. [Google Scholar]
- Benveniste, P. Biosynthesis and accumulation of sterols. Annu. Rev. Plant Biol. 2004, 55, 429–457. [Google Scholar] [CrossRef] [PubMed]
- Schuler, I.; Duportail, G.; Glasser, N.; Benveniste, P.; Hartmann, M.-A. Soybean phosphatidylcholine vesicles containing plant sterols: A fluorescence anisotropy study. Biochim. Biophys. Acta Biomembr. 1990, 1028, 82–88. [Google Scholar] [CrossRef]
- Schuler, I.; Milon, A.; Nakatani, Y.; Ourisson, G.; Albrecht, A.M.; Benveniste, P.; Hartman, M.A. Differential effects of plant sterols on water permeability and on acyl chain ordering of soybean phosphatidylcholine bilayers. Proc. Natl. Acad. Sci. USA 1991, 88, 6926–6930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Demel, R.A.; Bruckdorfer, K.R.; van Deenen, L.L.M. Structural requirements of sterols for the interaction with lecithin at the air-water interface. Biochim. Biophys. Acta Biomembr. 1972, 255, 311–320. [Google Scholar] [CrossRef] [Green Version]
- Grosjean, K.; Mongrand, S.; Beney, L.; Simon-Plas, F.; Gerbeau-Pissot, P. Differential Effect of Plant Lipids on Membrane Organization. J. Biol. Chem. 2015, 290, 5810–5825. [Google Scholar] [CrossRef] [Green Version]
- De Pinto, V.; Benz, R.; Palmieri, F. Interaction of non-classical detergents with the mitochondrial porin. A new purification procedure and characterization of the pore-forming unit. Eur. J. Biochem. 1989, 183, 179–187. [Google Scholar] [CrossRef]
- Weiser, B.P.; Salari, R.; Eckenhoff, R.G.; Brannigan, G. Computational Investigation of Cholesterol Binding Sites on Mitochondrial VDAC. J. Phys. Chem. B 2014, 118, 9852–9860. [Google Scholar] [CrossRef] [Green Version]
- Porcelli, A.M.; Ghelli, A.; Zanna, C.; Pinton, P.; Rizzuto, R.; Rugolo, M. pH difference across the outer mitochondrial membrane measured with a green fluorescent protein mutant. Biochem. Biophys. Res. Commun. 2005, 326, 799–804. [Google Scholar] [CrossRef] [PubMed]
- Lemeshko, V.V. Theoretical evaluation of a possible nature of the outer membrane potential of mitochondria. Eur. Biophys. J. 2006, 36, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Homblé, F.; Mlayeh, L.; Léonetti, M. Planar lipid bilayers for electrophysiology of membrane-active peptides. In Membrane-Active Peptides, 1st ed.; Castanho, M., Ed.; IUL: La Jolla, CA, USA, 2010; pp. 273–307. [Google Scholar]
- Goormaghtigh, E.; Raussens, V.; Ruysschaert, J.-M. Attenuated total reflection infrared spectroscopy of proteins and lipids in biological membranes. Biochim. Biophys. Acta Rev. Biomembr. 1999, 1422, 105–185. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saidani, H.; Léonetti, M.; Kmita, H.; Homblé, F. The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. Int. J. Mol. Sci. 2021, 22, 3034. https://doi.org/10.3390/ijms22063034
Saidani H, Léonetti M, Kmita H, Homblé F. The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. International Journal of Molecular Sciences. 2021; 22(6):3034. https://doi.org/10.3390/ijms22063034
Chicago/Turabian StyleSaidani, Hayet, Marc Léonetti, Hanna Kmita, and Fabrice Homblé. 2021. "The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration" International Journal of Molecular Sciences 22, no. 6: 3034. https://doi.org/10.3390/ijms22063034
APA StyleSaidani, H., Léonetti, M., Kmita, H., & Homblé, F. (2021). The Open State Selectivity of the Bean Seed VDAC Depends on Stigmasterol and Ion Concentration. International Journal of Molecular Sciences, 22(6), 3034. https://doi.org/10.3390/ijms22063034