Complement Regulation in Human Tenocytes under the Influence of Anaphylatoxin C5a
Abstract
:1. Introduction
2. Results
2.1. Tenocyte Survive C5a Exposition
2.2. Tenocytes Show a Time and Concentration Dependent Regulation of C5aR, CRPs, TNFα, and IL-6 Gene Expression
2.3. Intracellular TNFα Production in Response to C5a
2.4. Immunolabeling of the Proteins C5aR and CD55
3. Discussion
4. Materials and Methods
4.1. Isolation of the Tenocytes and Tenocyte Culturing
4.2. Stimulation of Tenocytes with Anaphylatoxin C5a
4.3. Vitality Test of the Tenocytes
4.4. Measurement of TNFα Release by ELISA
4.5. Gene Expression Analysis
4.5.1. RNA Isolation and cDNA Synthesis
4.5.2. qPCR
4.6. Immunofluorescence Labeling of the Proteins C5aR and CD55
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rees, J.D.; Stride, M.; Scott, A. Tendons: time to revisit inflammation? Br. J. Sports Med. 2013, 47, 60. [Google Scholar] [CrossRef] [Green Version]
- Mosca, M.J.; Rashid, M.S.; Snelling, S.J.; Kirtley, S.; Carr, A.J.; Dakin, S.G. Trends in the theory that inflammation plays a causal role in tendinopathy: A systematic review and quantitative analysis of published reviews. BMJ Open Sport Exerc. Med. 2018, 4, e000332. [Google Scholar] [CrossRef] [Green Version]
- Kannus, P. Etiology and pathophysiology of chronic tendon disorders in sports. Scand. J. Med. Sci. Sports 2007, 7, 78–85. [Google Scholar] [CrossRef]
- Gaida, J.E.; Bagge, J.; Purdam, C.; Cook, J.; Alfredson, H.; Forsgren, S. Evidence of the TNF-α System in the Human Achilles Tendon: Expression of TNF-α and TNF Receptor at both Protein and mRNA Levels in the Tenocytes. Cells Tissues Organs 2012, 196, 339–352. [Google Scholar] [CrossRef]
- Kjaer, M.; Bayer, M.L.; Eliasson, P.; Heinemeier, K.M. What is the impact of inflammation on the critical interplay between mechanical signaling and biochemical changes in tendon matrix? J. Appl. Physiol. 2013, 115, 879–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiquet, M.; Gelman, L.; Lutz, R.; Maier, S. From mechanotransduction to extracellular matrix gene expression in fibroblasts. Biochim. Biophys. Acta 2009, 1793, 911–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.L.; Feller, J.A.; Bonar, S.F.; Khan, K.M. Abnormal tenocyte morphology is more prevalent than collagen disruption in asymptomatic athletes’ patellar tendons. J. Orthop. Res. 2004, 22, 334–338. [Google Scholar] [CrossRef]
- Dean, B.J.F.; Gettings, P.; Dakin, S.G.; Carr, A.J. Are inflammatory cells increased in painful human tendinopathy? A systematic review. Br. J. Sports Med. 2016, 50, 216–220. [Google Scholar] [CrossRef] [PubMed]
- Morita, W.; Dakin, S.G.; Snelling, S.J.B.; Carr, A.J. Cytokines in tendon disease: A Systematic Review. Bone Jt. Res. 2017, 6, 656–664. [Google Scholar] [CrossRef] [Green Version]
- Silawal, S.; Kohl, B.; Girke, G.; Schneider, T.; Schulze-Tanzil, G. Complement regulation in tenocytes under the influence of leukocytes in an indirect co-culture model. Inflamm. Res. in press. [CrossRef]
- Janeway, C.A., Jr.; Travers, P.; Walport, M.; Shlomchik, M.J. The complement system and innate immunity. Immunol. Res. 2005, 33, 103–112. [Google Scholar] [CrossRef]
- Huber-Lang, M.; Denk, S.; Fulda, S.; Erler, E.; Kalbitz, M.; Weckbach, S.; Schneider, E.M.; Weiss, M.; Kanse, S.M.; Perl, M. Cathepsin D is released after severe tissue trauma in vivo and is capable of generating C5a in vitro. Mol. Immunol. 2012, 50, 60–65. [Google Scholar] [CrossRef]
- Dobrina, A.; Pausa, M.; Fischetti, F.; Bulla, R.; Vecile, E.; Ferrero, E.; Mantovani, A.; Tedesco, F. Cytolytically inactive terminal complement complex causes transendothelial migration of polymorphonu-clear leukocytes in vitro and in vivo. Blood 2002, 99, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Riedemann, N.C.; Guo, R.-F.; Neff, T.A.; Laudes, I.J.; Keller, K.A.; Sarma, V.J.; Markiewski, M.M.; Mastellos, D.; Strey, C.W.; Pierson, C.L.; et al. Increased C5a receptor expression in sepsis. J. Clin. Investig. 2002, 110, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Guo, R.F.; Ward, P.A. Role of C5a in inflammatory responses. Annu. Rev. Immunol. 2005, 23, 821–852. [Google Scholar] [CrossRef] [PubMed]
- Lechner, J.; Chen, M.; Hogg, R.E.; Toth, L.; Silvestri, G.; Chakravarthy, U.; Xu, H. Higher plasma levels of complement C3a, C4a and C5a increase the risk of subretinal fibrosis in neovascular age-related macular degeneration: Complement activation in AMD. Immun. Ageing 2016, 13, 4–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schraufstatter, I.U.; Khaldoyanidi, S.K.; Discipio, R.G. Complement activation in the context of stem cells and tissue repair. World J. Stem Cells 2015, 7, 1090–1108. [Google Scholar] [CrossRef] [PubMed]
- Busch, C.; Girke, G.; Kohl, B.; Stoll, C.; Lemke, M.; Krasnici, S.; Ertel, W.; Silawal, S.; John, T.; Schulze-Tanzil, G. Complement gene expression is regulated by pro-inflammatory cytokines and the anaphylatoxin C3a in human tenocytes. Mol. Immunol. 2013, 53, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Girke, G.; Kohl, B.; Busch, C.; John, T.; Godkin, O.; Ertel, W.; Schulze-Tanzil, G. Tenocyte activation and regulation of complement factors in response to in vitro cell injury. Mol. Immunol. 2014, 60, 14–22. [Google Scholar] [CrossRef]
- Thilo, J.; Lodka, D.; Kohl, B.; Ertel, W.; Jammrath, J.; Conrad, C.; Stoll, C.; Busch, C.; Schulze-Tanzil, G. Effect of pro-inflammatory and immunoregulatory cytokines on human tenocytes. J. Orthop. Res. 2010, 28, 1071–1077. [Google Scholar]
- Schulze-Tanzil, G.; Al-Sadi, O.; Wiegand, E.; Ertel, W.; Busch, C.; Kohl, B.; Pufe, T. The role of pro-inflammatory and immunoregulatory cytokines in tendon healing and rupture: New insights. Scand. J. Med. Sci. Sports 2011, 21, 337–351. [Google Scholar] [CrossRef]
- Flierl, M.A.; Rittirsch, D.; Chen, A.J.; Nadeau, B.A.; Day, D.E.; Sarma, J.V.; Huber-Lang, M.S.; Ward, P.A. The Complement Anaphylatoxin C5a Induces Apoptosis in Adrenomedullary Cells during Experimental Sepsis. PLoS ONE 2008, 3, e2560. [Google Scholar] [CrossRef] [PubMed]
- Tsai, I.-J.; Lin, W.-C.; Yang, Y.-H.; Tseng, Y.-L.; Lin, Y.-H.; Chou, C.-H.; Tsau, Y.-K. High Concentration of C5a-Induced Mitochondria-Dependent Apoptosis in Murine Kidney Endothelial Cells. Int. J. Mol. Sci. 2019, 20, 4465. [Google Scholar] [CrossRef] [Green Version]
- Okusawa, S.; Yancey, K.B.; Van Der Meer, J.W.; Endres, S.; Lonnemann, G.; Hefter, K.; Frank, M.M.; Burke, J.F.; Dinarello, C.A.; Gelfand, J.A. C5a stimulates secretion of tumor necrosis factor from human mononuclear cells in vitro. Comparison with secretion of interleukin 1 beta and interleukin 1 alpha. J. Exp. Med. 1988, 168, 443–448. [Google Scholar] [CrossRef]
- Höpken, U.; Mohr, M.; Strüber, A.; Montz, H.; Burchardi, H.; Götze, O.; Oppermann, M. Inhibition of interleukin-6 synthesis in an animal model of septic shock by anti-C5a monoclonal antibodies. Eur. J. Immunol. 1996, 26, 1103–1109. [Google Scholar] [CrossRef] [PubMed]
- Riedemann, N.C.; Guo, R.-F.; Bernacki, K.D.; Reuben, J.S.; Laudes, I.J.; Neff, T.A.; Gao, H.; Speyer, C.; Sarma, V.J.; Zetoune, F.S.; et al. Regulation by C5a of Neutrophil Activation during Sepsis. Immunology 2003, 19, 193–202. [Google Scholar] [CrossRef] [Green Version]
- Legerlotz, K.; Jones, E.R.; Screen, H.R.C.; Riley, G.P. Increased expression of IL-6 family members in tendon pathology. Rheumatology 2012, 51, 1161–1165. [Google Scholar] [CrossRef] [Green Version]
- Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 2001, 29, e45. [Google Scholar] [CrossRef] [PubMed]
- Abramoff, M.; Magalhães, P.; Ram, S.J. Image Processing with ImageJ; Packt Publishing: Birmingham, UK, 2003; Volume 11, pp. 36–42. [Google Scholar]
- Chan, P.-M.; Tan, Y.S.; Chua, K.H.; Sabaratnam, V.; Kuppusamy, U.R. Attenuation of Inflammatory Mediators (TNF-α and Nitric Oxide) and Up-Regulation of IL-10 by Wild and Domesticated Basidiocarps of Amauroderma rugosum (Blume & T. Nees) Torrend in LPS-Stimulated RAW264.7 Cells. PLoS ONE 2015, 10, e0139593. [Google Scholar]
- Silawal, S.; Willauschus, M.; Schulze-Tanzil, G.; Gögele, C.; Geßlein, M.; Schwarz, S. IL-10 Could Play a Role in the Interrelation between Diabetes Mellitus and Osteoarthritis. Int. J. Mol. Sci. 2019, 20, 768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Primer | Company | Sequence | Probe/Reference | bp |
---|---|---|---|---|
HPRT1 | ABI | * | NM_000194.2 | 100 |
C5aR | ABI | * | NM_001736.3 | 68 |
CD46 | ABI | * | NM_172351.1 | 94 |
CD55 | ABI | * | NM_000574.2 | 62 |
CD59 | ABI | * | NM_203331.1 | 70 |
TNFα | ABI | * | NM_000594.3 | 80 |
IL6 | ABI | * | NM_000600.4 | 95 |
Specificity and Species | Company | Cat. No. | Stock Concentration | Used Dilution |
---|---|---|---|---|
Goat anti-human CD55 (DAF) | R&D systems, Minneapolis, MN, USA | AF2009 | 200 µg/mL | 1:20 |
Mouse anti-human C5aR1 (CD88) | GeneTex, Biozol, Eching, Germany | GTX74845 | 1 mg/mL | 1:20 |
Donkey anti-mouse-Alexa Fluor 488 | Thermo Fisher Scientific, Rockford, IL, USA | A21202 | 2 mg/mL | 1:200 |
Donkey anti-goat-Cy3 | Jackson Immuno Research, Cambridgeshire, UK | 705165147 | 1.5 mg/mL | 1:200 |
Goat IgG isotype | Thermo Fisher Scientific, Rockford, IL, USA | 02-6202 | 5 mg/mL | 1:100 |
Mouse IgG1 isotype | Thermo Fisher Scientific, Rockford, IL, USA | 02-6102 | 5 mg/mL | 1:100 |
Phalloidin Alexa Fluor 633 | Thermo Fisher Scientific, Rockford, IL, USA | A22284 | 300 µg/mL | 1:1000 |
4′,6-diamidino-2-phenylindole (DAPI) | Roche Diagnostics GmbH, Basel, Switzerland | 10236276001 | 1 μg/mL | 1:100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silawal, S.; Kohl, B.; Shi, J.; Schulze-Tanzil, G. Complement Regulation in Human Tenocytes under the Influence of Anaphylatoxin C5a. Int. J. Mol. Sci. 2021, 22, 3105. https://doi.org/10.3390/ijms22063105
Silawal S, Kohl B, Shi J, Schulze-Tanzil G. Complement Regulation in Human Tenocytes under the Influence of Anaphylatoxin C5a. International Journal of Molecular Sciences. 2021; 22(6):3105. https://doi.org/10.3390/ijms22063105
Chicago/Turabian StyleSilawal, Sandeep, Benjamin Kohl, Jingjian Shi, and Gundula Schulze-Tanzil. 2021. "Complement Regulation in Human Tenocytes under the Influence of Anaphylatoxin C5a" International Journal of Molecular Sciences 22, no. 6: 3105. https://doi.org/10.3390/ijms22063105
APA StyleSilawal, S., Kohl, B., Shi, J., & Schulze-Tanzil, G. (2021). Complement Regulation in Human Tenocytes under the Influence of Anaphylatoxin C5a. International Journal of Molecular Sciences, 22(6), 3105. https://doi.org/10.3390/ijms22063105