The Role of Z-disc Proteins in Myopathy and Cardiomyopathy
Abstract
:1. Introduction
2. Z-disc Proteins in Myopathy and Cardiomyopathy
2.1. α-actinin 2
2.1.1. α-actinin 2 in Cardiomyopathy
Name Gene | Variant | Het or Homo | Type of Disease | Cardiac or Muscular | * MAF on GnomAD | Location | Ref |
---|---|---|---|---|---|---|---|
α-actinin ACTN2 | p.Gln9Arg | Het | DCM | Cardiac | 7.22 × 10−4 | ABD | [24] |
p.Gly111Val | Het | HCM | Cardiac | Absent | ABD | [18] | |
p.Ala119Thr | Het | HCM, LVNC, DCM | Cardiac | Absent | ABD | [20,26] | |
p.Leu131Pro | Het | DM | Muscular | Absent | ABD | [27] | |
p.Met228Thr | Het | HCM (with AF) | Cardiac | Absent | ABD | [21] | |
p.Thr247Met | Het | HCM | Cardiac | Absent | ABD | [22] | |
p.Leu320Arg | Het | DCM (with VT) | Cardiac | 7.95 × 10−6 | SR1 | [25] | |
p.Cys487Arg | Het | DM | Muscular | Absent | SR2 | [27] | |
p.Thr495Met | Het | HCM | Cardiac | 2.76 × 10−4 | SR2 | [18] | |
p.Glu583Ala | Het | HCM | Cardiac | Absent | SR3 | [20] | |
p.Glu628Gly | Het | HCM | Cardiac | Absent | SR3 | [20] | |
p.Arg759Thr | Het | HCM | Cardiac | Absent | EF1 | [18] |
2.1.2. α-actinin in Myopathy
2.1.3. Summary
2.2. Filamin C
2.2.1. Filamin C in Cardiomyopathy
2.2.2. Filamin C in Myopathy
2.2.3. Summary
Name Gene | Variant | Het or Homo | Type of Disease | Cardiac or Muscular | * MAF on GnomAD | Location | Ref |
---|---|---|---|---|---|---|---|
Filamin C FLNC | p.Tyr7ThrfsX51 | Het | DCM | Cardiac | Absent | [83] | |
p.Trp34X | Het | ABiMVP | Cardiac | Absent | [84] | ||
p.Gln39X | Het | DCM | Cardiac | Absent | [71] | ||
p.Gly54Asp | Het | PM | Muscular | Absent | ABD/CH1 | [85] | |
p.Leu77ProfsX73 | Het | DCM | Cardiac | Absent | [71] | ||
p.Arg81AlafsX15 | Het | DCM | Cardiac | Absent | [61] | ||
p.Tyr83X | Het | DCM | Cardiac | Absent | [61] | ||
p.Phe106Leu | Het | DCM | Cardiac | 3.94 × 10−5 | ABD/CH1 | [69] | |
p.Glu108X | Het | HCM | Cardiac | Absent | [59] | ||
p.Val123Ala | Het | HCM | Cardiac | Absent | ABD | [59] | |
p.Val123Met | Het | DCM | Cardiac | 6.57 × 10−6 | ABD | [68] | |
p.Ala193Thr | Het | DM, PM, CNS | Muscular | 6.57 × 10−6 | ABD/CH1 | [55] | |
p.Leu194ProfsX52 | Het | DCM | Cardiac | Absent | [61] | ||
p.Gly201ValfsX36 | Het | DCM | Cardiac | Absent | [61] | ||
p.Met222Val | Het | DM, PM, MFM | Muscular | Absent | ABD/CH1 | [86] | |
p.Gln233X | Het | DCM | Cardiac | Absent | [68] | ||
p.Glu238ArgfsX14 | Het | DCM | Cardiac | Absent | [83] | ||
p.Met251Thr | Het | DM, PM, CNS | Muscular | Absent | ABD/CH1 | [55] | |
p.Arg269X | Het | DCM | Cardiac | Absent | [87] | ||
p.Glu309Lys | Het | IBM | Muscular | 3.94 × 10−5 | ABD/CH1 | [88] | |
p.Pro442Arg | Homo | Muscle weakness | Muscular | Absent | ROD1/Ig2 | [89] | |
p.Arg482X | Het | DCM | Cardiac | Absent | [90] | ||
p.Val489GlyfsX33 | Het | DCM | Cardiac | Absent | [68] | ||
p.Arg526Gln | Het | IBM | Muscular | 1.58 × 10−3 | ROD1/Ig3 | [88] | |
p.Gln572X | Het | DCM | Cardiac | Absent | [61] | ||
p.Arg575Trp | Het | IBM | Muscular | Absent | ROD1/Ig4 | [88] | |
p.Tyr630X | Het | DCM | Cardiac | Absent | [71] | ||
p.Asp646Asn | Het | OM | Muscular | 3.94 × 10−5 | ROD1/Ig4 | [68] | |
p.Asp648Tyr | Het | PM, DM, MFM | Muscular | Absent | ROD1/Ig4 | [91] | |
p.Ala656ProfsX8 | Het | ACM/SCD | Cardiac | Absent | [63] | ||
p.Ile683ArgfsX9 | Het | DCM | Cardiac | Absent | [83] | ||
p.Asp693Ala | Het | IBM | Muscular | 2.87 × 10−3 | ROD1/Ig5 | [88] | |
p.Tyr705X | Het | ACM/SCD | Cardiac | Absent | [63] | ||
p.Gln707X | Het | DCM | Cardiac | Absent | [87] | ||
p.Lys737SerfsX11 | Het | DCM | Cardiac | Absent | [61] | ||
p.Val831Ile | Het | Pick’s Disease | Muscular | 2.63 × 10−5 | ROD1/Ig6 | [82] | |
p.Tyr928X | Het | DCM | Cardiac | Absent | [83] | ||
p.Pro963ArgfsX26 | Het | DCM | Cardiac | Absent | [61] | ||
p.Arg991X | Het | DCM | Cardiac | Absent | [69] | ||
p.Gln1024X | Het | LVNC | Cardiac | Absent | [92] | ||
p.Asp1061IlefsX17 | Het | DCM | Cardiac | 6.57 × 10−6 | [68] | ||
p.Glu1104X | Het | DCM | Cardiac | Absent | [71] | ||
p.Phe1135AlafsX62 | Het | DCM | Cardiac | Absent | [61] | ||
p.Ala1183Leu | Het | RCM | Cardiac | Absent | ROD1/Ig10 | [67] | |
p.Ala1186Val | Het | PM, DM, CM | Muscular | Absent | ROD1/Ig10 | [93] | |
p.Val1198GlyfsX64 | Het | DCM | Cardiac | Absent | [83] | ||
p.Tyr1216Asn | Het | PM, MFM, Car | Muscular | Absent | ROD1/Ig10 | [73] | |
p.Tyr1230Asn | Het | Myopathy, Car | Muscular | Absent | ROD1/Ig10 | [94] | |
p.Pro1236Ser | Het | PM, Car | Muscular | Absent | ROD1/Ig10 | [95] | |
p.Arg1241Cys | Het | IBM | Muscular | 6.94 × 10−3 | ROD1/Ig10 | [88] | |
p.Leu1280ProfsX52 | Het | DCM | Cardiac | Absent | [68] | ||
p.Arg1354X | Het | DCM | Cardiac | Absent | [71] | ||
p.Asn1369LysfsX36 | Het | DCM | Cardiac | Absent | [96] | ||
p.Arg1370X | Het | ACM/SCD | Cardiac | Absent | [63] | ||
p.Gly1424Val | Het | HCM | Cardiac | 6.57 × 10−6 | ROD1/Ig12 | [83] | |
p.Ala1539Thr | Het | HCM | Cardiac | Absent | ROD1/Ig14 | [59] | |
p.Leu1573X | Het | DCM | Cardiac | Absent | [97] | ||
p.Ser1624Leu | Het | RCM | Cardiac | Absent | ROD1/Ig14 | [60] | |
p.Phe1626Ser fsX40 | Het | DCM/SCD | Cardiac | Absent | [98] | ||
p.Asp1691Asn | Het | PM, DM, MFM | Muscular | 5.25 × 10−5 | ROD1/Ig15 | [91] | |
p.Gly1760Ser | Het | PM | Muscular | 1.12 × 10−4 | ROD2/Ig16 | [95] | |
p.Gly1800X | Het | DCM | Cardiac | Absent | [61] | ||
p.Tyr1840X | Het | DCM | Cardiac | Absent | [99] | ||
p.Gly1891ValfsX62 | Het | DCM | Cardiac | Absent | [87] | ||
p.Gly2039Arg | Het | HCM | Cardiac | 6.57 × 10−6 | ROD2/Ig19 | [83] | |
p.Gly2070Ser | Het | DCM | Cardiac | Absent | ROD2/Ig19 | [61] | |
p.Ser2077ArgfsX50 | Het | DCM | Cardiac | Absent | [96] | ||
p.Pro2081LeufsX2 | Het | DCM | Cardiac | Absent | [61] | ||
p.Ile2086GlnfsX3 | Het | DCM | Cardiac | Absent | [68] | ||
p.Arg2133Cys | Het | HCM | Cardiac | Absent | ROD2/Intradomain | [59] | |
p.Arg2133His | Het | HCM | Cardiac | 6.57 × 10−6 | ROD2/Intradomain | [59] | |
p.Arg2140Gln | Het | HCM | Cardiac | 6.61 × 10−6 | ROD2/Intradomain | [72] | |
p.Ile2160Phe | Het | RCM | Cardiac | Absent | ROD2/Intradomain | [60] | |
p.Arg2176Cys | Het | IBM | Muscular | Absent | ROD2/Intradomain | [100] | |
p.Arg2187Pro | Het | PM, Car | Muscular | Absent | ROD2/Intradomain | [68] | |
p.Glu2189X | Het | ARVC | Cardiac | Absent | [101] | ||
p.Thr2238Ile | Het | Myopathy, CM | Muscular | Absent | ROD2/Intradomain | [68] | |
p.Glu2270Lys | Het | OM | Muscular | 6.40 × 10−4 | ROD2/Ig20 | [68] | |
p.Ser2275Ile | Het | OM | Muscular | Absent | ROD2/Ig20 | [68] | |
p.Val2290ArgfsX23 | Het | DCM | Cardiac | Absent | [68] | ||
p.Val2297Met | Het | RCM | Cardiac | Absent | ROD2/Ig20 | [70] | |
p.Pro2298Leu | Het | RCM | Cardiac | 6.57 × 10−6 | ROD2/Ig20 | [102] | |
p.Pro2298Ser | Het | HCM | Cardiac | Absent | ROD2/Ig20 | [72] | |
p.Pro2301Ala | Het | HCM | Cardiac | Absent | ROD2/Ig20 | [72] | |
p.Gln2303X | Het | DCM | Cardiac | Absent | [68] | ||
p.His2315Asn | Het | HCM | Cardiac | Absent | ROD2/Ig21 | [59] | |
p.Arg2326X | Het | DCM | Cardiac | Absent | [61] | ||
p.Val2331ArgfsX25 | Het | DCM | Cardiac | Absent | [71] | ||
p.Gly2345Glu | Het | Congenital HD | Cardiac | Absent | ROD2/Ig21 | [103] | |
p.Arg2364His | Het | IBM | Muscular | 1.65 × 10−3 | ROD2/Ig21 | [68] | |
p.Arg2364His | Het | IBM | Muscular | 1.65 × 10−3 | ROD2/Ig21 | [88] | |
p.Tyr2373CysfsX7 | Het | DCM | Cardiac | Absent | [83] | ||
p.Val2375Leu | Het | HCM | Cardiac | Absent | ROD2/Ig21 | [83] | |
p.Val2375Ile | Het | PM, DM, MFM | Muscular | 2.63 × 10−5 | ROD2/Ig21 | [104] | |
p.Pro2393Ser | Het | LVNC | Cardiac | Absent | ROD2/Ig21 | [68] | |
p.Thr2419Met | Het | PM, MFM, Car, CNS | Muscular | 6.57 × 10−5 | ROD2/Ig22 | [105] | |
p.Ala2430Val | Het | HCM | Cardiac | 9.20 × 10−5 | ROD2/Ig-like 22 | [59] | |
p.Pro2470His | Het | PM,Car | Muscular | Absent | ROD2/Ig22 | [106] | |
p.Gln2549X | Het | DCM | Cardiac | Absent | [83] | ||
p.Cys2555X | Het | DCM | Cardiac | Absent | [83] | ||
p.Tyr2563Cys | Het | RCM | Cardiac | Absent | ROD2/Ig23 | [102] | |
p.Asp2703ThrfsX69 | Het | DCM | Cardiac | 6.58 × 10−6 | [61] | ||
p.Trp2710X | Het | PM, DM, MFM | Muscular | Absent | ROD2/Ig24 | [54] |
2.3. Myopalladin
2.3.1. Myopalladin in Cardiomyopathy
2.3.2. Myopalladin in Myopathy
2.3.3. Summary
Name Gene | Variant | Het or Homo | Type of Disease | Cardiac or Muscular | * MAF on GnomAD | Location | Ref |
---|---|---|---|---|---|---|---|
Myopalladin MYPN | p.Tyr20Cys | Het | HCM, DCM | Cardiac | 1.27 × 10−3 | IS1 | [107] |
p.Ile83fsX105 | Het | DCM | Cardiac | Absent | IS1 | [111] | |
p.Arg377X | Homo | NM | Muscular | Absent | [113] | ||
p.Gln529X | Het | RCM | Cardiac | 4.00 × 10−6 | Ig2 | [107] | |
p.Asn668ThrfsX25 | Homo | NM | Muscular | Absent | [113] | ||
p.Ser769LeufsTer92 | Homo | Congenital to adult-onset myopathy | Muscular | Absent | [115] | ||
p.Arg885X | Homo | Congenital cap myopathy | Muscular | 6.58 × 10−6 | [114] | ||
p.Arg955Trp | Het | DCM | Cardiac | 4.71 × 10−4 | Ig3 | [109] | |
p.Pro961Leu | Het | DCM | Cardiac | Absent | Ig3 | [109] | |
p.Gly1026ValfsX21 | Homo | NM | Muscular | Absent | [113] | ||
p.Gly1026AsnfsX59 | Homo | NM | Muscular | Absent | [113] | ||
p.Gly1026LeufsX57 | Homo | NM | Muscular | Absent | [113] | ||
p.Gly1026_Gln1077del | Homo | NM | Muscular | Absent | [113] | ||
p.Arg1057X | Het | NM | Muscular | Absent | [113] | ||
p.Arg1072X | Het | NM | Muscular | Absent | [113] | ||
p.Arg1088His | Het | DCM | Cardiac | 3.98 × 10−6 | Ig4 | [111] | |
p.Pro1112Leu | Het | HCM, DCM | Cardiac | 3.06 × 10−3 | Ig4 | [111,116] | |
p.Val1195Met | Het | DCM | Cardiac | 3.05 × 10−4 | Ig5 | [111] | |
c.3158 + 1G > A | Homo | Congenital cap myopathy | Muscular | 3.98 × 10−6 | [114] |
2.4. Myotilin
2.4.1. Myotilin in Myopathy
2.4.2. Summary
Name Gene | Variant | Het or Homo | Type of Disease | Cardiac or Muscular | * MAF on GnomAD | Location | Ref |
---|---|---|---|---|---|---|---|
Myotilin MYOT | p.Arg6His | Het | LGMD1A | Muscular | 2.63 × 10−5 | Serine rich N-terminus | [136] |
p.Arg6Gly | Homo | Severe MFM | Muscular | Absent | Serine rich N-terminus | [137] | |
p.Ser39Phe | Het | Spheroid body myopathy | Muscular | Absent | Serine rich N-terminus | [133] | |
p.Ser55Phe | Het | LGMD1A | Muscular | Absent | Serine rich N-terminus | [120] | |
p.Thr57Ile | Het | LGMD1A | Muscular | Absent | Serine rich N-terminus | [122] | |
p.Ser60Cys | Het | LGMD1A | Muscular | Absent | Serine rich N-terminus | [127] | |
p.Ser60Phe | Het | LGMD1A | Muscular | 1.31 × 10−5 | Serine rich N-terminus | [127] | |
p.Ser95Ile | Het | LGMD1A | Muscular | Absent | Serine rich N-terminus | [127] | |
p.Arg405Lys | Het | LGMD1A | Muscular | Absent | Ig2 | [130] |
2.5. Telethonin
2.5.1. Telethonin in Cardiomyopathy
2.5.2. Telethonin in Myopathy
2.5.3. Summary
Name | Variant | Het or Homo | Type of Disease | Cardiac or Muscular | * MAF on GnomAD | Location | Ref |
---|---|---|---|---|---|---|---|
Telethonin TCAP | p.Ser11X | Homo | LGMD2G | Muscular | 6.57 × 10−6 | [160] | |
p.Arg12fs31X | Homo | LGMD2G | Muscular | Absent | [161] | ||
p.Glu12ArgfsX20 | Homo | LGMD2G | Muscular | 1.31 × 10−5 | [166] | ||
p.Glu13del | Het | HCM | Cardiac | 9.99 × 10−4 | Titin-binding | [151] | |
p.Arg18Gln | Het | DCM | Cardiac | 2.39 × 10−5 | Titin-binding | [155] | |
p.Trp25X | Homo | LGMD2G | Muscular | 6.57 × 10−6 | [159] | ||
p.Ser31HisfsX11 | Homo | LGMD2G | Muscular | Absent | [163] | ||
p.Gly37fsX | Het | LGMD2G | Muscular | Absent | [158] | ||
p.Glu49LyS | Het | DCM | Cardiac | 3.70 × 10−5 | Titin-binding | [155] | |
p.Gln53X | Homo/Het | LGMD2G | Muscular | 1.31 × 10−5 | [158] | ||
p.Cys57Trp | Het | HCM | Cardiac | 2.20 × 10−5 | Titin-binding | [154] | |
p.Arg70Trp | Het | HCM | Cardiac | 4.62 × 10−5 | Titin-binding | [151] | |
p.Gln82X | Homo | LGMD2G | Muscular | Absent | [162] | ||
p.Pro90Leu | Het | HCM | Cardiac | 4.10 × 10−6 | linker | [151] | |
p.Glu105Gln | Het | DCM | Cardiac | 5.10 × 10−4 | linker | [157] | |
p.Glu132Gln | Het | DCM | Cardiac | 4.01 × 10−6 | C-terminus | [150] | |
p.Thr137Ile | Het | HCM | Cardiac | Absent | C-terminus | [150] | |
p.Arg153His | Het | HCM | Cardiac | 2.37 × 10−4 | C-terminus | [150] | |
p.Arg158Cys | Het | DCM | Cardiac | Absent | C-terminus | [156] | |
c.110 + 5G > A | Homo | LGMDR7 | Muscular | Absent | [167] |
2.6. ZASP/Cypher
2.6.1. ZASP in Cardiomyopathy
2.6.2. ZASP in Myopathy
2.6.3. Summary
3. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferrer, I.; Olivé, M. Molecular pathology of myofibrillar myopathies. Expert Rev. Mol. Med. 2008, 10, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Finsterer, J.; Stöllberger, C. Cardiac involvement in primary myopathies. Cardiology 2000, 94, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Andersson, B.; Arbustini, E.; Bilinska, Z.; Cecchi, F.; Charron, P.; Dubourg, O.; Kühl, U.; Maisch, B.; McKenna, W.J.; et al. Classification of the cardiomyopathies: A position statement from the European Society Of Cardiology Working Group on Myocardial and Pericardial Diseases. Eur. Heart. J. 2008, 29, 270–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hershberger, R.E.; Hedges, D.J.; Morales, A. Dilated cardiomyopathy: The complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 2013, 10, 531–547. [Google Scholar] [CrossRef] [PubMed]
- Zegkos, T.; Panagiotidis, T.; Parcharidou, D.; Efthimiadis, G. Emerging concepts in arrhythmogenic dilated cardiomyopathy. Heart Fail. Rev. 2020. [Google Scholar] [CrossRef]
- Zaleta-Rivera, K.; Dainis, A.; Ribeiro, A.J.S.; Cordero, P.; Rubio, G.; Shang, C.; Liu, J.; Finsterbach, T.; Parikh, V.N.; Sutton, S.; et al. Allele-Specific Silencing Ameliorates Restrictive Cardiomyopathy Attributable to a Human Myosin Regulatory Light Chain Mutation. Circulation 2019, 140, 765–778. [Google Scholar] [CrossRef] [PubMed]
- Watkins, H.; Ashrafian, H.; Redwood, C. Inherited cardiomyopathies. N. Engl. J. Med. 2011, 364, 1643–1656. [Google Scholar] [CrossRef]
- Shieh, P.B. Muscular dystrophies and other genetic myopathies. Neurol. Clin. 2013, 31, 1009–1029. [Google Scholar] [CrossRef]
- Rassier, D.E. Sarcomere mechanics in striated muscles: From molecules to sarcomeres to cells. Am. J. Physiol. Cell Physiol. 2017, 313, C134–C145. [Google Scholar] [CrossRef]
- Lange, S.; Pinotsis, N.; Agarkova, I.; Ehler, E. The M-band: The underestimated part of the sarcomere. Biochim. Biophys. Acta. Mol. Cell Res. 2020, 1867, 118440. [Google Scholar] [CrossRef]
- Luther, P.K. The vertebrate muscle Z-disc: Sarcomere anchor for structure and signalling. J. Muscle Res. Cell Motil. 2009, 30, 171–185. [Google Scholar] [CrossRef] [Green Version]
- Azad, A.; Poloni, G.; Sontayananon, N.; Jiang, H.; Gehmlich, K. The giant titin: How to evaluate its role in cardiomyopathies. J. Muscle Res. Cell Motil. 2019, 40, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chauveau, C.; Rowell, J.; Ferreiro, A. A rising titan: TTN review and mutation update. Hum. Mutat. 2014, 35, 1046–1059. [Google Scholar] [CrossRef] [PubMed]
- Sjöblom, B.; Salmazo, A.; Djinović-Carugo, K. Alpha-actinin structure and regulation. Cell Mol. Life Sci. 2008, 65, 2688–2701. [Google Scholar] [CrossRef]
- Persechini, A.; Moncrief, N.D.; Kretsinger, R.H. The EF-hand family of calcium-modulated proteins. Trends Neurosci. 1989, 12, 462–467. [Google Scholar] [CrossRef]
- de Almeida Ribeiro, E.; Pinotsis, N.; Ghisleni, A.; Salmazo, A.; Konarev, P.V.; Kostan, J.; Sjöblom, B.; Schreiner, C.; Polyansky, A.A.; Gkougkoulia, E.A.; et al. The structure and regulation of human muscle α-actinin. Cell 2014, 159, 1447–1460. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Xu, X. α-Actinin2 is required for the lateral alignment of Z discs and ventricular chamber enlargement during zebrafish cardiogenesis. FASEB J. 2012, 26, 4230–4242. [Google Scholar] [CrossRef] [Green Version]
- Theis, J.L.; Bos, J.M.; Bartleson, V.B.; Will, M.L.; Binder, J.; Vatta, M.; Towbin, J.A.; Gersh, B.J.; Ommen, S.R.; Ackerman, M.J. Echocardiographic-determined septal morphology in Z-disc hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 2006, 351, 896–902. [Google Scholar] [CrossRef]
- Walsh, R.; Thomson, K.L.; Ware, J.S.; Funke, B.H.; Woodley, J.; McGuire, K.J.; Mazzarotto, F.; Blair, E.; Seller, A.; Taylor, J.C.; et al. Reassessment of Mendelian gene pathogenicity using 7855 cardiomyopathy cases and 60,706 reference samples. Genet. Med. 2017, 19, 192–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, C.; Bagnall, R.D.; Ingles, J.; Yeates, L.; Kennerson, M.; Donald, J.A.; Jormakka, M.; Lind, J.M.; Semsarian, C. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: A genome-wide analysis. J. Am. Coll. Cardiol. 2010, 55, 1127–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girolami, F.; Iascone, M.; Tomberli, B.; Bardi, S.; Benelli, M.; Marseglia, G.; Pescucci, C.; Pezzoli, L.; Sana, M.E.; Basso, C.; et al. Novel α-actinin 2 variant associated with familial hypertrophic cardiomyopathy and juvenile atrial arrhythmias: A massively parallel sequencing study. Circ. Cardiovasc. Genet. 2014, 7, 741–750. [Google Scholar] [CrossRef]
- Prondzynski, M.; Lemoine, M.D.; Zech, A.T.; Horváth, A.; Di Mauro, V.; Koivumäki, J.T.; Kresin, N.; Busch, J.; Krause, T.; Krämer, E.; et al. Disease modeling of a mutation in α-actinin 2 guides clinical therapy in hypertrophic cardiomyopathy. EMBO Mol. Med. 2019, 11, e11115. [Google Scholar] [CrossRef]
- Haywood, N.J.; Wolny, M.; Rogers, B.; Trinh, C.H.; Shuping, Y.; Edwards, T.A.; Peckham, M. Hypertrophic cardiomyopathy mutations in the calponin-homology domain of ACTN2 affect actin binding and cardiomyocyte Z-disc incorporation. Biochem. J. 2016, 473, 2485–2493. [Google Scholar] [CrossRef] [Green Version]
- Mohapatra, B.; Jimenez, S.; Lin, J.H.; Bowles, K.R.; Coveler, K.J.; Marx, J.G.; Chrisco, M.A.; Murphy, R.T.; Lurie, P.R.; Schwartz, R.J.; et al. Mutations in the muscle LIM protein and alpha-actinin-2 genes in dilated cardiomyopathy and endocardial fibroelastosis. Mol. Genet. Metab. 2003, 80, 207–215. [Google Scholar] [CrossRef]
- Fan, L.L.; Huang, H.; Jin, J.Y.; Li, J.J.; Chen, Y.Q.; Xiang, R. Whole-Exome Sequencing Identifies a Novel Mutation (p.L320R) of Alpha-Actinin 2 in a Chinese Family with Dilated Cardiomyopathy and Ventricular Tachycardia. Cytogenet. Genome Res. 2019, 157, 148–152. [Google Scholar] [CrossRef] [PubMed]
- Bagnall, R.D.; Molloy, L.K.; Kalman, J.M.; Semsarian, C. Exome sequencing identifies a mutation in the ACTN2 gene in a family with idiopathic ventricular fibrillation, left ventricular noncompaction, and sudden death. BMC Med. Genet. 2014, 15, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Savarese, M.; Palmio, J.; Poza, J.J.; Weinberg, J.; Olive, M.; Cobo, A.M.; Vihola, A.; Jonson, P.H.; Sarparanta, J.; García-Bragado, F.; et al. Actininopathy: A new muscular dystrophy caused by ACTN2 dominant mutations. Ann. Neurol. 2019, 85, 899–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- North, K.N.; Yang, N.; Wattanasirichaigoon, D.; Mills, M.; Easteal, S.; Beggs, A.H. A common nonsense mutation results in alpha-actinin-3 deficiency in the general population. Nat. Genet. 1999, 21, 353–354. [Google Scholar] [CrossRef]
- Hogarth, M.W.; Garton, F.C.; Houweling, P.J.; Tukiainen, T.; Lek, M.; Macarthur, D.G.; Seto, J.T.; Quinlan, K.G.; Yang, N.; Head, S.I.; et al. Analysis of the ACTN3 heterozygous genotype suggests that α-actinin-3 controls sarcomeric composition and muscle function in a dose-dependent fashion. Hum. Mol. Genet. 2016, 25, 866–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, Y.; Walsh, C.A. The many faces of filamin: A versatile molecular scaffold for cell motility and signalling. Nat. Cell Biol. 2004. [Google Scholar] [CrossRef] [PubMed]
- Razinia, Z.; Mäkelä, T.; Ylänne, J.; Calderwood, D.A. Filamins in Mechanosensing and Signaling. Annu. Rev. Biophys. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, T.G.; Chan, Y.M.; Hack, A.A.; Brosius, M.; Rajala, M.; Lidov, H.G.; McNally, E.M.; Watkins, S.; Kunkel, L.M. Filamin 2 (FLN2): A muscle-specific sarcoglycan interacting protein. J. Cell Biol. 2000, 148, 115–126. [Google Scholar] [CrossRef] [PubMed]
- Gorlin, J.B.; Yamin, R.; Egan, S.; Stewart, M.; Stossel, T.P.; Kwiatkowski, D.J.; Hartwig, J.H. Human endothelial actin-binding protein (ABP-280, nonmuscle filamin): A molecular leaf spring. J. Cell Biol. 1990, 111, 1089–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmel, M.; Van der Ven, P.F.M.; Stöcklein, W.; Fürst, D.O. The limits of promiscuity: Isoform-specific dimerization of filamins. Biochemistry 2003, 42, 430–439. [Google Scholar] [CrossRef]
- Stossel, T.P.; Condeelis, J.; Cooley, L.; Hartwig, J.H.; Noegel, A.; Schleicher, M.; Shapiro, S.S. Filamins as integrators of cell mechanics and signalling. Nat. Rev. Mol. Cell Biol. 2001, 2, 138–145. [Google Scholar] [CrossRef]
- Popowicz, G.M.; Schleicher, M.; Noegel, A.A.; Holak, T.A. Filamins: Promiscuous organizers of the cytoskeleton. Trends Biochem. Sci. 2006, 31, 411–419. [Google Scholar] [CrossRef]
- Van Der Ven, P.F.M.; Wiesner, S.; Salmikangas, P.; Auerbach, D.; Himmel, M.; Kempa, S.; Hayeß, K.; Pacholsky, D.; Taivainen, A.; Schröder, R.; et al. Indications for a novel muscular dystrophy pathway: γ-Filamin, the muscle-specific filamin isoform, interacts with myotilin. J. Cell Biol. 2000, 151, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chandrasekar, S.; Sheetz, M.P.; Stossel, T.P.; Nakamura, F.; Yan, J. Mechanical perturbation of filamin A immunoglobulin repeats 20–21 reveals potential non-equilibrium mechanochemical partner binding function. Sci. Rep. 2013, 3, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Molt, S.; Bührdel, J.B.; Yakovlev, S.; Schein, P.; Orfanos, Z.; Kirfel, G.; Winter, L.; Wiche, G.; Van Der Ven, P.F.M.; Rottbauer, W.; et al. Aciculin interacts with filamin C and Xin and is essential for myofibril assembly, remodeling and maintenance. J. Cell Biol. 2014, 127, 3578–3592. [Google Scholar] [CrossRef] [Green Version]
- Seppälä, J.; Tossavainen, H.; Rodic, N.; Permi, P.; Pentikäinen, U.; Ylänne, J.; Kursula, P. Flexible structure of peptide-bound filamin a mechanosensor domain pair 20-21. PLoS ONE 2015, 10, e0136969. [Google Scholar] [CrossRef] [Green Version]
- Ruparelia, A.A.; Zhao, M.; Currie, P.D.; Bryson-Richardson, R.J. Characterization and investigation of zebrafish models of filamin-related myofibrillar myopathy. Hum. Mol. Genet. 2012, 21, 4073–4083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leber, Y.; Ruparelia, A.A.; Kirfel, G.; van der Ven, P.F.M.; Hoffmann, B.; Merkel, R.; Bryson-Richardson, R.J.; Fürst, D.O. Filamin C is a highly dynamic protein associated with fast repair of myofibrillar microdamage. Hum. Mol. Genet. 2016, 25, 2776–2788. [Google Scholar] [CrossRef] [Green Version]
- Fürst, D.O.; Goldfarb, L.G.; Kley, R.A.; Vorgerd, M.; Olivé, M.; Van Der Ven, P.F.M. Filamin C-related myopathies: Pathology and mechanisms. Acta Neuropathol. 2013, 125, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Juo, L.Y.; Liao, W.C.; Shih, Y.L.; Yang, B.Y.; Liu, A.B.; Yan, Y.T. HSPB7 interacts with dimerized FLNC and its absence results in progressive myopathy in skeletal muscles. J. Cell Sci. 2016, 129, 1661–1670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raynaud, F.; Fabrice, R.; Jond-Necand, C.; Carole, J.N.; Marcilhac, A.; Anne, M.; Fürst, D.; Dieter, F.; Benyamin, Y.; Yves, B. Calpain 1-gamma filamin interaction in muscle cells: A possible in situ regulation by PKC-alpha. Int. J. Biochem. Cell Biol. 2006, 38, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, J.; Cheng, A.; DeYoung, S.M.; Saltiel, A.R. Identification of CAP as a costameric protein that interacts with filamin C. Mol. Biol. Cell. 2007, 18, 4731–4740. [Google Scholar] [CrossRef] [Green Version]
- Tu, Y.; Wu, S.; Shi, X.; Chen, K.; Wu, C. Migfilin and Mig-2 link focal adhesions to filamin and the actin cytoskeleton and function in cell shape modulation. Cell 2003, 113, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Sequea, D.A.; Sharma, N.; Arias, E.B.; Cartee, G.D. Greater filamin C, GSK3α, and GSK3β serine phosphorylation in insulin-stimulated isolated skeletal muscles of calorie restricted 24 month-old rats. Mech. Ageing Dev. 2013, 134, 60–63. [Google Scholar] [CrossRef] [Green Version]
- Reimann, L.; Wiese, H.; Leber, Y.; Schwable, A.N.; Fricke, A.L.; Rohland, A.; Knapp, B.; Peikert, C.D.; Drepper, F.; Van Der Ven, P.F.M.; et al. Myofibrillar Z-discs are a protein phosphorylation hot spot with protein kinase C (PKCα) modulating protein dynamics. Mol. Cell. Proteom. 2017, 16, 346–367. [Google Scholar] [CrossRef] [Green Version]
- Dalkilic, I.; Schienda, J.; Thompson, T.G.; Kunkel, L.M. Loss of FilaminC (FLNc) Results in Severe Defects in Myogenesis and Myotube Structure. Mol. Cell Biol. 2006, 26, 6522–6534. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, S.P.; Seipel, K.; Medley, Q.G.; Bronson, R.; Segal, R.; Streuli, M. Skeletal muscle deformity and neuroanl disorder in Trio exchange factor-deficient mouse embryos. Proc. Natl. Acad. Sci. USA 2000, 97, 12047–12078. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Chen, Z.; Zhang, L.; Zhu, M.; Tan, C.; Zhou, X.; Evans, S.M.; Fang, X.; Feng, W.; Chen, J. Loss of Filamin C Is Catastrophic for Heart Function. Circulation 2020, 141, 869–871. [Google Scholar] [CrossRef]
- Arndt, V.; Dick, N.; Tawo, R.; Dreiseidler, M.; Wenzel, D.; Hesse, M.; Fürst, D.O.; Saftig, P.; Saint, R.; Fleischmann, B.K.; et al. Chaperone-Assisted Selective Autophagy Is Essential for Muscle Maintenance. Curr. Biol. 2010, 141, 868–871. [Google Scholar] [CrossRef] [PubMed]
- Vorgerd, M.; Van Der Ven, P.F.M.; Bruchertseifer, V.; Löwe, T.; Kley, R.A.; Schröder, R.; Lochmüller, H.; Himmel, M.; Koehler, K.; Fürst, D.O.; et al. A mutation in the dimerization domain of filamin c causes a novel type of autosomal dominant myofibrillar myopathy. Am. J. Hum. Genet. 2005, 77, 297–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duff, R.M.; Tay, V.; Hackman, P.; Ravenscroft, G.; McLean, C.; Kennedy, P.; Steinbach, A.; Schöffler, W.; Van Der Ven, P.F.M.; Fürst, D.O.; et al. Mutations in the N-terminal actin-binding domain of filamin C cause a distal myopathy. Am. J. Hum. Genet. 2011, 88, 729–740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guergueltcheva, V.; Peeters, K.; Baets, J.; Ceuterick-De Groote, C.; Martin, J.J.; Suls, A.; De Vriendt, E.; Mihaylova, V.; Chamova, T.; Almeida-Souza, L.; et al. Distal myopathy with upper limb predominance caused by filamin C haploinsufficiency. Neurology 2011, 77, 2105–2114. [Google Scholar] [CrossRef] [PubMed]
- Kley, R.A.; Hellenbroich, Y.; Van Der Ven, P.F.M.; Fürst, D.O.; Huebner, A.; Bruchertseifer, V.; Peters, S.A.; Heyer, C.M.; Kirschner, J.; Schröder, R.; et al. Clinical and morphological phenotype of the filamin myopathy: A study of 31 German patients. Brain 2007, 130, 3250–3264. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, J.; Zhang, C.; Wu, G.; Zhu, C.; Tang, B.; Zou, Y.; Huang, X.; Hui, R.; Song, L.; et al. Mutation profile of FLNC gene and its prognostic relevance in patients with hypertrophic cardiomyopathy. Mol. Genet. Genomic. Med. 2018, 6, 1104–1113. [Google Scholar] [CrossRef] [Green Version]
- Valdés-Mas, R.; Gutiérrez-Fernández, A.; Gómez, J.; Coto, E.; Astudillo, A.; Puente, D.A.; Reguero, J.R.; Álvarez, V.; Morís, C.; León, D.; et al. Mutations in filamin C cause a new form of familial hypertrophic cardiomyopathy. Nat. Commun. 2014, 5, 1–9. [Google Scholar] [CrossRef]
- Brodehl, A.; Ferrier, R.A.; Hamilton, S.J.; Greenway, S.C.; Brundler, M.A.; Yu, W.; Gibson, W.T.; McKinnon, M.L.; McGillivray, B.; Alvarez, N.; et al. Mutations in FLNC are Associated with Familial Restrictive Cardiomyopathy. Hum. Mutat. 2016, 37, 269–279. [Google Scholar] [CrossRef]
- Ortiz-Genga, M.F.; Cuenca, S.; Dal Ferro, M.; Zorio, E.; Salgado-Aranda, R.; Climent, V.; Padrón-Barthe, L.; Duro-Aguado, I.; Jiménez-Jáimez, J.; Hidalgo-Olivares, V.M.; et al. Truncating FLNC Mutations Are Associated With High-Risk Dilated and Arrhythmogenic Cardiomyopathies. J. Am. Coll. Cardiol. 2016, 68, 2440–2451. [Google Scholar] [CrossRef]
- Begay, R.L.; Tharp, C.A.; Martin, A.; Graw, S.L.; Sinagra, G.; Miani, D.; Sweet, M.E.; Slavov, D.B.; Stafford, N.; Zeller, M.J.; et al. FLNC Gene Splice Mutations Cause Dilated Cardiomyopathy. J. Am. Coll. Cardiol. Basic Trans. Sci. 2016, 1, 344–359. [Google Scholar] [CrossRef] [Green Version]
- Hall, C.L.; Akhtar, M.M.; Sabater-Molina, M.; Futema, M.; Asimaki, A.; Protonotarios, A.; Dalageorgou, C.; Pittman, A.M.; Suarez, M.P.; Aguilera, B.; et al. Filamin C variants are associated with a distinctive clinical and immunohistochemical arrhythmogenic cardiomyopathy phenotype. Int. J. Cardiol. 2019, 307, 101–108. [Google Scholar] [CrossRef] [Green Version]
- Schreiber, K.H.; Kennedy, B.K. When lamins go bad: Nuclear structure and disease. Cell 2013, 152, 1365–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konersman, C.G.; Bordini, B.J.; Scharer, G.; Lawlor, M.W.; Zangwill, S.; Southern, J.F.; Amos, L.; Geddes, G.C.; Kliegman, R.; Collins, M.P. BAG3 myofibrillar myopathy presenting with cardiomyopathy. Neuromuscul. Disord. 2015, 25, 554–562. [Google Scholar] [CrossRef] [PubMed]
- Hartmannova, H.; Kubanek, M.; Sramko, M.; Piherova, L.; Noskova, L.; Hodanova, K.; Stranecky, V.; Pristoupilova, A.; Sovova, J.; Marek, T.; et al. Isolated X-linked hypertrophic cardiomyopathy caused by a novel mutation of the four-and-a-half LIM domain 1 gene. Circ. Cardiovasc. Genet. 2013, 6, 542–551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiselev, A.; Vaz, R.; Knyazeva, A.; Khudiakov, A.; Tarnovskaya, S.; Liu, J.; Sergushichev, A.; Kazakov, S.; Frishman, D.; Smolina, N.; et al. De novo mutations in FLNC leading to early-onset restrictive cardiomyopathy and congenital myopathy. Hum. Mutat. 2018, 39, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Verdonschot, J.A.J.; Vanhoutte, E.K.; Claes, G.R.F.; Helderman-van den Enden, A.T.J.M.; Hoeijmakers, J.G.J.; Hellebrekers, D.M.E.I.; de Haan, A.; Christiaans, I.; Lekanne Deprez, R.H.; Boen, H.M.; et al. A mutation update for the FLNC gene in myopathies and cardiomyopathies. Hum. Mutat. 2020, 41, 1091–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reinstein, E.; Gutierrez-Fernandez, A.; Tzur, S.; Bormans, C.; Marcu, S.; Tayeb-Fligelman, E.; Vinkler, C.; Raas-Rothschild, A.; Irge, D.; Landau, M.; et al. Congenital dilated cardiomyopathy caused by biallelic mutations in Filamin C. Eur. J. Hum. Genet. 2016, 24, 1792–1796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tucker, N.R.; McLellan, M.A.; Hu, D.; Ye, J.; Parsons, V.A.; Mills, R.W.; Clauss, S.; Dolmatova, E.; Shea, M.A.; Milan, D.J.; et al. Novel Mutation in FLNC (Filamin C) Causes Familial Restrictive Cardiomyopathy. Circ. Cardiovasc. Genet. 2017, 10, e001780. [Google Scholar] [CrossRef] [Green Version]
- Janin, A.; N'Guyen, K.; Habib, G.; Dauphin, C.; Chanavat, V.; Bouvagnet, P.; Eschalier, R.; Streichenberger, N.; Chevalier, P.; Millat, G. Truncating mutations on myofibrillar myopathies causing genes as prevalent molecular explanations on patients with dilated cardiomyopathy. Clin. Genet. 2017, 92, 616–623. [Google Scholar] [CrossRef]
- Gómez, J.; Lorca, R.; Reguero, J.R.; Morís, C.; Martín, M.; Tranche, S.; Alonso, B.; Iglesias, S.; Alvarez, V.; Díaz-Molina, B.; et al. Screening of the Filamin C Gene in a Large Cohort of Hypertrophic Cardiomyopathy Patients. Circ. Cardiovasc. Genet. 2017, 10, e001584. [Google Scholar] [CrossRef] [Green Version]
- Avila-Smirnow, D.; Gueneau, L.; Batonnet-Pichon, S.; Delort, F.; Bécane, H.M.; Claeys, K.; Beuvin, M.; Goudeau, B.; Jais, J.P.; Nelson, I.; et al. Cardiac arrhythmia and late-onset muscle weakness caused by a myofibrillar myopathy with unusual histopathological features due to a novel missense mutation in FLNC. Rev. Neurol. 2016, 172, 594–606. [Google Scholar] [CrossRef] [PubMed]
- Schuld, J.; Orfanos, Z.; Chevessier, F.; Eggers, B.; Heil, L.; Uszkoreit, J.; Unger, A.; Kirfel, G.; Van Der Ven, P.F.M.; Marcus, K.; et al. Homozygous expression of the myofibrillar myopathy-associated p.W2710X filamin C variant reveals major pathomechanisms of sarcomeric lesion formation. Acta Neuropathol. Commun. 2020, 8. [Google Scholar] [CrossRef] [PubMed]
- Kley, R.A.; Serdaroglu-Oflazer, P.; Leber, Y.; Odgerel, Z.; Van Der Ven, P.F.M.; Olivé, M.; Ferrer, I.; Onipe, A.; Mihaylov, M.; Bilbao, J.M.; et al. Pathophysiology of protein aggregation and extended phenotyping in filaminopathy. Brain 2012, 135, 2642–2660. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Hong, D.; Zhang, W.; Wang, Z.; Yuan, Y. A novel heterozygous deletion-insertion mutation (2695-2712 del/GTTTGT ins) in exon 18 of the filamin C gene causes filaminopathy in a large Chinese family. Neuromuscul. Disord. 2010, 19, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Miao, J.; Su, F.F.; Liu, X.M.; Wei, X.J.; Yuan, Y.; Yu, X.F. A case report: A heterozygous deletion (2791_2805 del) in exon 18 of the filamin C gene causing filamin C-related myofibrillar myopathies in a Chinese family. BMC Neurol. 2018, 18. [Google Scholar] [CrossRef]
- Ruparelia, A.A.; Oorschot, V.; Ramm, G.; Bryson-Richardson, R.J. FLNC myofibrillar myopathy results from impaired autophagy and protein insufficiency. Hum. Mol. Genet. 2016, 25, 2131–2142. [Google Scholar] [CrossRef] [PubMed]
- Ulbricht, A.; Gehlert, S.; Leciejewski, B.; Schiffer, T.; Bloch, W.; Höhfeld, J. Induction and adaptation of chaperone-assisted selective autophagy CASA in response to resistance exercise in human skeletal muscle. Autophagy 2015, 11, 538–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kley, R.A.; Van Der Ven, P.F.M.; Olivé, M.; Höhfeld, J.; Goldfarb, L.G.; Fürst, D.O.; Vorgerd, M. Impairment of protein degradation in myofibrillar myopathy caused by FLNC/filamin C mutations. Autophagy 2013, 9, 422–423. [Google Scholar] [CrossRef] [Green Version]
- Van den Bogaart, F.J.A.; Claeys, K.G.; Kley, R.A.; Kusters, B.; Schrading, S.; Kamsteeg, E.J.; Voermans, N.C. Widening the spectrum of filamin-C myopathy: Predominantly proximal myopathy due to the p.A193T mutation in the actin-binding domain of FLNC. Neuromuscul. Disord. 2017, 27, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Janssens, J.; Philtjens, S.; Kleinberger, G.; Van Mossevelde, S.; van der Zee, J.; Cacace, R.; Engelborghs, S.; Sieben, A.; Banzhaf-Strathmann, J.; Dillen, L.; et al. Investigating the role of filamin C in Belgian patients with frontotemporal dementia linked to GRN deficiency in FTLD-TDP brains. Acta Neuropathol. Commun. 2015, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Ader, F.; De Groote, P.; Réant, P.; Rooryck-Thambo, C.; Dupin-Deguine, D.; Rambaud, C.; Khraiche, D.; Perret, C.; Pruny, J.F.; Mathieu-Dramard, M.; et al. FLNC pathogenic variants in patients with cardiomyopathies: Prevalence and genotype-phenotype correlations. Clin. Genet. 2019, 96, 317–329. [Google Scholar] [CrossRef] [PubMed]
- Bains, S.; Tester, D.J.; Asirvatham, S.J.; Noseworthy, P.A.; Ackerman, M.J.; Giudicessi, J.R. A Novel Truncating Variant in FLNC-Encoded Filamin C May Serve as a Proarrhythmic Genetic Substrate for Arrhythmogenic Bileaflet Mitral Valve Prolapse Syndrome. Mayo Clin. Proc. 2019, 94, 906–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fichna, J.P.; Macias, A.; Piechota, M.; Korostyński, M.; Potulska-Chromik, A.; Redowicz, M.J.; Zekanowski, C. Whole-exome sequencing identifies novel pathogenic mutations and putative phenotype-influencing variants in Polish limb-girdle muscular dystrophy patients. Hum. Genom. 2018, 12, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gemelli, C.; Prada, V.; Fiorillo, C.; Fabbri, S.; Maggi, L.; Geroldi, A.; Gibertini, S.; Mandich, P.; Trevisan, L.; Fossa, P.; et al. A novel mutation in the N-terminal acting-binding domain of Filamin C protein causing a distal myofibrillar myopathy. J. Neurol. Sci. 2019, 398, 75–78. [Google Scholar] [CrossRef]
- Begay, R.L.; Graw, S.L.; Sinagra, G.; Asimaki, A.; Rowland, T.J.; Slavov, D.B.; Gowan, K.; Jones, K.L.; Brun, F.; Merlo, M.; et al. Filamin C Truncation Mutations Are Associated With Arrhythmogenic Dilated Cardiomyopathy and Changes in the Cell-Cell Adhesion Structures. JACC Clin. Electrophysiol. 2018, 4, 504–514. [Google Scholar] [CrossRef]
- Weihl, C.C.; Baloh, R.H.; Lee, Y.; Chou, T.F.; Pittman, S.K.; Lopate, G.; Allred, P.; Jockel-Balsarotti, J.; Pestronk, A.; Harms, M.B. Targeted sequencing and identification of genetic variants in sporadic inclusion body myositis. Neuromuscul. Disord. 2015, 25, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Kölbel, H.; Roos, A.; van der Ven, P.F.M.; Evangelista, T.; Nolte, K.; Johnson, K.; Töpf, A.; Wilson, M.; Kress, W.; Sickmann, A.; et al. First clinical and myopathological description of a myofibrillar myopathy with congenital onset and homozygous mutation in FLNC. Hum. Mutat. 2020, 41, 1600–1614. [Google Scholar] [CrossRef]
- Tobita, T.; Nomura, S.; Morita, H.; Ko, T.; Fujita, T.; Toko, H.; Uto, K.; Hagiwara, N.; Aburatani, H.; Komuro, I. Identification of MYLK3 mutations in familial dilated cardiomyopathy. Sci. Rep. 2017, 7, 17495. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.T.; Pu, C.Q.; Ban, R.; Liu, H.X.; Shi, Q.; Lu, X.H. Clinical, Pathological, and Genetic Features of Two Chinese Cases with Filamin C Myopathy. Chin. Med. J. (Engl) 2018, 131, 2986–2988. [Google Scholar] [CrossRef]
- Miszalski-Jamka, K.; Jefferies, J.L.; Mazur, W.; Głowacki, J.; Hu, J.; Lazar, M.; Gibbs, R.A.; Liczko, J.; Kłyś, J.; Venner, E.; et al. Novel Genetic Triggers and Genotype-Phenotype Correlations in Patients With Left Ventricular Noncompaction. Circ. Cardiovasc. Genet. 2017, 10, e001763. [Google Scholar] [CrossRef] [Green Version]
- Ghaoui, R.; Cooper, S.T.; Lek, M.; Jones, K.; Corbett, A.; Reddel, S.W.; Needham, M.; Liang, C.; Waddell, L.B.; Nicholson, G.; et al. Use of Whole-Exome Sequencing for Diagnosis of Limb-Girdle Muscular Dystrophy: Outcomes and Lessons Learned. JAMA Neurol. 2015, 72, 1424–1432. [Google Scholar] [CrossRef]
- Vill, K.; Blaschek, A.; Gläser, D.; Kuhn, M.; Haack, T.; Alhaddad, B.; Wagner, M.; Kovacs-Nagy, R.; Tacke, M.; Gerstl, L.; et al. Early-Onset Myopathies: Clinical Findings, Prevalence of Subgroups and Diagnostic Approach in a Single Neuromuscular Referral Center in Germany. J. Neuromuscul. Dis. 2017, 4, 315–325. [Google Scholar] [CrossRef]
- Yu, M.; Zheng, Y.; Jin, S.; Gang, Q.; Wang, Q.; Yu, P.; Lv, H.; Zhang, W.; Yuan, Y.; Wang, Z. Mutational spectrum of Chinese LGMD patients by targeted next-generation sequencing. PLoS ONE 2017, 12, e0175343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cuenca, S.; Ruiz-Cano, M.J.; Gimeno-Blanes, J.R.; Jurado, A.; Salas, C.; Gomez-Diaz, I.; Padron-Barthe, L.; Grillo, J.J.; Vilches, C.; Segovia, J.; et al. Genetic basis of familial dilated cardiomyopathy patients undergoing heart transplantation. J. Heart Lung Transplant. 2016, 35, 625–635. [Google Scholar] [CrossRef] [PubMed]
- Augusto, J.B.; Eiros, R.; Nakou, E.; Moura-Ferreira, S.; Treibel, T.A.; Captur, G.; Akhtar, M.M.; Protonotarios, A.; Gossios, T.D.; Savvatis, K.; et al. Dilated cardiomyopathy and arrhythmogenic left ventricular cardiomyopathy: A comprehensive genotype-imaging phenotype study. Eur. Heart J. Cardiovasc. Imaging 2020, 21, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Sveinbjornsson, G.; Olafsdottir, E.F.; Thorolfsdottir, R.B.; Davidsson, O.B.; Helgadottir, A.; Jonasdottir, A.; Bjornsson, E.; Jensson, B.O.; Arnadottir, G.A.; Kristinsdottir, H.; et al. Variants in NKX2-5 and FLNC Cause Dilated Cardiomyopathy and Sudden Cardiac Death. Circ. Genom Precis. Med. 2018, 11, e002151. [Google Scholar] [CrossRef] [Green Version]
- Chanavat, V.; Janin, A.; Millat, G. A fast and cost-effective molecular diagnostic tool for genetic diseases involved in sudden cardiac death. Clin. Chim. Acta 2016, 453, 80–85. [Google Scholar] [CrossRef]
- Cerino, M.; Gorokhova, S.; Laforet, P.; Ben Yaou, R.; Salort-Campana, E.; Pouget, J.; Attarian, S.; Eymard, B.; Deleuze, J.F.; Boland, A.; et al. Genetic Characterization of a French Cohort of GNE-mutation negative inclusion body myopathy patients with exome sequencing. Muscle Nerve 2017, 56, 993–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, F.; Gigli, M.; Graw, S.L.; Judge, D.P.; Merlo, M.; Murray, B.; Calkins, H.; Sinagra, G.; Taylor, M.R.; Mestroni, L. Truncations cause arrhythmogenic right ventricular cardiomyopathy. J. Med. Genet. 2020, 57, 254–257. [Google Scholar] [CrossRef]
- Schubert, J.; Tariq, M.; Geddes, G.; Kindel, S.; Miller, E.M.; Ware, S.M. Novel pathogenic variants in filamin C identified in pediatric restrictive cardiomyopathy. Hum. Mutat. 2018, 39, 2083–2096. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.C.; Homsy, J.; Zaidi, S.; Lu, Q.; Morton, S.; DePalma, S.R.; Zeng, X.; Qi, H.; Chang, W.; Sierant, M.C.; et al. Contribution of rare inherited and de novo variants in 2,871 congenital heart disease probands. Nat. Genet. 2017, 49, 1593–1601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.; Wu, J.; Han, C.; Li, Y.; Guo, Y.; Tong, X. A mutation in the filamin c gene causes myofibrillar myopathy with lower motor neuron syndrome: A case report. BMC Neurol. 2019, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tasca, G.; Odgerel, Z.; Monforte, M.; Aurino, S.; Clarke, N.F.; Waddell, L.B.; Udd, B.; Ricci, E.; Goldfarb, L.G. Novel FLNC mutation in a patient with myofibrillar myopathy in combination with late-onset cerebellar ataxia. Muscle Nerve 2012, 46, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddy, H.M.; Cho, K.A.; Lek, M.; Estrella, E.; Valkanas, E.; Jones, M.D.; Mitsuhashi, S.; Darras, B.T.; Amato, A.A.; Lidov, H.G.; et al. The sensitivity of exome sequencing in identifying pathogenic mutations for LGMD in the United States. J. Hum. Genet. 2017, 62, 243–252. [Google Scholar] [CrossRef]
- Purevjav, E.; Arimura, T.; Augustin, S.; Huby, A.C.; Takagi, K.; Nunoda, S.; Kearney, D.L.; Taylor, M.D.; Terasaki, F.; Bos, J.M.; et al. Molecular basis for clinical heterogeneity in inherited cardiomyopathies due to myopalladin mutations. Hum. Mol. Genet. 2012, 21, 2039–2053. [Google Scholar] [CrossRef] [Green Version]
- Bang, M.L.; Mudry, R.E.; McElhinny, A.S.; Trombitás, K.; Geach, A.J.; Yamasaki, R.; Sorimachi, H.; Granzier, H.; Gregorio, C.C.; Labeit, S. Myopalladin, a novel 145-kilodalton sarcomeric protein with multiple roles in Z-disc and I-band protein assemblies. J. Cell Biol. 2001, 153, 413–428. [Google Scholar] [CrossRef] [Green Version]
- Meyer, T.; Ruppert, V.; Ackermann, S.; Richter, A.; Perrot, A.; Sperling, S.R.; Posch, M.G.; Maisch, B.; Pankuweit, S.; Failure, G.C.N.H. Novel mutations in the sarcomeric protein myopalladin in patients with dilated cardiomyopathy. Eur. J. Hum. Genet. 2013, 21, 294–300. [Google Scholar] [CrossRef] [Green Version]
- Mastroianno, S.; Palumbo, P.; Castellana, S.; Leone, M.P.; Massaro, R.; Potenza, D.R.; Mazza, T.; Russo, A.; Castori, M.; Carella, M.; et al. Double missense mutations in cardiac myosin-binding protein C and myopalladin genes: A case report with diffuse coronary disease, complete atrioventricular block, and progression to dilated cardiomyopathy. Ann. Noninvasive Electrocardiol. 2020, 25, e12687. [Google Scholar] [CrossRef]
- Duboscq-Bidot, L.; Xu, P.; Charron, P.; Neyroud, N.; Dilanian, G.; Millaire, A.; Bors, V.; Komajda, M.; Villard, E. Mutations in the Z-band protein myopalladin gene and idiopathic dilated cardiomyopathy. Cardiovasc. Res. 2008, 77, 118–125. [Google Scholar] [CrossRef]
- Huby, A.C.; Mendsaikhan, U.; Takagi, K.; Martherus, R.; Wansapura, J.; Gong, N.; Osinska, H.; James, J.F.; Kramer, K.; Saito, K.; et al. Disturbance in Z-disk mechanosensitive proteins induced by a persistent mutant myopalladin causes familial restrictive cardiomyopathy. J. Am. Coll. Cardiol. 2014, 64, 2765–2776. [Google Scholar] [CrossRef] [Green Version]
- Miyatake, S.; Mitsuhashi, S.; Hayashi, Y.K.; Purevjav, E.; Nishikawa, A.; Koshimizu, E.; Suzuki, M.; Yatabe, K.; Tanaka, Y.; Ogata, K.; et al. Biallelic Mutations in MYPN, Encoding Myopalladin, Are Associated with Childhood-Onset, Slowly Progressive Nemaline Myopathy. Am. J. Hum. Genet. 2017, 100, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Lornage, X.; Malfatti, E.; Chéraud, C.; Schneider, R.; Biancalana, V.; Cuisset, J.M.; Garibaldi, M.; Eymard, B.; Fardeau, M.; Boland, A.; et al. Recessive MYPN mutations cause cap myopathy with occasional nemaline rods. Ann. Neurol. 2017, 81, 467–473. [Google Scholar] [CrossRef]
- Merlini, L.; Sabatelli, P.; Antoniel, M.; Carinci, V.; Niro, F.; Monetti, G.; Torella, A.; Giugliano, T.; Faldini, C.; Nigro, V. Congenital myopathy with hanging big toe due to homozygous myopalladin (MYPN) mutation. Skelet Muscle 2019, 9, 14. [Google Scholar] [CrossRef]
- Bagnall, R.D.; Yeates, L.; Semsarian, C. Analysis of the Z-disc genes PDLIM3 and MYPN in patients with hypertrophic cardiomyopathy. Int. J. Cardiol. 2010, 145, 601–602. [Google Scholar] [CrossRef] [PubMed]
- Dube, D.K.; Wang, J.; Pellenz, C.; Fan, Y.; Dube, S.; Han, M.; Linask, K.; Sanger, J.M.; Sanger, J.W. Expression of myotilin during chicken development. Anat. Rec. (Hoboken) 2014, 297, 1596–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salmikangas, P.; Mykkänen, O.M.; Grönholm, M.; Heiska, L.; Kere, J.; Carpén, O. Myotilin, a novel sarcomeric protein with two Ig-like domains, is encoded by a candidate gene for limb-girdle muscular dystrophy. Hum. Mol. Genet. 1999, 19, 3068–3079. [Google Scholar] [CrossRef] [PubMed]
- Yamaoka, L.H.; Westbrook, C.A.; Speer, M.C.; Gilchrist, J.M.; Jabs, E.W.; Schweins, E.G.; Stajich, J.M.; Gaskell, P.C.; Roses, A.D.; Pericak-Vance, M.A. Development of a microsatellite genetic map spanning 5q31-q33 and subsequent placement of the LGMD1A locus between D5S178 and IL9. Neuromuscul. Disord. 1994, 4, 471–475. [Google Scholar] [CrossRef]
- Hauser, M.A.; Conde, C.B.; Kowaljow, V.; Zeppa, G.; Taratuto, A.L.; Torian, U.M.; Vance, J.; Pericak-Vance, M.A.; Speer, M.C.; Rosa, A.L. myotilin mutation found in second pedigree with LGMD1A. Am. J. Hum. Genet. 2002, 71. [Google Scholar] [CrossRef] [Green Version]
- Salmikangas, P.; van der Ven, P.F.M.; Lalowski, M.; Taivainen, A.; Zhao, F.; Suila, H.; Schröder, R.; Lappalainen, P.; Fürst, D.O.; Carpén, O. Myotilin, the limb-girdle muscular dystrophy 1A (LGMD1A) protein, cross-links actin filaments and controls sarcomere assembly. Hum. Mol. Genet. 2003, 12, 189–230. [Google Scholar] [CrossRef]
- Hauser, M.A. Myotilin is mutated in limb girdle muscular dystrophy 1A. Hum. Mol. Genet. 2000, 9, 2141–2147. [Google Scholar] [CrossRef] [Green Version]
- Gontier, Y.; Taivainen, A.; Fontao, L.; Sonnenberg, A.; van der Flier, A.; Carpen, O.; Faulkner, G.; Borradori, L. The Z-disc proteins myotilin and FATZ-1 interact with each other and are connected to the sarcolemma via muscle-specific filamins. J. Cell Sci. 2005, 118, 3739–3749. [Google Scholar] [CrossRef] [Green Version]
- Von Nandelstadh, P.; Ismail, M.; Gardin, C.; Suila, H.; Zara, I.; Belgrano, A.; Valle, G.; Carpen, O.; Faulkner, G. A Class III PDZ Binding Motif in the Myotilin and FATZ Families Binds Enigma Family Proteins: A Common Link for Z-Disc Myopathies. Mo.l. Cell. Biol. 2009, 29, 822–834. [Google Scholar] [CrossRef] [Green Version]
- Witt, S.H.; Granzier, H.; Witt, C.C.; Labeit, S. MURF-1 and MURF-2 target a specific subset of myofibrillar proteins redundantly: Towards understanding MURF-dependent muscle ubiquitination. J. Mol. Biol. 2005, 350, 713–722. [Google Scholar] [CrossRef] [PubMed]
- Moza, M.; Mologni, L.; Trokovic, R.; Faulkner, G.; Partanen, J.; Carpén, O. Targeted Deletion of the Muscular Dystrophy Gene myotilin Does Not Perturb Muscle Structure or Function in Mice. Mol. Cell. Biol. 2007, 27, 244–252. [Google Scholar] [CrossRef] [Green Version]
- Selcen, D.; Engel, A.G. Mutations in myotilin cause myofibrillar myopathy. Neurology 2004, 62, 1363–1371. [Google Scholar] [CrossRef]
- Von Nandelstadh, P.; Grönholm, M.; Moza, M.; Lamberg, A.; Savilahti, H.; Carpén, O. Actin-organising properties of the muscular dystrophy protein myotilin. Exp. Cell Res. 2005, 310, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Berciano, J.; Gallardo, E.; Domínguez-Perles, R.; García, A.; García-Barredo, R.; Combarros, O.; Infante, J.; Illa, I. Autosomal-dominant distal myopathy with a myotilin S55F mutation: Sorting out the phenotype. J. Neurol. Neurosurg. Psychiatry 2008, 79, 205–208. [Google Scholar] [CrossRef]
- Shalaby, S.; Mitsuhashi, H.; Matsuda, C.; Minami, N.; Noguchi, S.; Nonaka, I.; Nishino, I.; Hayashi, Y.K. Defective myotilin homodimerization caused by a novel mutation in MYOT exon 9 in the first Japanese limb girdle muscular dystrophy 1A patient. J. Neuropathol. Exp. Neurol. 2009, 68, 701–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruparelia, A.; Vaz, R.; Bryson-Richardso, R. Myofibrillar Myopathies and the Z-Disk Associated Proteins. Skelet. Muscle Myogenesis Clin. Relat. 2012. [Google Scholar] [CrossRef]
- Olivé, M.; Odgerel, Z.; Martínez, A.; Poza, J.J.; Bragado, F.G.; Zabalza, R.J.; Jericó, I.; Gonzalez-Mera, L.; Shatunov, A.; Lee, H.S.; et al. Clinical and myopathological evaluation of early- and late-onset subtypes of myofibrillar myopathy. Neuromuscul. Disord. 2011, 21, 533–542. [Google Scholar] [CrossRef] [Green Version]
- Foroud, T.; Pankratz, N.; Batchman, A.P.; Pauciulo, M.W.; Vidal, R.; Miravalle, L.; Goebel, H.H.; Cushman, L.J.; Azzarelli, B.; Horak, H.; et al. A mutation in myotilin causes spheroid body myopathy. Neurology 2005, 65, 1936–1940. [Google Scholar] [CrossRef]
- Otey, C.A.; Rachlin, A.; Moza, M.; Arneman, D.; Carpen, O. The palladin/myotilin/myopalladin family of actin-associated scaffolds. Int. Rev. Cytol. 2005, 246, 31–58. [Google Scholar] [CrossRef]
- Puž, V.; Pavšič, M.; Lenarčič, B.; Djinović-Carugo, K. Conformational plasticity and evolutionary analysis of the myotilin tandem Ig domains. Sci. Rep. 2017, 7. [Google Scholar] [CrossRef]
- Reilich, P.; Krause, S.; Schramm, N.; Klutzny, U.; Bulst, S.; Zehetmayer, B.; Schneiderat, P.; Walter, M.C.; Schoser, B.; Lochmüller, H. A novel mutation in the myotilin gene (MYOT) causes a severe form of limb girdle muscular dystrophy 1A (LGMD1A). J. Neurol. 2011, 258, 1437–1444. [Google Scholar] [CrossRef] [PubMed]
- Schessl, J.; Bach, E.; Rost, S.; Feldkirchner, S.; Kubny, C.; Müller, S.; Hanisch, F.G.; Kress, W.; Schoser, B. Novel recessive myotilin mutation causes severe myofibrillar myopathy. Neurogenetics 2014, 15, 151–156. [Google Scholar] [CrossRef]
- Rudolf, G.; Suominen, T.; Penttilä, S.; Hackman, P.; Evilä, A.; Lannes, B.; Echaniz-Laguna, A.; Bierry, G.; Tranchant, C.; Udd, B. Homozygosity of the Dominant Myotilin c.179C>T (p.Ser60Phe) Mutation Causes a More Severe and Proximal Muscular Dystrophy. J. Neuromuscul. Dis. 2016, 3, 275–281. [Google Scholar] [CrossRef] [PubMed]
- Von Nandelstadh, P.; Souymani, R.; Baumann, M.; Carpen, O. Analysis of myotilin turnover provides mechanistic insight into the role of myotilinopathy-causing mutations. Biochem. J. 2011, 436, 113–121. [Google Scholar] [CrossRef] [Green Version]
- Djinovic-Carugo, K.; Kostan, J. Structural Insights into F-actin Regulation and Sarcomere Assembly via Myotilin. Biophys. J. 2020. [Google Scholar] [CrossRef]
- Maerkens, A.; Olivé, M.; Schreiner, A.; Feldkirchner, S.; Schessl, J.; Uszkoreit, J.; Barkovits, K.; Güttsches, A.K.; Theis, V.; Eisenacher, M.; et al. New insights into the protein aggregation pathology in myotilinopathy by combined proteomic and immunolocalization analyses. Acta Neuropathol. Commun. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Garvey, S.M.; Liu, Y.; Miller, S.E.; Hauser, M.A. Myotilin overexpression enhances myopathology in the LGMD1A mouse model. Muscle Nerve 2008, 37, 663–667. [Google Scholar] [CrossRef]
- Keduka, E.; Hayashi, Y.K.; Shalaby, S.; Mitsuhashi, H.; Noguchi, S.; Nonaka, I.; Nishino, I. In vivo characterization of mutant myotilins. Am. J. Pathol. 2012, 180, 1570–1580. [Google Scholar] [CrossRef]
- Bührdel, J.B.; Hirth, S.; Keßler, M.; Westphal, S.; Forster, M.; Manta, L.; Wiche, G.; Schoser, B.; Schessl, J.; Schröder, R.; et al. In vivo characterization of human myofibrillar myopathy genes in zebrafish. Biochem. Biophys. Res. Commun. 2015, 461, 217–223. [Google Scholar] [CrossRef] [Green Version]
- Olivé, M.; van Leeuwen, F.W.; Janué, A.; Moreno, D.; Torrejón-Escribano, B.; Ferrer, I. Expression of mutant ubiquitin (UBB+1) and p62 in myotilinopathies and desminopathies. Neuropathol. Appl. Neurobiol. 2008, 34, 76–87. [Google Scholar] [CrossRef]
- Valle, G.; Faulkner, G.; De Antoni, A.; Pacchioni, B.; Pallavicini, A.; Pandolfo, D.; Tiso, N.; Toppo, S.; Trevisan, S.; Lanfranchi, G. Telethonin, a novel sarcomeric protein of heart and skeletal muscle. FEBS Lett. 1997, 415, 163–168. [Google Scholar] [CrossRef]
- Sadikot, T.; Hammond, C.R.; Ferrari, M.B. Distinct roles for telethonin N-versus C-terminus in sarcomere assembly and maintenance. Dev. Dyn. 2010, 239, 1124–1135. [Google Scholar] [CrossRef]
- Faulkner, G.; Lanfranchi, G.; Valle, G. Telethonin and other new proteins of the Z-disc of skeletal muscle. IUBMB Life 2001, 51, 275–282. [Google Scholar]
- Knöll, R.; Linke, W.A.; Zou, P.; Miocic, S.; Kostin, S.; Buyandelger, B.; Ku, C.H.; Neef, S.; Bug, M.; Schäfer, K.; et al. Telethonin deficiency is associated with maladaptation to biomechanical stress in the mammalian heart. Circ. Res. 2011, 109, 758–769. [Google Scholar] [CrossRef]
- Hayashi, T.; Arimura, T.; Itoh-Satoh, M.; Ueda, K.; Hohda, S.; Inagaki, N.; Takahashi, M.; Hori, H.; Yasunami, M.; Nishi, H.; et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol. 2004, 44, 2192–2201. [Google Scholar] [CrossRef] [Green Version]
- Bos, J.M.; Poley, R.N.; Ny, M.; Tester, D.J.; Xu, X.; Vatta, M.; Towbin, J.A.; Gersh, B.J.; Ommen, S.R.; Ackerman, M.J. Genotype-phenotype relationships involving hypertrophic cardiomyopathy-associated mutations in titin, muscle LIM protein, and telethonin. Mol. Genet. Metab. 2006, 88, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Perrot, A.; Sigusch, H.H.; Nägele, H.; Genschel, J.; Lehmkuhl, H.; Hetzer, R.; Geier, C.; Leon Perez, V.; Reinhard, D.; Dietz, R.; et al. Genetic and phenotypic analysis of dilated cardiomyopathy with conduction system disease: Demand for strategies in the management of presymptomatic lamin A/C mutant carriers. Eur. J. Heart Fail. 2006, 8, 484–493. [Google Scholar] [CrossRef]
- Marziliano, N.; Pilotto, A.; Grasso, M.; Pasotti, M.; Arbustini, E. Deletion of Glu at codon 13 of the TCAP gene encoding the titin-cap-telethonin is a rare polymorphism in a large Italian population. Mol. Genet. Metab. 2006, 89, 286–287. [Google Scholar] [CrossRef]
- Toste, A.; Perrot, A.; Özcelik, C.; Cardim, N. Identification of a novel titin-cap/telethonin mutation in a Portuguese family with hypertrophic cardiomyopathy. Rev. Port. Cardiol 2020, 39, 317–327. [Google Scholar] [CrossRef]
- Hershberger, R.E.; Parks, S.B.; Kushner, J.D.; Li, D.; Ludwigsen, S.; Jakobs, P.; Nauman, D.; Burgess, D.; Partain, J.; Litt, M. Coding sequence mutations identified in MYH7, TNNT2, SCN5A, CSRP3, LBD3, and TCAP from 313 patients with familial or idiopathic dilated cardiomyopathy. Clin. Transl. Sci. 2008, 1, 21–26. [Google Scholar] [CrossRef]
- Hirtle-Lewis, M.; Desbiens, K.; Ruel, I.; Rudzicz, N.; Genest, J.; Engert, J.C.; Giannetti, N. The genetics of dilated cardiomyopathy: A prioritized candidate gene study of LMNA, TNNT2, TCAP, and PLN. Clin. Cardiol. 2013, 36, 628–633. [Google Scholar] [PubMed]
- Martins, E.; Sousa, A.; Canedo, P.; Leite, S.; Pinto, R.; Campelo, M.; Amorim, S.; Moura, B.; Lopes, J.M.; Machado, J.C.; et al. Genetic variants identified by target next-generation sequencing in heart transplant patients with dilated cardiomyopathy. Rev. Port. Cardiol. 2019, 38, 441–447. [Google Scholar] [CrossRef] [PubMed]
- Moreira, E.S.; Wiltshire, T.J.; Faulkner, G.; Nilforoushan, A.; Vainzof, M.; Suzuki, O.T.; Valle, G.; Reeves, R.; Zatz, M.; Passos-Bueno, M.R.; et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin. Nat. Genet. 2000. [Google Scholar] [CrossRef]
- Olivé, M.; Shatunov, A.; Gonzalez, L.; Carmona, O.; Moreno, D.; Quereda, L.G.; Martinez-Matos, J.A.; Goldfarb, L.G.; Ferrer, I. Transcription-terminating mutation in telethonin causing autosomal recessive muscular dystrophy type 2G in a European patient. Neuromuscul. Disord. 2008, 18, 929–933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, A.; Sunitha, B.; Vinodh, K.; Polavarapu, K.; Katkam, S.K.; Modi, S.; Bharath, M.M.; Gayathri, N.; Nalini, A.; Thangaraj, K. Novel TCAP mutation c.32C>A causing limb girdle muscular dystrophy 2G. PLoS ONE 2014, 9, e102763. [Google Scholar] [CrossRef] [PubMed]
- Waddell, L.B.; Lek, M.; Bahlo, M.; Bromhead, C.; Jones, K.; North, K.N.; Clarke, N.F. GP 41 The identification of LGMD2G (TCAP) in Australia. Neuromuscul. Disord. 2012, 22, 831–832. [Google Scholar] [CrossRef]
- Barresi, R.; Morris, C.; Hudson, J.; Curtis, E.; Pickthall, C.; Bushby, K.; Davies, N.P.; Straub, V. Conserved expression of truncated telethonin in a patient with limb-girdle muscular dystrophy 2G. Neuromuscul. Disord. 2015, 25, 349–352. [Google Scholar] [CrossRef]
- Ikenberg, E.; Karin, I.; Ertl-Wagner, B.; Abicht, A.; Bulst, S.; Krause, S.; Schoser, B.; Reilich, P.; Walter, M.C. Rare diagnosis of telethoninopathy (LGMD2G) in a Turkish patient. Neuromuscul. Disord. 2017, 27, 856–860. [Google Scholar] [CrossRef]
- Brusa, R.; Magri, F.; Papadimitriou, D.; Govoni, A.; Del Bo, R.; Ciscato, P.; Savarese, M.; Cinnante, C.; Walter, M.C.; Abicht, A.; et al. A new case of limb girdle muscular dystrophy 2G in a Greek patient, founder effect and review of the literature. Neuromuscul. Disord. 2018, 28, 532–537. [Google Scholar] [CrossRef] [Green Version]
- Chamova, T.; Bichev, S.; Todorov, T.; Gospodinova, M.; Taneva, A.; Kastreva, K.; Zlatareva, D.; Krupev, M.; Hadjiivanov, R.; Guergueltcheva, V.; et al. Limb girdle muscular dystrophy 2G in a religious minority of Bulgarian Muslims homozygous for the c.75G>A, p.Trp25X mutation. Neuromuscul. Disord. 2018, 28, 625–632. [Google Scholar] [CrossRef]
- Yee, W.; Pramono, Z.; Tan, C.; Kathioravelu, P.; Lai, P.G.P. 8.15 Limb girdle muscular dystrophy 2G and novel TCAP mutations in ethnic Chinese. Neuromuscul. Disord. 2007, 17, 814. [Google Scholar] [CrossRef]
- Chen, H.; Xu, G.; Lin, F.; Jin, M.; Cai, N.; Qiu, L.; Ye, Z.; Wang, L.; Lin, M.; Wang, N. Clinical and genetic characterization of limb girdle muscular dystrophy R7 telethonin-related patients from three unrelated Chinese families. Neuromuscul. Disord. 2020, 30, 137–143. [Google Scholar] [CrossRef]
- Markert, C.D.; Meaney, M.P.; Voelker, K.A.; Grange, R.W.; Dalley, H.W.; Cann, J.K.; Ahmed, M.; Bishwokarma, B.; Walker, S.J.; Yu, S.X.; et al. Functional muscle analysis of the Tcap knockout mouse. Hum. Mol. Genet. 2010, 19, 2268–2283. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Chu, P.H.; Huang, C.; Cheng, C.F.; Martone, M.E.; Knoll, G.; Shelton, G.D.; Evans, S.; Chen, J. Ablation of Cypher, a PDZ-LIM domain Z-line protein, causes a severe form of congenital myopathy. J. Cell Biol. 2001, 155, 605–612. [Google Scholar] [CrossRef] [PubMed]
- Sheikh, F.; Bang, M.L.; Lange, S.; Chen, J. “Z”eroing in on the Role of Cypher in Striated Muscle Function, Signaling, and Human Disease. Trends Cardiovasc. Med. 2007, 17, 258–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martinelli, V.C.; Kyle, W.B.; Kojic, S.; Vitulo, N.; Li, Z.; Belgrano, A.; Maiuri, P.; Banks, L.; Vatta, M.; Valle, G.; et al. ZASP interacts with the mechanosensing protein Ankrd2 and p53 in the signalling network of striated muscle. PLoS ONE 2014, 9, e92259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faulkner, G.; Pallavicini, A.; Formentin, E.; Comelli, A.; Ievolella, C.; Trevisan, S.; Bortoletto, G.; Scannapieco, P.; Salamon, M.; Mouly, V.; et al. ZASP: A new Z-band alternatively spliced PDZ-motif protein. J. Cell Biol. 1999, 146, 267–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Au, Y.; Atkinson, R.A.; Guerrini, R.; Kelly, G.; Joseph, C.; Martin, S.R.; Muskett, F.W.; Pallavicini, A.; Faulkner, G.; Pastore, A. Solution structure of ZASP PDZ domain: Implications for sarcomere ultrastructure and enigma family redundancy. Structure 2004, 12, 611–622. [Google Scholar] [CrossRef] [Green Version]
- Knappeis, G.G.; Carlsen, F. The ultrastructure of the Z disc in skeletal muscle. J. Cell Bol. 1962, 13, 323–335. [Google Scholar] [CrossRef] [Green Version]
- González-Morales, N.; Xiao, Y.S.; Schilling, M.A.; Marescal, O.; Liao, K.A.; Schöck, F. Myofibril diameter is set by a finely tuned mechanism of protein oligomerization in. Elife 2019. [Google Scholar] [CrossRef]
- Lin, X.; Ruiz, J.; Bajraktari, I.; Ohman, R.; Banerjee, S.; Gribble, K.; Kaufman, J.D.; Wingfield, P.T.; Griggs, R.C.; Fischbeck, K.H.; et al. Z-disc-Associated, alternatively spliced, PDZ motif-containing protein (ZASP) mutations in the actin-binding domain cause disruption of skeletal muscle actin filaments in myofibrillar myopathy. J. Biol. Chem. 2014, 289, 13615–13626. [Google Scholar] [CrossRef] [Green Version]
- Van der Meer, D.L.M.; Marques, I.J.; Leito, J.T.D.; Besser, J.; Bakkers, J.; Schoonheere, E.; Bagowski, C.P. Zebrafish cypher is important for somite formation and heart development. Dev. Biol. 2006, 299, 356–372. [Google Scholar] [CrossRef]
- Vatta, M.; Mohapatra, B.; Jimenez, S.; Sanchez, X.; Faulkner, G.; Perles, Z.; Sinagra, G.; Lin, J.H.; Vu, T.M.; Zhou, Q.; et al. Mutations in Cypher/ZASP in Patients with Dilated Cardiomyopathy and Left Ventricular Non-Compaction. J. Am. Coll. Cardiol. 2003, 42, 2014–2027. [Google Scholar] [CrossRef] [Green Version]
- Arimura, T.; Hayashi, T.; Terada, H.; Lee, S.Y.; Zhou, Q.; Takahashi, M.; Ueda, K.; Nouchi, T.; Hohda, S.; Shibutani, M.; et al. A Cypher/ZASP Mutation Associated with Dilated Cardiomyopathy Alters the Binding Affinity to Protein Kinase C. J. Biol. Chem. 2004, 279, 6746–6752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez-Ayala, J.M.; Ortiz-Genga, M.; Gomez-Milanes, I.; Lopez-Cuenca, D.; Ruiz-Espejo, F.; Sanchez-Munoz, J.J.; Oliva-Sandoval, M.J.; Monserrat, L.; Gimeno, J.R. A mutation in the Z-line Cypher/ZASP protein is associated with arrhythmogenic right ventricular cardiomyopathy. Clin. Genet. 2015, 88, 172–176. [Google Scholar] [CrossRef]
- Xing, Y.; Ichida, F.; Matsuoka, T.; Isobe, T.; Ikemoto, Y.; Higaki, T.; Tsuji, T.; Haneda, N.; Kuwabara, A.; Chen, R.; et al. Genetic analysis in patients with left ventricular noncompaction and evidence for genetic heterogeneity. Mol. Genet. Metab. 2006, 88, 71–77. [Google Scholar] [CrossRef]
- Watts, N.R.; Zhuang, X.; Kaufman, J.D.; Palmer, I.W.; Dearborn, A.D.; Coscia, S.; Blech-Hermoni, Y.; Alfano, C.; Pastore, A.; Mankodi, A.; et al. Expression and Purification of ZASP Subdomains and Clinically Important Isoforms: High-Affinity Binding to G-Actin. Biochemistry 2017, 56, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Arimura, T.; Inagaki, N.; Hayashi, T.; Shichi, D.; Sato, A.; Hinohara, K.; Vatta, M.; Towbin, J.A.; Chikamori, T.; Yamashina, A.; et al. Impaired binding of ZASP/Cypher with phosphoglucomutase 1 is associated with dilated cardiomyopathy. Cardiovasc. Res. 2009, 83, 80–88. [Google Scholar] [CrossRef]
- Cai, H.; Yabe, I.; Sato, K.; Kano, T.; Nakamura, M.; Hozen, H.; Sasaki, H. Clinical, pathological, and genetic mutation analysis of sporadic inclusion body myositis in Japanese people. J. Neurol. 2012, 259, 1913–1922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selcen, D. Myofibrillar myopathies. Handb. Clin. Neurol. 2011, 101, 143–154. [Google Scholar] [CrossRef] [Green Version]
- Selcen, D.; Engel, A.G. Mutations in ZASP define a novel form of muscular dystrophy in humans. Ann. Neurol. 2005, 57, 269–276. [Google Scholar] [CrossRef]
- Griggs, R.; Vihola, A.; Hackman, P.; Talvinen, K.; Haravuori, H.; Faulkner, G.; Eymard, B.; Richard, I.; Selcen, D.; Engel, A.; et al. Zaspopathy in a large classic late-onset distal myopathy family. Brain 2007, 130, 1477–1484. [Google Scholar] [CrossRef]
- Laneuville, M.; Woulfe, J.; Bourque, P.; McMillan, H.; Dyment, D.; Warman Chardon, J. LDB3/ZASP-related myofibrillar myopathy associated with marked phenotypic variability. Neuromuscular. Disord. 2016, 26, S192. [Google Scholar] [CrossRef]
- Zheng, J.; Chen, S.; Chen, Y.; Zhu, M.; Hong, D. A novel mutation in the PDZ-like motif of ZASP causes distal ZASP-related myofibrillar myopathy. Neuropathology 2017, 37, 45–51. [Google Scholar] [CrossRef] [Green Version]
- Cassandrini, D.; Merlini, L.; Pilla, F.; Cenni, V.; Santi, S.; Faldini, C.; Santorelli, F.M.; Sabatelli, P. Protein aggregates and autophagy involvement in a family with a mutation in Z-band alternatively spliced PDZ-motif protein. Neuromuscul. Disord. 2020, 31, 44–51. [Google Scholar] [CrossRef]
- Ohsawa, N.; Koebis, M.; Suo, S.; Nishino, I.; Ishiura, S. Alternative splicing of PDLIM3/ALP, for α-actinin-associated LIM protein 3, is aberrant in persons with myotonic dystrophy. Biochem. Biophys. Res. Commun. 2011, 409, 64–69. [Google Scholar] [CrossRef]
- Machuca-Tzili, L.; Thorpe, H.; Robinson, T.E.; Sewry, C.; Brook, J.D. Flies deficient in Muscleblind protein model features of myotonic dystrophy with altered splice forms of Z-band associated transcripts. Hum. Genet. 2006, 120, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Claeys, K.G.; van der Ven, P.F.; Behin, A.; Stojkovic, T.; Eymard, B.; Dubourg, O.; Laforêt, P.; Faulkner, G.; Richard, P.; Vicart, P.; et al. Differential involvement of sarcomeric proteins in myofibrillar myopathies: A morphological and immunohistochemical study. Acta Neuropathol. 2009, 117, 293–307. [Google Scholar] [CrossRef]
- Karczewski, K.J.; Francioli, L.C.; Tiao, G.; Cummings, B.B.; Alföldi, J.; Wang, Q.; Collins, R.L.; Laricchia, K.M.; Ganna, A.; Birnbaum, D.P.; et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020, 581, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Danisovic, L.; Culenova, M.; Csobonyeiova, M. Induced Pluripotent Stem Cells for Duchenne Muscular Dystrophy Modeling and Therapy. Cells 2018, 7, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doudna, J.A.; Charpentier, E. The new frontier of genome engineering with CRISPR-Cas9. Science 2014, 346, 1258096. [Google Scholar] [CrossRef]
Name Gene | Variant | Het or Homo | Type of Disease | Cardiac or Muscular | * MAF on GnomAD | Location | Ref |
---|---|---|---|---|---|---|---|
ZASP LDB3 | p.Pro26Ser | Het | MFM | Muscular | Absent | PDZ motif | [190] |
p.Asp117Asn | Het | DCM, LVNC | Cardiac | 7.10 × 10−3 | ZM motif | [178] | |
p.Lys136Met | Het | DCM, LVNC | Cardiac | Absent | ZM motif | [178] | |
p.Ala147Thr | Het | MFM | Muscular | Absent | ZM motif | [186] | |
p.Asn155His | Het | Distal MFM | Muscular | Absent | ZM motif | [186] | |
p.Ala165Val | Het | MFM, DCM, Markesbery | Both | Absent | ZM motif | [189] | |
p.Ala171Thr | Het | DCM | Cardiac | 1.51 × 10−4 | ZM motif | [171] | |
p.Ser189Leu | Het | DCM | Cardiac | 5.19 × 10−4 | ZM motif | [178] | |
p.Ser196Leu | Het | DCM, LVNC, HCM | Cardiac | 6.57 × 10−6 | ZM motif | [178] | |
p.Thr206Ile | Het | DCM | Cardiac | 6.57 × 10−6 | ZM motif | [178] | |
p.Thr213Ile | Het | DCM, LVNC | Cardiac | Absent | ZM motif | [178] | |
p.Ala222Thr | Het | MFM | Muscular | 3.48 × 10−4 | ZM motif | [88] | |
p.Arg268Cys | Het | MFM | Muscular | 4.61 × 10−5 | LIM domain | [186] | |
p.Ile345Met | Het | DCM | Cardiac | Absent | LIM domain | [178] | |
p.Ile352Met | Het | DCM | Cardiac | Absent | LIM domain | [178] | |
p.Asp366Asn | Het | HCM | Cardiac | Absent | LIM domain | [18] | |
p.Gln414Lys | Het | MFM | Muscular | 4.60 × 10−5 | LIM domain | [88] | |
p.Tyr468Ser | Het | HCM | Cardiac | Absent | LIM domain | [18] | |
p.Gln519Pro | Het | HCM | Cardiac | Absent | LIM domain | [18] | |
p.Val566Met | Het | Distal dominant weakness | Muscular | 2.63 × 10−5 | LIM domain | [184] | |
p.Pro615Leu | Het | HCM | Cardiac | Absent | LIM domain | [18] | |
p.Asp626Asn | Het | DCM | Cardiac | Absent | LIM domain | [179] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wadmore, K.; Azad, A.J.; Gehmlich, K. The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. Int. J. Mol. Sci. 2021, 22, 3058. https://doi.org/10.3390/ijms22063058
Wadmore K, Azad AJ, Gehmlich K. The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. International Journal of Molecular Sciences. 2021; 22(6):3058. https://doi.org/10.3390/ijms22063058
Chicago/Turabian StyleWadmore, Kirsty, Amar J. Azad, and Katja Gehmlich. 2021. "The Role of Z-disc Proteins in Myopathy and Cardiomyopathy" International Journal of Molecular Sciences 22, no. 6: 3058. https://doi.org/10.3390/ijms22063058
APA StyleWadmore, K., Azad, A. J., & Gehmlich, K. (2021). The Role of Z-disc Proteins in Myopathy and Cardiomyopathy. International Journal of Molecular Sciences, 22(6), 3058. https://doi.org/10.3390/ijms22063058