Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals
Abstract
:1. Biotechnological Possibilities of Applying the Techniques of Somatic Cell Nuclear Transfer (SCNT) to Produce Cloned Mammalian Species
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)
- (8)
- two-humped or Bactrian camels [57];
- (9)
- (10)
- (11)
- polecat-ferrets [72];
- (12)
- (13)
- (14)
- rats [85]; but also in several species of endangered or non-endangered wild mammals, such as
- (15)
- (16)
- mouflon [88];
- (17)
- European red deer [89];
- (18)
- African wild cat [90];
- (19)
- Arabian sand cat [91];
- (20)
- (21)
- coyote or prairie wolf [94];
- (22)
- cynomolgus monkey, also known as Java macaque, crab-eating macaque, or long-tailed macaque—a catarrhine monkey from the family Cercopithecidae [95]; and even in the extinct subspecies of the Spanish/Iberian ibex:
- (23)
- Pyrenean ibex, a wild goat known as bucardo [96].
2. Dependence of Epigenetic Mechanisms Underlying Somatic Cell Nuclear Reprogramming and Intergenomic Communication between Nuclear and Mitochondrial DNA Fractions in Cloned Embryos on Various Approaches to Reconstruction of Enucleated Oocytes
3. Inheritance of the Mitochondrial Genome and Intergenomic Communication between Mitochondrial and Nuclear DNA Fractions during the Development of Cloned Embryos
4. Epigenetic Reprogramming of Telomeres in Chromosomes Inherited from Somatic Cell Nuclei throughout Development of Cloned Embryos, Fetuses, and Progeny
5. Comprehensive Summary and Future Goals
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
AI | Artificial insemination |
APC/C | Anaphase-promoting complex/cyclosome |
ARTs | Assisted reproductive technologies |
IVF | In vitro fertilization |
JSRV | Jaagsiekte sheep retrovirus |
MII | Metaphase II |
MOET | Multiple ovulation and embryo transfer |
mtDNA | Mitochondrial DNA |
nDNA | Nuclear DNA |
QTLs | Quantitative trait loci |
SCNT | Somatic cell nuclear transfer |
References
- Gao, R.; Wang, C.; Gao, Y.; Xiu, W.; Chen, J.; Kou, X.; Zhao, Y.; Liao, Y.; Bai, D.; Qiao, Z.; et al. Inhibition of aberrant DNA re-methylation improves post-implantation development of somatic cell nuclear transfer embryos. Cell Stem Cell 2018, 23, 426–435.e5. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.J.; Xue, J.; Li, K.; Ying, Z.Z.; Zheng, Z.; Wang, R. Improvement of the nuclear transfer efficiency by using the same genetic background of recipient oocytes as the somatic donor cells in goats. Cell Biol. Int. 2012, 36, 555–560. [Google Scholar] [CrossRef]
- Liu, H.J.; Peng, H.; Hu, C.C.; Li, X.Y.; Zhang, J.L.; Zheng, Z.; Zhang, W.C. Effects of donor cells’ sex on nuclear transfer efficiency and telomere lengths of cloned goats. Reprod. Domest. Anim. 2016, 51, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Samiec, M.; Skrzyszowska, M. Transgenic mammalian species, generated by somatic cell cloning, in biomedicine, biopharmaceutical industry and human nutrition/dietetics—recent achievements. Pol. J. Vet. Sci. 2011, 14, 317–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samiec, M.; Skrzyszowska, M. The possibilities of practical application of transgenic mammalian species generated by somatic cell cloning in pharmacology, veterinary medicine and xenotransplantology. Pol. J. Vet. Sci. 2011, 14, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Gavin, W.; Buzzell, N.; Blash, S.; Chen, L.; Hawkins, N.; Miner, K.; Pollock, D.; Porter, C.; Bonzo, D.; Meade, H. Generation of goats by nuclear transfer: A retrospective analysis of a commercial operation (1998–2010). Transgenic Res. 2020, 29, 443–459. [Google Scholar] [CrossRef]
- Moulavi, F.; Asadi-Moghadam, B.; Omidi, M.; Yarmohammadi, M.; Ozegovic, M.; Rastegar, A.; Hosseini, S.M. Pregnancy and calving rates of cloned dromedary camels produced by conventional and handmade cloning techniques and in vitro and in vivo matured oocytes. Mol. Biotechnol. 2020, 62, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Forsberg, E.J.; Strelchenko, N.S.; Augenstein, M.L.; Betthauser, J.M.; Childs, L.A.; Eilertsen, K.J.; Enos, J.M.; Forsythe, T.M.; Golueke, P.J.; Koppang, R.W.; et al. Production of cloned cattle from in vitro systems. Biol. Reprod. 2002, 67, 327–333. [Google Scholar] [CrossRef] [Green Version]
- Green, A.L.; Wells, D.N.; Oback, B. Cattle cloned from increasingly differentiated muscle cells. Biol. Reprod. 2007, 77, 395–406. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, Y.; Hayashi, N.; Taniguchi, S.; Kobayashi, N.; Sakai, K.; Otani, T.; Iritani, A.; Saeki, K. Resurrection of a bull by cloning from organs frozen without cryoprotectant in a −80 °C freezer for a decade. PLoS ONE 2009, 4, e4142. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Guo, W.; Chang, B.; Liu, J.; Guo, Z.; Quan, F.; Zhang, Y. Zinc-finger nickase-mediated insertion of the lysostaphin gene into the beta-casein locus in cloned cows. Nat. Commun. 2013, 4, 2565. [Google Scholar] [CrossRef] [Green Version]
- Luo, Y.; Wang, Y.; Liu, J.; Lan, H.; Shao, M.; Yu, Y.; Quan, F.; Zhang, Y. Production of transgenic cattle highly expressing human serum albumin in milk by phiC31 integrase-mediated gene delivery. Transgenic Res. 2015, 24, 875–883. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Z.; Yu, T.; Ding, F.; Li, L.; Wang, X.; Fu, M.; Wang, H.; Huang, J.; Li, N.; et al. Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows. Sci. Rep. 2017, 7, 10733. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, F.; Wang, T.; Liu, W.; Lindquist, S.; Hernell, O.; Wang, J.; Li, J.; Li, L.; Zhao, Y.; et al. Purification and characterization of recombinant human bile salt-stimulated lipase expressed in milk of transgenic cloned cows. PLoS ONE 2017, 12, e0176864. [Google Scholar] [CrossRef] [PubMed]
- Keefer, C.L.; Keyston, R.; Lazaris, A.; Bhatia, B.; Begin, I.; Bilodeau, A.S.; Zhou, F.J.; Kafidi, N.; Wang, B.; Baldassarre, H.; et al. Production of cloned goats after nuclear transfer using adult somatic cells. Biol. Reprod. 2002, 66, 199–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lan, G.C.; Chang, Z.L.; Luo, M.J.; Jiang, Y.L.; Han, D.; Wu, Y.G.; Han, Z.B.; Ma, S.F.; Tan, J.H. Production of cloned goats by nuclear transfer of cumulus cells and long-term cultured fetal fibroblast cells into abattoir-derived oocytes. Mol. Reprod. Dev. 2006, 73, 834–840. [Google Scholar] [CrossRef]
- Meng, L.; Wan, Y.; Sun, Y.; Zhang, Y.; Wang, Z.; Song, Y.; Wang, F. Generation of five human lactoferrin transgenic cloned goats using fibroblast cells and their methylation status of putative differential methylation regions of IGF2R and H19 imprinted genes. PLoS ONE 2013, 8, e77798. [Google Scholar] [CrossRef]
- Zhou, Z.R.; Zhong, B.S.; Jia, R.X.; Wan, Y.J.; Zhang, Y.L.; Fan, Y.X.; Wang, L.Z.; You, J.H.; Wang, Z.Y.; Wang, F. Production of myostatin-targeted goat by nuclear transfer from cultured adult somatic cells. Theriogenology 2013, 79, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Cao, S.; Wang, H.; Meng, C.; Li, J.; Jiang, J.; Qian, Y.; Su, L.; He, Q.; Zhang, Q. Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer. Transgenic Res. 2015, 24, 73–85. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Lu, R.; Zhang, T.; Jiang, L.; Zhou, M.; Wu, D.; Cheng, Y. A novel recombinant human plasminogen activator: Efficient expression and hereditary stability in transgenic goats and in vitro thrombolytic bioactivity in the milk of transgenic goats. PLoS ONE 2018, 13, e0201788. [Google Scholar] [CrossRef] [PubMed]
- McCreath, K.J.; Howcroft, J.; Campbell, K.H.S.; Colman, A.; Schnieke, A.E.; Kind, A.J. Production of gene targeted sheep by nuclear transfer from cultured somatic cells. Nature 2000, 405, 1066–1069. [Google Scholar] [CrossRef]
- Loi, P.; Clinton, M.; Barboni, B.; Fulka, J., Jr.; Cappai, P.; Feil, R.; Moor, R.M.; Ptak, G. Nuclei of nonviable ovine somatic cells develop into lambs after nuclear transplantation. Biol. Reprod. 2002, 67, 126–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, S.; Li, G.; Zhang, J.; Zhang, X.; Cui, M.; Guo, Y.; Liu, G.; Li, G.; Feng, J.; Lian, Z. Transgenic cloned sheep overexpressing ovine toll-like receptor 4. Theriogenology 2013, 80, 50–57. [Google Scholar] [CrossRef]
- Zhang, P.; Liu, P.; Dou, H.; Chen, L.; Chen, L.; Lin, L.; Tan, P.; Vajta, G.; Gao, J.; Du, Y.; et al. Handmade cloned transgenic sheep rich in omega-3 fatty acids. PLoS ONE 2013, 8, e55941. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Shang, X.; Cheng, L.; Yang, L.; Liu, X.; Bai, C.; Wei, Z.; Hua, J.; Li, G. DNMT 1 maintains hypermethylation of CAG promoter specific region and prevents expression of exogenous gene in fat-1 transgenic sheep. PLoS ONE 2017, 12, e0171442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, Y.; Liu, R.; Zhang, X.; Zhang, J.; Zheng, Z.; Huang, C.; Cao, G.; Liu, H.; Zhang, X. Effects of recipient oocyte source, number of transferred embryos and season on somatic cell nuclear transfer efficiency in sheep. Reprod. Domest. Anim. 2019, 54, 1443–1448. [Google Scholar] [CrossRef]
- Onishi, A.; Iwamoto, M.; Akita, T.; Mikawa, S.; Takeda, K.; Awata, T.; Hanada, H.; Perry, A.C.F. Pig cloning by microinjection of fetal fibroblast nuclei. Science 2000, 289, 1188–1190. [Google Scholar] [CrossRef] [Green Version]
- Lee, G.S.; Kim, H.S.; Hyun, S.H.; Lee, S.H.; Jeon, H.Y.; Nam, D.H.; Jeong, Y.W.; Kim, S.; Kim, J.H.; Han, J.Y.; et al. Production of transgenic cloned piglets from genetically transformed fetal fibroblasts selected by green fluorescent protein. Theriogenology 2005, 63, 973–991. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Iwamoto, M.; Suzuki, S.I.; Fuchimoto, D.; Honma, D.; Nagai, T.; Hashimoto, M.; Yazaki, S.; Sato, M.; Onishi, A. A novel method for the production of transgenic cloned pigs: Electroporation-mediated gene transfer to non-cultured cells and subsequent selection with puromycin. Biol. Reprod. 2005, 72, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Brunetti, D.; Perota, A.; Lagutina, I.; Colleoni, S.; Duchi, R.; Calabrese, F.; Seveso, M.; Cozzi, E.; Lazzari, G.; Lucchini, F.; et al. Transgene expression of green fluorescent protein and germ line transmission in cloned pigs derived from in vitro transfected adult fibroblasts. Cloning Stem Cells 2008, 10, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Yang, D.; Zhao, B.; Ouyang, Z.; Song, J.; Fan, N.; Liu, Z.; Zhao, Y.; Wu, Q.; Nashun, B.; et al. Use of the 2A peptide for generation of multi-transgenic pigs through a single round of nuclear transfer. PLoS ONE 2011, 6, e19986. [Google Scholar] [CrossRef] [Green Version]
- Richter, A.; Kurome, M.; Kessler, B.; Zakhartchenko, V.; Klymiuk, N.; Nagashima, H.; Wolf, E.; Wuensch, A. Potential of primary kidney cells for somatic cell nuclear transfer mediated transgenesis in pig. BMC Biotechnol. 2012, 12, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurome, M.; Geistlinger, L.; Kessler, B.; Zakhartchenko, V.; Klymiuk, N.; Wuensch, A.; Richter, A.; Baehr, A.; Kraehe, K.; Burkhardt, K.; et al. Factors influencing the efficiency of generating genetically engineered pigs by nuclear transfer: Multi-factorial analysis of a large data set. BMC Biotechnol. 2013, 13, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; He, X.; Chen, L.; Shi, J.; Zhou, R.; Xu, W.; Liu, D.; Wu, Z. Bone marrow mesenchymal stem cells are an attractive donor cell type for production of cloned pigs as well as genetically modified cloned pigs by somatic cell nuclear transfer. Cell. Reprogram. 2013, 15, 459–470. [Google Scholar] [CrossRef] [Green Version]
- Ju, H.; Zhang, J.; Bai, L.; Mu, Y.; Du, Y.; Yang, W.; Li, Y.; Sheng, A.; Li, K. The transgenic cloned pig population with integrated and controllable GH expression that has higher feed efficiency and meat production. Sci. Rep. 2015, 5, 10152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, D.; Liu, S.; Shang, S.; Wu, F.; Wen, X.; Li, Z.; Li, Y.; Hu, X.; Zhao, Y.; Li, Q.; et al. Production of transgenic-cloned pigs expressing large quantities of recombinant human lysozyme in milk. PLoS ONE 2015, 10, e0123551. [Google Scholar] [CrossRef] [PubMed]
- Ozawa, M.; Himaki, T.; Ookutsu, S.; Mizobe, Y.; Ogawa, J.; Miyoshi, K.; Yabuki, A.; Fan, J.; Yoshida, M. Production of cloned miniature pigs expressing high levels of human apolipoprotein(a) in plasma. PLoS ONE 2015, 10, e0132155. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Li, Q.; Li, Y.; Wen, X.; Li, Z.; Zhang, Z.; Zhang, J.; Yu, Z.; Li, N. Expression of recombinant human α-lactalbumin in milk of transgenic cloned pigs is sufficient to enhance intestinal growth and weight gain of suckling piglets. Gene 2016, 584, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.J.; Kim, D.H.; Hwang, I.S.; Kim, D.E.; Kim, H.J.; Kim, J.S.; Lee, K.; Im, G.S.; Lee, J.W.; Hwang, S. Generation of α-1,3-galactosyltransferase knocked-out transgenic cloned pigs with knocked-in five human genes. Transgenic Res. 2017, 26, 153–163. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Wang, A.; Huang, C.; Sun, Y.; Song, B.; Zhou, R.; Li, L. Generation of marker-free pbd-2 knock-in pigs using the CRISPR/Cas9 and Cre/loxP systems. Genes 2020, 11, 951. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Y.; Wiriyahdamrong, T.; Yuan, Z.; Qing, Y.; Li, H.; Xu, K.; Guo, J.; Jia, B.; Zhang, X.; et al. Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning. Transgenic Res. 2020, 29, 369–379. [Google Scholar] [CrossRef]
- Galli, C.; Lagutina, I.; Crotti, G.; Colleoni, S.; Turini, P.; Ponderato, N.; Duchi, R.; Lazzari, G. Pregnancy: A cloned horse born to its dam twin. Nature 2003, 424, 635. [Google Scholar] [CrossRef]
- Lagutina, I.; Lazzari, G.; Duchi, R.; Colleoni, S.; Ponderato, N.; Turini, P.; Crotti, G.; Galli, C. Somatic cell nuclear transfer in horses: Effect of oocyte morphology, embryo reconstruction method and donor cell type. Reproduction 2005, 130, 559–567. [Google Scholar] [CrossRef] [Green Version]
- Hinrichs, K.; Choi, Y.H.; Love, C.C.; Chung, Y.G.; Varner, D.D. Production of horse foals via direct injection of roscovitine-treated donor cells and activation by injection of sperm extract. Reproduction 2006, 131, 1063–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hinrichs, K.; Choi, Y.H.; Varner, D.D.; Hartman, D.L. Production of cloned horse foals using roscovitine-treated donor cells and activation with sperm extract and/or ionomycin. Reproduction 2007, 134, 319–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivera, R.; Moro, L.N.; Jordan, R.; Pallarols, N.; Guglielminetti, A.; Luzzani, C.; Miriuka, S.G.; Vichera, G. Bone marrow mesenchymal stem cells as nuclear donors improve viability and health of cloned horses. Stem Cells Cloning 2018, 11, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Woods, G.L.; White, K.L.; Vanderwall, D.K.; Li, G.P.; Aston, K.I.; Bunch, T.D.; Meerdo, L.N.; Pate, B.J. A mule cloned from fetal cells by nuclear transfer. Science 2003, 301, 1063. [Google Scholar] [CrossRef]
- Shi, D.; Lu, F.; Wei, Y.; Cui, K.; Yang, S.; Wei, J.; Liu, Q. Buffalos (Bubalus bubalis) cloned by nuclear transfer of somatic cells. Biol. Reprod. 2007, 77, 285–291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, F.; Luo, C.; Li, N.; Liu, Q.; Wei, Y.; Deng, H.; Wang, X.; Li, X.; Jiang, J.; Deng, Y.; et al. Efficient generation of transgenic buffalos (Bubalus bubalis) by nuclear transfer of fetal fibroblasts expressing enhanced green fluorescent protein. Sci. Rep. 2018, 8, 6967. [Google Scholar] [CrossRef]
- Yang, B.Z.; Yang, C.Y.; Li, R.C.; Qin, G.S.; Zhang, X.F.; Pang, C.Y.; Chen, M.T.; Huang, F.X.; Li, Z.; Zheng, H.Y.; et al. An inter-subspecies cloned buffalo (Bubalus bubalis) obtained by transferring of cryopreserved embryos via somatic cell nuclear transfer. Reprod. Domest. Anim. 2010, 45, e21–e25. [Google Scholar] [CrossRef]
- Madheshiya, P.K.; Sahare, A.A.; Jyotsana, B.; Singh, K.P.; Saini, M.; Raja, A.K.; Kaith, S.; Singla, S.K.; Chauhan, M.S.; Manik, R.S.; et al. Production of a cloned buffalo (Bubalus bubalis) calf from somatic cells isolated from urine. Cell. Reprogram. 2015, 17, 160–169. [Google Scholar] [CrossRef] [Green Version]
- Saini, M.; Selokar, N.L.; Palta, P.; Chauhan, M.S.; Manik, R.S.; Singla, S.K. An update: Reproductive handmade cloning of water buffalo (Bubalus bubalis). Anim. Reprod. Sci. 2018, 197, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Selokar, N.L.; Sharma, P.; Saini, M.; Sheoran, S.; Rajendran, R.; Kumar, D.; Sharma, R.K.; Motiani, R.K.; Kumar, P.; Jerome, A.; et al. Successful cloning of a superior buffalo bull. Sci. Rep. 2019, 9, 11366. [Google Scholar] [CrossRef] [Green Version]
- Wani, N.A.; Wernery, U.; Hassan, F.A.; Wernery, R.; Skidmore, J.A. Production of the first cloned camel by somatic cell nuclear transfer. Biol. Reprod. 2010, 82, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Wani, N.A.; Hong, S.B. Source, treatment and type of nuclear donor cells influences in vitro and in vivo development of embryos cloned by somatic cell nuclear transfer in camel (Camelus dromedarius). Theriogenology 2018, 106, 186–191. [Google Scholar] [CrossRef]
- Wani, N.A.; Hong, S.; Vettical, B.S. Cytoplast source influences development of somatic cell nuclear transfer (SCNT) embryos in vitro but not their development to term after transfer to synchronized recipients in dromedary camels (Camelus dromedarius). Theriogenology 2018, 118, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Wani, N.A.; Vettical, B.S.; Hong, S.B. First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS ONE 2017, 12, e0177800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shin, T.; Kraemer, D.; Pryor, J.; Liu, L.; Rugila, J.; Howe, I.; Buck, S.; Murphy, K.; Westhusin, M. A cat cloned by nuclear transplantation. Nature 2002, 415, 859. [Google Scholar] [CrossRef]
- Choi, E.G.; Yin, X.J.; Lee, H.S.; Kim, L.H.; Shin, H.D.; Kim, N.H.; Kong, I.K. Reproductive fertility of cloned male cats derived from adult somatic cell nuclear transfer. Cloning Stem Cells 2007, 9, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.J.; Lee, H.S.; Lee, Y.H.; Seo, Y.I.; Jeon, S.J.; Choi, E.G.; Cho, S.J.; Cho, S.G.; Min, W.; Kang, S.K.; et al. Cats cloned from fetal and adult somatic cells by nuclear transfer. Reproduction 2005, 129, 245–249. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.J.; Lee, H.S.; Yu, X.F.; Kim, L.H.; Shin, H.D.; Cho, S.J.; Choi, E.G.; Kong, I.K. Production of second-generation cloned cats by somatic cell nuclear transfer. Theriogenology 2008, 69, 1001–1006. [Google Scholar] [CrossRef]
- Yin, X.J.; Lee, H.S.; Yu, X.F.; Choi, E.; Koo, B.C.; Kwon, M.S.; Lee, Y.S.; Cho, S.J.; Jin, G.Z.; Kim, L.H.; et al. Generation of cloned transgenic cats expressing red fluorescence protein. Biol. Reprod. 2008, 78, 425–431. [Google Scholar] [CrossRef]
- Song, S.H.; Lee, K.L.; Xu, L.; Joo, M.D.; Hwang, J.Y.; Oh, S.H.; Kong, I.K. Production of cloned cats using additional complimentary cytoplasm. Anim. Reprod. Sci. 2019, 208, 106125. [Google Scholar] [CrossRef]
- Lee, B.C.; Kim, M.K.; Jang, G.; Oh, H.J.; Yuda, F.; Kim, H.J.; Shamim, M.H.; Kim, J.J.; Kang, S.K.; Schatten, G.; et al. Dogs cloned from adult somatic cells. Nature 2005, 436, 641. [Google Scholar] [CrossRef]
- Jang, G.; Kim, M.K.; Oh, H.J.; Hossein, M.S.; Fibrianto, Y.H.; Hong, S.G.; Park, J.E.; Kim, J.J.; Kim, H.J.; Kang, S.K.; et al. Birth of viable female dogs produced by somatic cell nuclear transfer. Theriogenology 2007, 67, 941–947. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.; Oh, H.J.; Kim, M.K.; Fibrianto, Y.H.; Hossein, M.S.; Kim, H.J.; Kim, J.J.; Hong, S.G.; Park, J.E.; Kang, S.K.; et al. Improvement of canine somatic cell nuclear transfer procedure. Theriogenology 2008, 69, 146–154. [Google Scholar] [CrossRef] [PubMed]
- Jang, G.; Hong, S.G.; Oh, H.J.; Kim, M.K.; Park, J.E.; Kim, H.J.; Kim, D.Y.; Lee, B.C. A cloned toy poodle produced from somatic cells derived from an aged female dog. Theriogenology 2008, 69, 556–563. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.G.; Jang, G.; Kim, M.K.; Oh, H.J.; Park, J.E.; Kang, J.T.; Koo, O.J.; Kim, D.Y.; Lee, B.C. Dogs cloned from fetal fibroblasts by nuclear transfer. Anim. Reprod. Sci. 2009, 115, 334–339. [Google Scholar] [CrossRef]
- Hossein, M.S.; Jeong, Y.W.; Park, S.W.; Kim, J.J.; Lee, E.; Ko, K.H.; Kim, H.S.; Kim, Y.W.; Hyun, S.H.; Shin, T.; et al. Cloning Missy: Obtaining multiple offspring of a specific canine genotype by somatic cell nuclear transfer. Cloning Stem Cells 2009, 11, 123–130. [Google Scholar] [CrossRef]
- Ock, S.A.; Choi, I.; Im, G.S.; Yoo, J.G. Whole blood transcriptome analysis for lifelong monitoring in elite sniffer dogs produced by somatic cell nuclear transfer. Cell. Reprogram. 2019, 21, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Eun, K.; Hong, N.; Jeong, Y.W.; Park, M.G.; Hwang, S.U.; Jeong, Y.I.K.; Choi, E.J.; Olsson, P.O.; Hwang, W.S.; Hyun, S.H.; et al. Transcriptional activities of human elongation factor-1α and cytomegalovirus promoter in transgenic dogs generated by somatic cell nuclear transfer. PLoS ONE 2020, 15, e0233784. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Sun, X.; Chen, J.; Liu, X.; Wisely, S.M.; Zhou, Q.; Renard, J.P.; Leno, G.H.; Engelhardt, J.F. Cloned ferrets produced by somatic cell nuclear transfer. Dev. Biol. 2006, 293, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Chesné, P.; Adenot, P.G.; Viglietta, C.; Baratte, M.; Boulanger, L.; Renard, J.P. Cloned rabbits produced by nuclear transfer from adult somatic cells. Nat. Biotechnol. 2002, 20, 366–369. [Google Scholar] [CrossRef]
- Skrzyszowska, M.; Smorąg, Z.; Słomski, R.; Kątska-Książkiewicz, L.; Kalak, R.; Michalak, E.; Wielgus, K.; Lehmann, J.; Lipiński, D.; Szalata, M.; et al. Generation of transgenic rabbits by the novel technique of chimeric somatic cell cloning. Biol. Reprod. 2006, 74, 1114–1120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Chen, X.; Fang, Z.; Shi, J.; Sheng, H.Z. Rabbits generated from fibroblasts through nuclear transfer. Reproduction 2006, 131, 1085–1090. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Guo, Y.; Shi, J.; Yin, C.; Xing, F.; Xu, L.; Zhang, C.; Liu, T.; Li, Y.; Li, H.; et al. Transgene expression of enhanced green fluorescent protein in cloned rabbits generated from in vitro-transfected adult fibroblasts. Transgenic Res. 2009, 18, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Meng, Q.; Polgar, Z.; Liu, J.; Dinnyes, A. Live birth of somatic cell-cloned rabbits following trichostatin A treatment and cotransfer of parthenogenetic embryos. Cloning Stem Cells 2009, 11, 203–208. [Google Scholar] [CrossRef]
- Yin, M.; Jiang, W.; Fang, Z.; Kong, P.; Xing, F.; Li, Y.; Chen, X.; Li, S. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer. Sci. Rep. 2015, 5, 16023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ono, Y.; Shimozawa, N.; Ito, M.; Kono, T. Cloned mice from fetal fibroblast cells arrested at metaphase by a serial nuclear transfer. Biol. Reprod. 2001, 64, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Wakayama, T.; Perry, A.C.; Zuccotti, M.; Johnson, K.R.; Yanagimachi, R. Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 1998, 394, 369–374. [Google Scholar] [CrossRef]
- Wakayama, S.; Ohta, H.; Hikichi, T.; Mizutani, E.; Iwaki, T.; Kanagawa, O.; Wakayama, T. Production of healthy cloned mice from bodies frozen at −20 °C for 16 years. Proc. Natl. Acad. Sci. USA 2008, 105, 17318–17322. [Google Scholar] [CrossRef] [Green Version]
- Mizutani, E.; Oikawa, M.; Kassai, H.; Inoue, K.; Shiura, H.; Hirasawa, R.; Kamimura, S.; Matoba, S.; Ogonuki, N.; Nagatomo, H.; et al. Generation of cloned mice from adult neurons by direct nuclear transfer. Biol. Reprod. 2015, 92, 81. [Google Scholar] [CrossRef]
- Tanabe, Y.; Kuwayama, H.; Wakayama, S.; Nagatomo, H.; Ooga, M.; Kamimura, S.; Kishigami, S.; Wakayama, T. Production of cloned mice using oocytes derived from ICR-outbred strain. Reproduction 2017, 154, 859–866. [Google Scholar] [CrossRef] [Green Version]
- Azuma, R.; Miyamoto, K.; Oikawa, M.; Yamada, M.; Anzai, M. Combinational treatment of trichostatin A and vitamin C improves the efficiency of cloning mice by somatic cell nuclear transfer. J. Vis. Exp. 2018, 134, 57036. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Renard, J.P.; Le Friec, G.; Brochard, V.; Beaujean, N.; Cherifi, Y.; Fraichard, A.; Cozzi, J. Generation of fertile cloned rats by regulating oocyte activation. Science 2003, 302, 1179. [Google Scholar] [CrossRef]
- Lanza, R.P.; Cibelli, J.B.; Diaz, F.; Moraes, C.T.; Farin, P.W.; Farin, C.E.; Hammer, C.J.; West, M.D.; Damiani, P. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer. Cloning 2000, 2, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Srirattana, K.; Imsoonthornruksa, S.; Laowtammathron, C.; Sangmalee, A.; Tunwattana, W.; Thongprapai, T.; Chaimongkol, C.; Ketudat-Cairns, M.; Parnpai, R. Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: Effect of trichostatin a treatment. Cell. Reprogram. 2012, 14, 248–257. [Google Scholar] [CrossRef] [PubMed]
- Loi, P.; Ptak, G.; Barboni, B.; Fulka, J., Jr.; Cappai, P.; Clinton, M. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 2001, 19, 962–964. [Google Scholar] [CrossRef]
- Berg, D.K.; Li, C.; Asher, G.; Wells, D.N.; Oback, B. Red deer cloned from antler stem cells and their differentiated progeny. Biol. Reprod. 2007, 77, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.C.; Pope, C.E.; Giraldo, A.; Lyons, L.A.; Harris, R.F.; King, A.L.; Cole, A.; Godke, R.A.; Dresser, B.L. Birth of African Wildcat cloned kittens born from domestic cats. Cloning Stem Cells 2004, 6, 247–258. [Google Scholar] [CrossRef]
- Gómez, M.C.; Pope, C.E.; Kutner, R.H.; Ricks, D.M.; Lyons, L.A.; Ruhe, M.; Dumas, C.; Lyons, J.; López, M.; Dresser, B.L.; et al. Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cells 2008, 10, 469–483. [Google Scholar] [CrossRef]
- Kim, M.K.; Jang, G.; Oh, H.J.; Yuda, F.; Kim, H.J.; Hwang, W.S.; Hossein, M.S.; Kim, J.J.; Shin, N.S.; Kang, S.K.; et al. Endangered wolves cloned from adult somatic cells. Cloning Stem Cells 2007, 9, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Oh, H.J.; Kim, M.K.; Jang, G.; Kim, H.J.; Hong, S.G.; Park, J.E.; Park, K.; Park, C.; Sohn, S.H.; Kim, D.Y.; et al. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 2008, 70, 638–647. [Google Scholar] [CrossRef] [PubMed]
- Hwang, I.; Jeong, Y.W.; Kim, J.J.; Lee, H.J.; Kang, M.; Park, K.B.; Park, J.H.; Kim, Y.W.; Kim, W.T.; Shin, T.; et al. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes. Reprod. Fertil. Dev. 2013, 25, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Cai, Y.; Wang, Y.; Nie, Y.; Zhang, C.; Xu, Y.; Zhang, X.; Lu, Y.; Wang, Z.; Poo, M.; et al. Cloning of macaque monkeys by somatic cell nuclear transfer. Cell 2018, 172, 881–887.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Folch, J.; Cocero, M.J.; Chesné, P.; Alabart, J.L.; Domínguez, V.; Cognié, Y.; Roche, A.; Fernández-Arias, A.; Martí, J.I.; Sánchez, P.; et al. First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 2009, 71, 1026–1034. [Google Scholar] [CrossRef]
- Niemann, H.; Wrenzycki, C.; Lucas-Hahn, A.; Brambrink, T.; Kues, W.A.; Carnwath, J.W. Gene expression patterns in bovine in vitro-produced and nuclear transfer-derived embryos and their implications for early development. Cloning Stem Cells 2002, 4, 29–38. [Google Scholar] [CrossRef]
- Kurome, M.; Fujimura, T.; Murakami, H.; Takahagi, Y.; Wako, N.; Ochiai, T.; Miyazaki, K.; Nagashima, H. Comparison of electro-fusion and intracytoplasmic nuclear injection methods in pig cloning. Cloning Stem Cells 2003, 5, 367–378. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Diaz, M.A.; Che, L.; Albornoz, M.; Seneda, M.M.; Collis, D.; Coutinho, A.R.; El-Beirouthi, N.; Laurin, D.; Zhao, X.; Bordignon, V. Pre- and postimplantation development of swine-cloned embryos derived from fibroblasts and bone marrow cells after inhibition of histone deacetylases. Cell. Reprogram. 2010, 12, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Samiec, M.; Opiela, J.; Lipiński, D.; Romanek, J. Trichostatin A-mediated epigenetic transformation of adult bone marrow-derived mesenchymal stem cells biases the in vitro developmental capability, quality, and pluripotency extent of porcine cloned embryos. Biomed Res. Int. 2015, 2015, 814686. [Google Scholar] [CrossRef] [Green Version]
- Samiec, M.; Romanek, J.; Lipiński, D.; Opiela, J. Expression of pluripotency-related genes is highly dependent on trichostatin A-assisted epigenomic modulation of porcine mesenchymal stem cells analysed for apoptosis and subsequently used for generating cloned embryos. Anim. Sci. J. 2019, 90, 1127–1141. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.W.; Wu, S.C.; Tian, X.C.; Barber, M.; Hoagland, T.; Riesen, J.; Lee, K.H.; Tu, C.F.; Cheng, W.T.K.; Yang, X. Production of cloned pigs by whole-cell intracytoplasmic microinjection. Biol. Reprod. 2003, 69, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.X.; Yang, C.X.; Zhang, L.S.; Zheng, Y.L.; Liu, S.Z.; Sun, Q.Y.; Chen, D.Y. The effects of chemical enucleation combined with whole cell intracytoplasmic injection on panda-rabbit interspecies nuclear transfer. Zygote 2004, 12, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Kawano, K.; Kato, Y.; Tsunoda, Y. Comparison of in vitro development of porcine nuclear-transferred oocytes receiving fetal somatic cells by injection and fusion methods. Cloning Stem Cells 2004, 6, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Samiec, M.; Skrzyszowska, M. Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod. Biol. 2014, 14, 128–139. [Google Scholar] [CrossRef]
- Samiec, M. The role of mitochondrial genome (mtDNA) in somatic and embryo cloning of mammals. A review. J. Anim. Feed Sci. 2005, 14, 213–233. [Google Scholar] [CrossRef] [Green Version]
- Samiec, M.; Skrzyszowska, M. Microsurgical nuclear transfer by intraooplasmic karyoplast injection as an alternative embryo reconstruction method in somatic cloning of pigs and other mammal species; application value of the method and its technical advantages: A review. Czech J. Anim. Sci. 2005, 50, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Samiec, M.; Skrzyszowska, M. Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci. 2018, 21, 217–227. [Google Scholar] [PubMed]
- Lacham-Kaplan, O.; Diamente, M.; Pushett, D.; Lewis, I.; Trounson, A. Developmental competence of nuclear transfer cow oocytes after direct injection of fetal fibroblast nuclei. Cloning 2000, 2, 55–62. [Google Scholar] [CrossRef]
- Galli, C.; Lagutina, I.; Vassiliev, I.; Duchi, R.; Lazzari, G. Comparison of microinjection (piezo-electric) and cell fusion for nuclear transfer success with different cell types in cattle. Cloning Stem Cells 2002, 4, 189–196. [Google Scholar] [CrossRef]
- Samiec, M.; Skrzyszowska, M. Molecular conditions of the cell nucleus remodelling/reprogramming process and nuclear-transferred embryo development in the intraooplasmic karyoplast injection technique: A review. Czech J. Anim. Sci. 2005, 50, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Samiec, M.; Skrzyszowska, M. Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci. 2013, 13, 513–529. [Google Scholar] [CrossRef] [Green Version]
- Skrzyszowska, M.; Karasiewicz, J.; Bednarczyk, M.; Samiec, M.; Smorąg, Z.; Waś, B.; Guszkiewicz, A.; Korwin-Kossakowski, M.; Górniewska, M.; Szablisty, E.; et al. Generation of cloned and chimeric embryos/offspring using the new methods of animal biotechnology. Reprod. Biol. 2006, 6 (Suppl. 1), 119–135. [Google Scholar]
- Wilmut, I.; Beaujean, N.; de Sousa, P.A.; Dinnyes, A.; King, T.J.; Paterson, L.A.; Wells, D.N.; Young, L.E. Somatic cell nuclear transfer. Nature 2002, 419, 583–586. [Google Scholar] [CrossRef]
- Dean, W.; Santos, F.; Reik, W. Epigenetic reprogramming in early mammalian development and following somatic nuclear transfer. Semin. Cell Dev. Biol. 2003, 14, 93–100. [Google Scholar] [CrossRef]
- Kang, Y.K.; Yeo, S.; Kim, S.H.; Koo, D.B.; Park, J.S.; Wee, G.; Han, J.S.; Oh, K.B.; Lee, K.K.; Han, Y.M. Precise recapitulation of methylation change in early cloned embryos. Mol. Reprod. Dev. 2003, 66, 32–37. [Google Scholar] [CrossRef]
- Beaujean, N.; Taylor, J.; Gardner, J.; Wilmut, I.; Meehan, R.; Young, L. Effect of limited DNA methylation reprogramming in the normal sheep embryo on somatic cell nuclear transfer. Biol. Reprod. 2004, 71, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Samiec, M.; Skrzyszowska, M.; Bochenek, M. In vitro development of porcine nuclear-transferred embryos derived from fibroblast cells analysed cytometrically for apoptosis incidence and accuracy of cell cycle synchronization at the G0/G1 stages. Ann. Anim. Sci. 2013, 13, 735–752. [Google Scholar] [CrossRef]
- Samiec, M.; Skrzyszowska, M.; Opiela, J. Creation of cloned pig embryos using contact-inhibited or serum-starved fibroblast cells analysed intra vitam for apoptosis occurrence. Ann. Anim. Sci. 2013, 13, 275–293. [Google Scholar] [CrossRef] [Green Version]
- Opiela, J.; Samiec, M.; Romanek, J. In vitro development and cytological quality of inter-species (porcine→bovine) cloned embryos are affected by trichostatin A-dependent epigenomic modulation of adult mesenchymal stem cells. Theriogenology 2017, 97, 27–33. [Google Scholar] [CrossRef]
- Cheong, H.T.; Ikeda, K.; Martinez Diaz, M.A.; Katagiri, S.; Takahashi, Y. Development of reconstituted pig embryos by nuclear transfer of cultured cumulus cells. Reprod. Fertil. Dev. 2000, 12, 15–20. [Google Scholar] [CrossRef] [PubMed]
- Roh, S.; Hwang, W.S. In vitro development of porcine parthenogenetic and cloned embryos: Comparison of oocyte-activating techniques, various culture systems and nuclear transfer methods. Reprod. Fertil. Dev. 2002, 14, 93–99. [Google Scholar] [CrossRef]
- Cezar, G.G.; Bartolomei, M.S.; Forsberg, E.J.; First, N.L.; Bishop, M.D.; Eilertsen, K.J. Genome-wide epigenetic alterations in cloned bovine fetuses. Biol. Reprod. 2003, 68, 1009–1014. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Inoue, K.; Ono, R.; Ogonuki, N.; Kohda, T.; Kaneko-Ishino, T.; Ogura, A.; Ishino, F. Erasing genomic imprinting memory in mouse clone embryos produced from day 11.5 primordial germ cells. Development 2003, 129, 1807–1817. [Google Scholar]
- Shi, W.; Zakhartchenko, V.; Wolf, E. Epigenetic reprogramming in mammalian nuclear transfer. Differentiation 2003, 71, 91–113. [Google Scholar] [CrossRef] [PubMed]
- Seki, Y.; Hayashi, K.; Itoh, K.; Mizugaki, M.; Saitou, M.; Matsui, Y. Extensive and orderly reprogramming of genome-wide chromatin modifications associated with specification and early development of germ cells in mice. Dev. Biol. 2005, 278, 440–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, L.; Guo, Q.; Zhang, G.L.; Xing, X.X.; Xuan, M.F.; Luo, Q.R.; Luo, Z.B.; Wang, J.X.; Yin, X.J.; Kang, J.D. The histone deacetylase inhibitor, CI994, improves nuclear reprogramming and in vitro developmental potential of cloned pig embryos. Cell. Reprogram. 2018, 20, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Campbell, K.H.; Alberio, R. Reprogramming the genome: Role of the cell cycle. Reprod. Suppl. 2003, 61, 477–494. [Google Scholar] [CrossRef]
- Bang, J.I.; Yoo, J.G.; Park, M.R.; Shin, T.S.; Cho, B.W.; Lee, H.G.; Kim, B.W.; Kang, T.Y.; Kong, I.K.; Kim, J.H.; et al. The effects of artificial activation timing on the development of SCNT-derived embryos and newborn piglets. Reprod. Biol. 2013, 13, 127–132. [Google Scholar] [CrossRef]
- Rybouchkin, A.; Kato, Y.; Tsunoda, Y. Role of histone acetylation in reprogramming of somatic nuclei following nuclear transfer. Biol. Reprod. 2006, 74, 1083–1089. [Google Scholar] [CrossRef] [Green Version]
- Nashun, B.; Hill, P.W.; Hajkova, P. Reprogramming of cell fate: Epigenetic memory and the erasure of memories past. EMBO J. 2015, 34, 1296–1308. [Google Scholar] [CrossRef]
- Saini, M.; Selokar, N.L. Approaches used to improve epigenetic reprogramming in buffalo cloned embryos. Indian J. Med. Res. 2018, 148, S115–S119. [Google Scholar] [PubMed]
- Samiec, M. The effect of mitochondrial genome on architectural remodeling and epigenetic reprogramming of donor cell nuclei in mammalian nuclear transfer-derived embryos. J. Anim. Feed Sci. 2005, 14, 393–422. [Google Scholar] [CrossRef] [Green Version]
- Srirattana, K.; Matsukawa, K.; Akagi, S.; Tasai, M.; Tagami, T.; Nirasawa, K.; Nagai, T.; Kanai, Y.; Parnpai, R.; Takeda, K. Constant transmission of mitochondrial DNA in intergeneric cloned embryos reconstructed from swamp buffalo fibroblasts and bovine ooplasm. Anim. Sci. J. 2011, 82, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Narbonne, P.; Miyamoto, K.; Gurdon, J.B. Reprogramming and development in nuclear transfer embryos and in interspecific systems. Curr. Opin. Genet. Dev. 2012, 22, 450–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takeda, K. Functional consequences of mitochondrial mismatch in reconstituted embryos and offspring. J. Reprod. Dev. 2019, 65, 485–489. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.R.W.; Chung, Y.G.; Nolen, L.D.; Verona, R.I.; Latham, K.E.; Bartolomei, M.S. Disruption of imprinted gene methylation and expression in cloned preimplantation stage mouse embryos. Biol. Reprod. 2003, 69, 902–914. [Google Scholar] [CrossRef] [Green Version]
- Mann, M.R.W.; Lee, S.S.; Doherty, A.S.; Verona, R.I.; Nolen, L.D.; Schultz, R.M.; Bartolomei, M.S. Selective loss of imprinting in the placenta following preimplantation development in culture. Development 2004, 131, 3727–3735. [Google Scholar] [CrossRef] [Green Version]
- Czernik, M.; Anzalone, D.A.; Palazzese, L.; Oikawa, M.; Loi, P. Somatic cell nuclear transfer: Failures, successes and the challenges ahead. Int. J. Dev. Biol. 2019, 63, 123–130. [Google Scholar] [CrossRef]
- Lai, L.; Tao, T.; Macháty, Z.; Kühholzer, B.; Sun, Q.Y.; Park, K.W.; Day, B.N.; Prather, R.S. Feasibility of producing porcine nuclear transfer embryos by using G2/M-stage fetal fibroblasts as donors. Biol. Reprod. 2001, 65, 1558–1564. [Google Scholar] [CrossRef]
- Lai, L.; Park, K.W.; Cheong, H.T.; Kühholzer, B.; Samuel, M.; Bonk, A.; Im, G.S.; Rieke, A.; Day, B.N.; Murphy, C.N.; et al. Transgenic pig expressing the enhanced green fluorescent protein produced by nuclear transfer using colchicine-treated fibroblasts as donor cells. Mol. Reprod. Dev. 2002, 62, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Lorthongpanich, C.; Solter, D.; Lim, C.Y. Nuclear reprogramming in zygotes. Int. J. Dev. Biol. 2010, 54, 1631–1640. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteves, T.C.; Balbach, S.T.; Pfeiffer, M.J.; Araúzo-Bravo, M.J.; Klein, D.C.; Sinn, M.; Boiani, M. Somatic cell nuclear reprogramming of mouse oocytes endures beyond reproductive decline. Aging Cell 2011, 10, 80–95. [Google Scholar] [CrossRef] [PubMed]
- Kungulovski, G.; Jeltsch, A. Epigenome editing: State of the art, concepts, and perspectives. Trends Genet. 2016, 32, 101–113. [Google Scholar] [CrossRef] [PubMed]
- Eilertsen, K.J.; Power, R.A.; Harkins, L.L.; Misica, P. Targeting cellular memory to reprogram the epigenome, restore potential, and improve somatic cell nuclear transfer. Anim. Reprod. Sci. 2007, 98, 129–146. [Google Scholar] [CrossRef]
- Whitworth, K.M.; Prather, R.S. Somatic cell nuclear transfer efficiency: How can it be improved through nuclear remodeling and reprogramming? Mol. Reprod. Dev. 2010, 77, 1001–1015. [Google Scholar] [CrossRef] [Green Version]
- Mason, K.; Liu, Z.; Aguirre-Lavin, T.; Beaujean, N. Chromatin and epigenetic modifications during early mammalian development. Anim. Reprod. Sci. 2012, 134, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, L.M.; Lako, W.; Dean, W.; Stojkovic, M. Epigenetic modification is central to genome reprogramming in somatic cell nuclear transfer. Stem Cells 2006, 24, 805–814. [Google Scholar] [CrossRef] [PubMed]
- Corry, G.N.; Tanasijevic, B.; Barry, E.R.; Krueger, W.; Rasmussen, T.P. Epigenetic regulatory mechanisms during preimplantation development. Birth Defects Res. C Embryo Today 2009, 87, 297–313. [Google Scholar] [CrossRef] [PubMed]
- Prather, R.S.; Ross, J.W.; Isom, S.C.; Green, J.A. Transcriptional, posttranscriptional and epigenetic control of porcine oocyte maturation and embryogenesis. Soc. Reprod. Fertil. Suppl. 2009, 66, 165–176. [Google Scholar]
- Reik, W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007, 447, 425–432. [Google Scholar] [CrossRef]
- Yang, X.; Smith, S.L.; Tian, X.C.; Lewin, H.A.; Renard, J.P.; Wakayama, T. Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat. Genet. 2007, 39, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Buganim, Y.; Faddah, D.A.; Jaenisch, R. Mechanisms and models of somatic cell reprogramming. Nat. Rev. Genet. 2013, 14, 427–439. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Osorio, N.; Urrego, R.; Cibelli, J.B.; Eilertsen, K.; Memili, E. Reprogramming mammalian somatic cells. Theriogenology 2012, 78, 1869–1886. [Google Scholar] [CrossRef] [PubMed]
- Bowles, E.J.; Campbell, K.H.; St. John, J.C. Nuclear transfer: Preservation of a nuclear genome at the expense of its associated mtDNA genome(s). Curr. Top. Dev. Biol. 2007, 77, 251–290. [Google Scholar] [PubMed]
- Lagutina, I.; Fulka, H.; Brevini, T.A.; Antonini, S.; Brunetti, D.; Colleoni, S.; Gandolfi, F.; Lazzari, G.; Fulka, J., Jr.; Galli, C. Development, embryonic genome activity and mitochondrial characteristics of bovine-pig inter-family nuclear transfer embryos. Reproduction 2010, 140, 273–285. [Google Scholar] [CrossRef] [Green Version]
- St. John, J.C.; Srirattana, K.; Tsai, T.S.; Sun, X. The mitochondrial genome: How it drives fertility. Reprod. Fertil. Dev. 2017, 30, 118–139. [Google Scholar] [CrossRef]
- Hiendleder, S. Mitochondrial DNA inheritance after SCNT. Adv. Exp. Med. Biol. 2007, 591, 103–116. [Google Scholar]
- Takeda, K. Mitochondrial DNA transmission and confounding mitochondrial influences in cloned cattle and pigs. Reprod. Med. Biol. 2013, 12, 47–55. [Google Scholar] [CrossRef]
- Burgstaller, J.P.; Schinogl, P.; Dinnyes, A.; Müller, M.; Steinborn, R. Mitochondrial DNA heteroplasmy in ovine fetuses and sheep cloned by somatic cell nuclear transfer. BMC Dev. Biol. 2007, 7, 141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hua, S.; Lu, C.; Song, Y.; Li, R.; Liu, X.; Quan, F.; Wang, Y.; Liu, J.; Su, F.; Zhang, Y. High levels of mitochondrial heteroplasmy modify the development of ovine-bovine interspecies nuclear transferred embryos. Reprod. Fertil. Dev. 2012, 24, 501–509. [Google Scholar] [CrossRef]
- Huang, X.; Song, L.; Zhan, Z.; Gu, H.; Feng, H.; Li, Y. Factors affecting mouse somatic cell nuclear reprogramming by rabbit ooplasms. Cell. Reprogram. 2017, 19, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Sansinena, M.J.; Lynn, J.; Bondioli, K.R.; Denniston, R.S.; Godke, R.A. Ooplasm transfer and interspecies somatic cell nuclear transfer: Heteroplasmy, pattern of mitochondrial migration and effect on embryo development. Zygote 2011, 19, 147–156. [Google Scholar] [CrossRef]
- Kwon, D.; Koo, O.J.; Kim, M.J.; Jang, G.; Lee, B.C. Nuclear-mitochondrial incompatibility in interorder rhesus monkey-cow embryos derived from somatic cell nuclear transfer. Primates 2016, 57, 471–478. [Google Scholar] [CrossRef]
- Takeda, K.; Kaneyama, K.; Tasai, M.; Akagi, S.; Takahashi, S.; Yonai, M.; Kojima, T.; Onishi, A.; Tagami, T.; Nirasawa, K.; et al. Characterization of a donor mitochondrial DNA transmission bottleneck in nuclear transfer derived cow lineages. Mol. Reprod. Dev. 2008, 75, 759–765. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.H.; Zhou, Y.Y.; Fu, J.; Jiao, F.; Zhao, L.W.; Guan, P.F.; Huang, S.Z.; Zeng, Y.T.; Zeng, F. Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol. 2010, 10, 31. [Google Scholar] [CrossRef] [Green Version]
- Yan, H.; Yan, Z.; Ma, Q.; Jiao, F.; Huang, S.; Zeng, F.; Zeng, Y. Association between mitochondrial DNA haplotype compatibility and increased efficiency of bovine intersubspecies cloning. J. Genet. Genom. 2011, 38, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Srirattana, K.; St. John, J.C. Manipulating the mitochondrial genome to enhance cattle embryo development. G3 (Bethesda) 2017, 7, 2065–2080. [Google Scholar] [CrossRef] [PubMed]
- Hiendleder, S.; Prelle, K.; Brüggerhoff, K.; Reichenbach, H.D.; Wenigerkind, H.; Bebbere, D.; Stojkovic, M.; Müller, S.; Brem, G.; Zakhartchenko, V.; et al. Nuclear-cytoplasmic interactions affect in utero developmental capacity, phenotype, and cellular metabolism of bovine nuclear transfer fetuses. Biol. Reprod. 2004, 70, 1196–1205. [Google Scholar] [CrossRef]
- Ma, L.B.; Yang, L.; Hua, S.; Cao, J.W.; Li, J.X.; Zhang, Y. Development in vitro and mitochondrial fate of interspecies cloned embryos. Reprod. Domest. Anim. 2008, 43, 279–285. [Google Scholar] [CrossRef]
- Imsoonthornruksa, S.; Srirattana, K.; Phewsoi, W.; Tunwattana, W.; Parnpai, R.; Ketudat-Cairns, M. Segregation of donor cell mitochondrial DNA in gaur-bovine interspecies somatic cell nuclear transfer embryos, fetuses and an offspring. Mitochondrion 2012, 12, 506–513. [Google Scholar] [CrossRef]
- Choi, Y.H.; Ritthaler, J.; Hinrichs, H. Production of a mitochondrial-DNA identical cloned foal using oocytes recovered from immature follicles of selected mares. Theriogenology 2014, 82, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Gómez, M.C.; Pope, C.E.; Ricks, D.M.; Lyons, J.; Dumas, C.; Dresser, B.L. Cloning endangered felids using heterospecific donor oocytes and interspecies embryo transfer. Reprod. Fertil. Dev. 2009, 21, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, L.C.; Cortez, J.V.; Bhat, M.H.; Sampaio, A.C.N.P.C.; Freitas, J.L.S.; Duarte, J.M.B.; Melo, L.M.; Freitas, V.J.F. In vitro development and mitochondrial gene expression in brown brocket deer (Mazama gouazoubira) embryos obtained by interspecific somatic cell nuclear transfer. Cell Reprogram. 2020, 22, 208–216. [Google Scholar] [CrossRef]
- Yamochi, T.; Kida, Y.; Oh, N.; Ohta, S.; Amano, T.; Anzai, M.; Kato, H.; Kishigami, S.; Mitani, T.; Matsumoto, K.; et al. Development of interspecies cloned embryos reconstructed with rabbit (Oryctolagus cuniculus) oocytes and cynomolgus monkey (Macaca fascicularis) fibroblast cell nuclei. Zygote 2013, 21, 358–366. [Google Scholar] [CrossRef]
- Amarnath, D.; Choi, I.; Moawad, A.R.; Wakayama, T.; Campbell, K.H. Nuclear-cytoplasmic incompatibility and inefficient development of pig-mouse cytoplasmic hybrid embryos. Reproduction 2011, 142, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Peters, A.; Fisher, P.; Bowles, E.J.; St. John, J.C.; Campbell, K.H. Generation of mtDNA homoplasmic cloned lambs. Cell. Reprogram. 2010, 12, 347–355. [Google Scholar] [CrossRef]
- Shiels, P.G.; Kind, A.J.; Campbell, K.H.S.; Waddington, D.; Wilmut, I.; Colman, A.; Schnieke, A.E. Analysis of telomere lengths in cloned sheep. Nature 1999, 399, 316–317. [Google Scholar] [CrossRef]
- Tian, X.C.; Xu, J.; Yang, X. Normal telomere lengths found in cloned cattle. Nat. Genet. 2000, 26, 272–273. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Hyun, S.H.; Lee, G.S.; Kim, H.S.; Kim, S.; Jeong, Y.W.; Kang, S.K.; Lee, B.C.; Han, J.Y.; Ahn, C.; et al. The analysis of telomere length and telomerase activity in cloned pigs and cows. Mol. Reprod. Dev. 2005, 71, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Kurome, M.; Hisatomi, H.; Matsumoto, S.; Tomii, R.; Ueno, S.; Hiruma, K.; Saito, H.; Nakamura, K.; Okumura, K.; Matsumoto, M.; et al. Production efficiency and telomere length of the cloned pigs following serial somatic cell nuclear transfer. J. Reprod. Dev. 2008, 54, 254–258. [Google Scholar] [CrossRef] [Green Version]
- Gomes, N.M.; Ryder, O.A.; Houck, M.L.; Charter, S.J.; Walker, W.; Forsyth, N.R.; Austad, S.N.; Venditti, C.; Pagel, M.; Shay, J.W.; et al. Comparative biology of mammalian telomeres: Hypotheses on ancestral states and the roles of telomeres in longevity determination. Aging Cell 2011, 10, 761–768. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Yang, X. Telomerase activity in early bovine embryos derived from parthenogenetic activation and nuclear transfer. Biol. Reprod. 2001, 64, 770–774. [Google Scholar] [CrossRef] [Green Version]
- Cui, W.; Wylie, D.; Aslam, S.; Dinnyes, A.; King, T.; Wilmut, I.; Clark, A.J. Telomerase-immortalized sheep fibroblasts can be reprogrammed by nuclear transfer to undergo early development. Biol. Reprod. 2003, 69, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Carter, D.B.; Xu, J.; Yang, X.; Prather, R.S.; Tian, X.C. Telomere lengths in cloned transgenic pigs. Biol. Reprod. 2004, 70, 1589–1593. [Google Scholar] [CrossRef]
- Miyashita, N.; Shiga, K.; Yonai, M.; Kaneyama, K.; Kobayashi, S.; Kojima, T.; Goto, Y.; Kishi, M.; Aso, H.; Suzuki, T.; et al. Remarkable differences in telomere lengths among cloned cattle derived from different cell types. Biol. Reprod. 2002, 66, 1649–1655. [Google Scholar] [CrossRef] [Green Version]
- Kishigami, S.; Wakayama, S.; Hosoi, Y.; Iritani, A.; Wakayama, T. Somatic cell nuclear transfer: Infinite reproduction of a unique diploid genome. Exp. Cell Res. 2008, 314, 1945–1950. [Google Scholar] [CrossRef] [PubMed]
- Le, R.; Kou, Z.; Jiang, Y.; Li, M.; Huang, B.; Liu, W.; Li, H.; Kou, X.; He, W.; Rudolph, K.L.; et al. Enhanced telomere rejuvenation in pluripotent cells reprogrammed via nuclear transfer relative to induced pluripotent stem cells. Cell Stem Cell 2014, 14, 27–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huili, J.; Haosheng, L.; Dengke, P. Epigenetic reprogramming by somatic cell nuclear transfer: Questions and potential solutions. Yi Chuan 2014, 36, 1211–1218. [Google Scholar] [PubMed]
- Bekaert, S.; Derradji, H.; Baatout, S. Telomere biology in mammalian germ cells and during development. Dev. Biol. 2004, 274, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Schaetzlein, S.; Rudolph, K.L. Telomere length regulation during cloning, embryogenesis and ageing. Reprod. Fertil. Dev. 2005, 17, 85–96. [Google Scholar] [CrossRef]
- Kong, Q.; Ji, G.; Xie, B.; Li, J.; Mao, J.; Wang, J.; Liu, S.; Liu, L.; Liu, Z. Telomere elongation facilitated by trichostatin A in cloned embryos and pigs by somatic cell nuclear transfer. Stem Cell Rev. 2014, 10, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Betts, D.H.; Perrault, S.; Harrington, L.; King, W.A. Quantitative analysis of telomerase activity and telomere length in domestic animal clones. Methods Mol. Biol. 2006, 325, 149–180. [Google Scholar]
- Lanza, R.P.; Cibelli, J.B.; Blackwell, C.; Cristofalo, V.J.; Francis, M.K.; Baerlocher, G.M.; Mak, J.; Schertzer, M.; Chavez, E.A.; Sawyer, N.; et al. Extension of cell life-span and telomere length in animals cloned from senescent somatic cells. Science 2000, 288, 665–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kühholzer-Cabot, B.; Brem, G. Aging of animals produced by somatic cell nuclear transfer. Exp. Gerontol. 2002, 37, 1317–1323. [Google Scholar] [CrossRef]
- Burgstaller, J.P.; Brem, G. Aging of cloned animals: A mini-review. Gerontology 2017, 63, 417–425. [Google Scholar] [CrossRef]
- Kim, H.M.; Cho, Y.S.; Kim, H.; Jho, S.; Son, B.; Choi, J.Y.; Kim, S.; Lee, B.C.; Bhak, J.; Jang, G. Whole genome comparison of donor and cloned dogs. Sci. Rep. 2013, 3, 2998. [Google Scholar] [CrossRef]
- Jeon, H.Y.; Jeong, Y.W.; Kim, Y.W.; Jeong, Y.I.; Hossein, S.M.; Yang, H.; Hyun, S.H.; Jeung, E.B.; Hwang, W.S. Senescence is accelerated through donor cell specificity in cloned pigs. Int. J. Mol. Med. 2012, 30, 383–391. [Google Scholar] [CrossRef] [PubMed]
- Dang-Nguyen, T.Q.; Haraguchi, S.; Akagi, S.; Somfai, T.; Kaneda, M.; Watanabe, S.; Kikuchi, K.; Tajima, A.; Nagai, T. Telomere elongation during morula-to-blastocyst transition in cloned porcine embryos. Cell. Reprogram. 2012, 14, 514–519. [Google Scholar] [CrossRef]
- Betts, D.; Bordignon, V.; Hill, J.; Winger, Q.; Westhusin, M.; Smith, L.; King, W. Reprogramming of telomerase activity and rebuilding of telomere length in cloned cattle. Proc. Natl. Acad. Sci. USA 2001, 98, 1077–1082. [Google Scholar] [CrossRef]
- Imsoonthornruksa, S.; Sangmalee, A.; Srirattana, K.; Parnpai, R.; Ketudat-Cairns, M. Development of intergeneric and intrageneric somatic cell nuclear transfer (SCNT) cat embryos and the determination of telomere length in cloned offspring. Cell. Reprogram. 2012, 14, 79–87. [Google Scholar] [CrossRef]
- Kato, Y.; Tani, T.; Tsunoda, Y. Cloning of calves from various somatic cell types of male and female adult, newborn and fetal cows. J. Reprod. Fertil. 2000, 120, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samiec, M.; Skrzyszowska, M. Can reprogramming of overall epigenetic memory and specific parental genomic imprinting memory within donor cell-inherited nuclear genome be a major hindrance for the somatic cell cloning of mammals?—A review. Ann. Anim. Sci. 2018, 18, 623–638. [Google Scholar] [CrossRef] [Green Version]
- Tessanne, K.; Golding, M.C.; Long, C.R.; Peoples, M.D.; Hannon, G.; Westhusin, M.E. Production of transgenic calves expressing an shRNA targeting myostatin. Mol. Reprod. Dev. 2012, 79, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhao, S.; Bai, L.; Fan, J.; Liu, E. Expression systems and species used for transgenic animal bioreactors. Biomed Res. Int. 2013, 2013, 580463. [Google Scholar] [CrossRef]
- Lu, D.; Liu, S.; Ding, F.; Wang, H.; Li, J.; Li, L.; Dai, Y.; Li, N. Large-scale production of functional human lysozyme from marker-free transgenic cloned cows. Sci. Rep. 2016, 6, 22947. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Li, H.; Wang, Y.; Yan, X.; Sheng, X.; Chang, D.; Qi, X.; Wang, X.; Liu, Y.; Li, J.; et al. Screening somatic cell nuclear transfer parameters for generation of transgenic cloned cattle with intragenomic integration of additional gene copies that encode bovine adipocyte-type fatty acid-binding protein (A-FABP). Mol. Biol. Rep. 2017, 44, 159–168. [Google Scholar] [CrossRef]
- Proudfoot, C.; Carlson, D.F.; Huddart, R.; Long, C.R.; Pryor, J.H.; King, T.J.; Lillico, S.G.; Mileham, A.J.; McLaren, D.G.; Whitelaw, C.B.; et al. Genome edited sheep and cattle. Transgenic Res. 2015, 24, 147–153. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Wang, J.; Tang, B.; Liu, Y.; Guo, C.; Yang, P.; Yu, T.; Li, R.; Zhao, J.; Zhang, L.; et al. Characterization of bioactive recombinant human lysozyme expressed in milk of cloned transgenic cattle. PLoS ONE 2011, 6, e17593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Yang, P.; Tang, B.; Sun, X.; Zhang, R.; Guo, C.; Gong, G.; Liu, Y.; Li, R.; Zhang, L.; et al. Expression and characterization of bioactive recombinant human α-lactalbumin in the milk of transgenic cloned cows. J. Dairy Sci. 2008, 91, 4466–4476. [Google Scholar] [CrossRef] [Green Version]
- Jang, G.; Bhuiyan, M.M.; Jeon, H.Y.; Ko, K.H.; Park, H.J.; Kim, M.K.; Kim, J.J.; Kang, S.K.; Lee, B.C.; Hwang, W.S. An approach for producing transgenic cloned cows by nuclear transfer of cells transfected with human alpha 1-antitrypsin gene. Theriogenology 2006, 65, 1800–1812. [Google Scholar] [CrossRef]
- Salamone, D.; Barañao, L.; Santos, C.; Bussmann, L.; Artuso, J.; Werning, C.; Prync, A.; Carbonetto, C.; Dabsys, S.; Munar, C.; et al. High level expression of bioactive recombinant human growth hormone in the milk of a cloned transgenic cow. J. Biotechnol. 2006, 124, 469–472. [Google Scholar] [CrossRef]
- Monzani, P.S.; Sangalli, J.R.; De Bem, T.H.; Bressan, F.F.; Fantinato-Neto, P.; Pimentel, J.R.; Birgel-Junior, E.H.; Fontes, A.M.; Covas, D.T.; Meirelles, F.V. Breeding of transgenic cattle for human coagulation factor IX by a combination of lentiviral system and cloning. Genet. Mol. Res. 2013, 12, 3675–3688. [Google Scholar] [CrossRef] [PubMed]
- Loi, P.; Iuso, D.; Czernik, M.; Ogura, A. A new, dynamic era for somatic cell nuclear transfer? Trends Biotechnol. 2016, 34, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Niemann, H. Epigenetic reprogramming in mammalian species after SCNT-based cloning. Theriogenology 2016, 86, 80–90. [Google Scholar] [CrossRef] [PubMed]
Method Used for Reconstruction of Enucleated Metaphase II-Stage Oocytes | Characterization at the Biotechnical and Cytological Levels | Characterization at the Molecular Level | Characterization at the Epigenetic Level |
---|---|---|---|
Electrofusion of ooplast–somatic cell couplets | Relatively low invasiveness of the method: - the generated electrostatic field interferes with ultrastructure and functions of the oolemma of nuclear recipient cells and the plasmalemma of nuclear donor cells through: • transient formation in the plasma membrane phospholipid bilayer of micropores (microchannels) that facilitate fusion of ooplast–somatic cell complexes and are the pathway for passive intracellular transport of calcium ions under the conditions of simultaneous fusion and electrical activation (F/A) of reconstituted oocytes | Relatively high probability of the occurrence in the obtained clonal cybrids of: - cellular mtDNA heteroplasmy; - abnormal nuclear–cytoplasmic interactions; - abnormal intergenomic communication between allogeneic nuclear DNA, somatic cell-inherited mtDNA molecules, and mtDNA molecules of ooplasmic origin | Relatively high probability of the occurrence of abnormalities in: - structural and epigenetic remodeling of nuclear chromatin; - epigenetic reprogramming of transcriptional activity of the nuclear genome, including rearrangement of telomeres of somatic cell chromosomes in the reconstructed oocytes and in cloned embryos that develop as a result of their activation |
Direct intraooplasmic microinjection of whole somatic cells | High invasiveness of the method: - interferes with the ultrastructure of the plasmalemma and the membrane and cytoskeleton of enucleated oocytes through: • direct microsurgical transfer and deposition in their ooplasm of tiny (small-diameter) somatic cells displaying intact integrity of the plasma membrane | Relatively high probability of the occurrence in the obtained clonal cybrids of: - cellular mtDNA heteroplasmy; - abnormal nuclear–cytoplasmic interactions; - abnormal intergenomic communication between allogeneic nuclear DNA, somatic cell-inherited mtDNA molecules, and mtDNA molecules of ooplasmic origin | Relatively high probability of the occurrence of abnormalities in: - structural and epigenetic remodeling of nuclear chromatin; - epigenetic reprogramming of transcriptional activity of the nuclear genome, including rearrangement of telomeres of somatic cell chromosomes in the reconstructed oocytes and in cloned embryos that develop as a result of their activation |
Direct intraooplasmic microinjection of karyoplasts | The highest invasiveness of the method: - interferes with the ultrastructure of the plasmalemma and the membrane and cytoskeleton of nuclear donor cells through: • their mechanically induced cytolysis to isolate karyoplasts - interferes with the ultrastructure of the plasmalemma and the membrane and cytoskeleton of enucleated oocytes through: • direct microsurgical transfer and deposition in their ooplasm of karyoplasts | Relatively low probability of the occurrence in the obtained clonal cybrids of: - cellular mtDNA heteroplasmy; - abnormal nuclear–cytoplasmic interactions; - abnormal intergenomic communication between allogeneic nuclear DNA, somatic cell-inherited mtDNA molecules, and mtDNA molecules of ooplasmic origin | Relatively low probability of the occurrence of abnormalities in: - structural and epigenetic remodeling of nuclear chromatin; - epigenetic reprogramming of transcriptional activity of the nuclear genome, including rearrangement of telomeres of somatic cell chromosomes in the reconstructed oocytes and in cloned embryos that develop as a result of their activation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samiec, M.; Skrzyszowska, M. Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. Int. J. Mol. Sci. 2021, 22, 3099. https://doi.org/10.3390/ijms22063099
Samiec M, Skrzyszowska M. Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. International Journal of Molecular Sciences. 2021; 22(6):3099. https://doi.org/10.3390/ijms22063099
Chicago/Turabian StyleSamiec, Marcin, and Maria Skrzyszowska. 2021. "Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals" International Journal of Molecular Sciences 22, no. 6: 3099. https://doi.org/10.3390/ijms22063099
APA StyleSamiec, M., & Skrzyszowska, M. (2021). Extranuclear Inheritance of Mitochondrial Genome and Epigenetic Reprogrammability of Chromosomal Telomeres in Somatic Cell Cloning of Mammals. International Journal of Molecular Sciences, 22(6), 3099. https://doi.org/10.3390/ijms22063099