Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review
Abstract
:1. Introduction
2. Adverse Effects of Salinity on Plants
2.1. Na+ Accumulation, Nutrients Uptake Inhibition, and Plant Growth Reduction
2.2. Impairment of Physio-Biochemical Attributes
2.2.1. Reduction in Photosynthetic Pigments
2.2.2. Increase in LP
2.3. Increased Accumulation of ROS and Elevated Production of AEs, NEAs, and OS
3. Plant Growth-Promoting Rhizobacteria as the Promising Bioinoculants for Plant Crops
3.1. Key Criteria for Being Applicable PGPR
3.1.1. ACC Deaminase-Producing PGPR and Other Plant Growth Promoting Attributes
3.1.2. Improvements of Growth Parameters, Nutrients Uptake, and Photosynthetic Pigments in PGPR-Inoculated Plants under Non-Stress Conditions
3.1.3. Improvements of Growth Parameters, Nutrients Uptake, and Photosynthesis in PGPR-Inoculated Plants under Salinity Conditions
3.1.4. Improvements of Growth Parameters, Nutrients Uptake, and Photosynthesis in PGPR-Primed Seeds and Their Respective Seedlings under Salinity Conditions
3.2. The Increase in AEs and/or Osmoregulators in PGPR-Inoculated Plants and PGPR-Primed Seedlings under Salt Stress
3.3. The Reduction in AEs and OS in PGPR-Inoculated Plants and PGPR-Primed Seedlings under Salt Stress
3.4. Genetic Diversities of Plant and Microbe, Plant–Microbe Interactions and Microbe–Microbe Interactions Are Key Players in Regulating AEs Profiles
4. Roles of Multi-Omics Techniques in Deciphering Plant–Microbe Interactions
5. Promise, Limitations, and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
A. aneurinilyticus | Aneurinibacillus aneurinilyticus |
ABA | Abscisic acid |
ABC | ATP-binding cassette |
A. brasilense | Azospirillum brasilense |
A. calcoaceticus | Acinetobacter calcoaceticus |
ACC | 1-aminocyclopropane-1-carboxylate |
ALA | 5-aminolevulinic acid |
Alg | Alginate |
A. macrostachyum | Arthrocnemum macrostachyum |
A. protophormiae | Arthrobacter protophormiae |
APX | Ascorbate peroxidase |
ASC | Ascorbate |
Aux | Auxin |
B. aquimaris | Bacillus aquimaris |
B. gibsonii | Bacillus gibsonii |
B. iodinum | Brevibacterium iodinum |
B. megaterium | Bacillus megaterium |
B. pumilus | Bacillus pumilus |
BR | Brassinosteroids |
B. safensis | Bacillus safensis |
B. subtilis | Bacillus subtilis |
CA | Citric acid |
Car | Carotenoids |
CAT | Catalase |
C. gleum | Chryseobacterium gleum |
Chl | Chlorophyll |
CK | Cytokinins |
DHAR | dehydroascorbate reductase |
DPPH | 2,2-diphenyl-1-picryl-hydrazyl-hydrate |
E. aurantiacum | Exiguobacterium aurantiacum |
EL | Electrolyte leakage |
EPS | Exopolysaccharide |
ETC | Electron transport chains |
Fdox | Oxidized ferredoxin |
FDred | Reduced ferredoxin |
FD | Fruit diameter |
FL | Fruit length |
FLA | Flavonoids |
FLI | Feather lysate inoculum |
FMY | Fruit marketable yield |
FW | Fruit weight |
FY | Fruit yield |
GA | Gibberellins |
GLVs | Green leaf volatiles |
GP | Germination percentage |
G-POD | Guaiacol peroxidase |
GPr | Grain protein |
GR | Glutathione reductase |
GRA | Germination rate |
gs | Stomatal conductance |
GSH | Glutathione |
GST | Glutathione-S-transferase |
GW | Grain weight |
GY | Grain yield |
H2O2 | Hydrogen peroxide |
IAA | Indole-3-acetic acid |
ISR | Induced systemic resistance |
JA | Jasmonates |
K | Potassium |
K. sacchari | Kosakonia sacchari |
L. adecarboxylata | Leclercia adecarboxylata |
LP | Lipid peroxidation |
MA | Malic acid |
MDA | Malondialdehyde |
MDAR | monodehydroascorbate reductase |
Mel | Melatonin |
MeSA | Methyl salicylate |
MFS | Major facilitator superfamily |
M. oleivorans | Microbacterium oleivorans |
N | Nitrogen |
N/A | Not available |
NF | Number of fruits per plant |
NL | Number of leaves per plant |
NT | Number of tillers per plant |
O2•− | Superoxide radical |
OS | Osmolytes |
P | Phosphate |
PAs | Polyamines |
P. agglomerans | Pantoea agglomerans |
PAL | Phenylalanine ammonia lyase |
P. argentinensis | Pseudomonas argentinensis |
P. azotoformans | Pseudomonas azotoformans |
P. putida | Pseudomonas putida |
PCs | Phenolic compounds |
P. fluorescence | Pseudomonas fluorescence |
PGPR | Plant growth- promoting rhizobacteria |
PH | Plant height |
PHE | Phenols |
PhoPs | Photosynthetic pigments |
Pn | Net photosynthetic rate |
POD | Peroxidase |
PPs | Polyphenols |
PPO | Polyphenol oxidase |
P. putida | Pseudomonas putida |
Pro | Proline |
PSI | Photosystem I |
P. yonginensis | Paenibacillus yonginensis |
RDW | Root dry weight |
RFW | Root fresh weight |
RL | Root length |
R. massiliae | Rhizobium massiliae |
ROS | Reactive oxygen species |
RWC | Relative water content |
SA | Salicylic acid |
SAM | S-adenosyl-L-methionine |
SDM | Water-soluble dry matter |
SDW | Shoot dry weight |
SFW | Shoot fresh weight |
Sid | Siderophore |
SL | Shoot length |
S. maltophilia | Stenotrophomonas maltophilia |
SNP | Sodium nitroprusside |
SOD | Superoxide dismutase |
SpDW | Spike dry weight |
StDW | Stem dry weight |
StFW | Stem fresh weight |
SVI | Seedling vigor index |
SW | Seed weight |
SY | Seed yield |
Tchl | Total chlorophyll |
TCP | Tocopherol |
TFs | Transcription factors |
TLA | Total leaves area per plant |
TPDW | Total plant dry weight |
TPFW | Total plant fresh weight |
Tr | Transpiration rate |
Tre | Trehalose |
TSS | Total soluble sugar |
X. autotrophicus | Xanthobacter autotrophicus |
Y | Yield |
Z. halotolerans | Zhihengliuella halotolerans |
References
- de Lima-Neto, A.; Cavalcante, L.; Mesquita, F.d.O.; Souto, A.d.L.; dos Santos, G.; dos Santos, J.; de Mesquita, E. Papaya seedlings irrigation with saline water in soil with bovine biofertilizer. Chil. J. Agric. Res. 2016, 76, 236–242. [Google Scholar] [CrossRef] [Green Version]
- Reints, J.; Dinar, A.; Crowley, D. Dealing with Water Scarcity and Salinity: Adoption of Water Efficient Technologies and Management Practices by California Avocado Growers. Sustainability 2020, 12, 3555. [Google Scholar] [CrossRef]
- Tri, D.Q.; Tuyet, Q.T.T. Effect of Climate Change on the Salinity Intrusion: Case Study Ca River Basin, Vietnam. J. Clim. Chang. 2016, 2, 91–101. [Google Scholar] [CrossRef]
- Gondek, M.; Weindorf, D.; Thiel, C.; Kleinheinz, G. Soluble Salts in Compost and Their Effects on Soil and Plants: A Review. Compost Sci. Util. 2020, 28, 59–75. [Google Scholar] [CrossRef]
- Rasool, S.; Hameed, A.; Azooz, M.; Muneeb-u-Rehman; Siddiqi, T.; Ahmad, P. Salt Stress: Causes, Types and Responses of Plants. In Ecophysiology and Responses of Plants under Salt Stress; Ahmad, P., Azooz, M., Prasad, M., Eds.; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4747-4. [Google Scholar]
- Attia, H.; Alamer, K.; Ouhibi, C.; Oueslati, S.; Lachaâl, M. Interaction Between Salt Stress and Drought Stress on Some Physiological Parameters in Two Pea Cultivars. Int. J. Bot. 2020, 16. [Google Scholar] [CrossRef] [Green Version]
- Maathuis, F.; Amtmann, A. K+ Nutrition and Na+ Toxicity: The Basis of Cellular K+/Na+ Ratios. Ann. Bot. 1999, 84, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, N.; Meiri, A. Root Growth of Avocado is More Sensitive to Salinity than Shoot Growth. J. Am. Soc. Hortic. Sci. 2004, 129, 188–192. [Google Scholar] [CrossRef]
- Neves, G.; Marchiosi, R.; Ferrarese, M.; Siqueira-Soares, R.; Ferrarese-Filho, O. Root Growth Inhibition and Lignification Induced by Salt Stress in Soybean. J. Agron. Crop Sci. 2010, 196, 467–473. [Google Scholar] [CrossRef]
- Kafi, M.; Rahimi, Z. Effect of salinity and silicon on root characteristics, growth, water status, proline content and ion accumulation of purslane (Portulaca oleracea L.). Soil Sci. Plant Nutr. 2011, 57. [Google Scholar] [CrossRef]
- Fita, A.; Rodríguez-Burruezo, A.; Boscaiu, M.; Prohens, J.; Vicente, O. Breeding and Domesticating Crops Adapted to Drought and Salinity: A New Paradigm for Increasing Food Production. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Vinocur, B.; Altman, A. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Jha, S. Chapter 14: Transgenic Approaches for Enhancement of Salinity Stress Tolerance in Plants. In Molecular Approaches in Plant Biology and Environmental Challenges; Singh, S., Upadhyay, S., Pandey, A., Kumar, S., Eds.; Energy, Environment and Sustainability; Springer Nature Singapore Pte Ltd.: Singapore, 2019; ISBN 978-981-15-0690-1. [Google Scholar]
- Kaya, C.; Kirnak, H.; Higgs, D.; Saltali, K. Supplementary calcium enhances plant growth and fruit yield in strawberry cultivars grown at high (NaCl) salinity. Sci. Hortic. 2002, 93, 65–74. [Google Scholar] [CrossRef]
- Alzahrani, Y.; Kuşvuran, A.; Alharby, H.; Kuşvuran, S.; Rady, M. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol. Environ. Saf. 2018, 154, 187–196. [Google Scholar] [CrossRef]
- Hassanvand, F.; Nejad, A.; Fanourakis, D. Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Ind. Crops Prod. 2019, 134, 19–25. [Google Scholar] [CrossRef]
- Tian, S.; Guo, R.; Zou, X.; Zhang, X.; Yu, X.; Zhan, Y.; Ci, D.; Wang, M.; Wang, Y.; Si, T. Priming With the Green Leaf Volatile (Z)-3-Hexeny-1-yl Acetate Enhances Salinity Stress Tolerance in Peanut (Arachis hypogaea L.) Seedlings. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.-G.; Wang, C.-Z. Wound-induced green leaf volatiles cause the release of acetylated derivatives and a terpenoid in maize. Phytochemistry 2006, 67, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Liao, W.; Dawuda, M.; Hu, L.; Yu, J. 5-Aminolevulinic acid (ALA) biosynthetic and metabolic pathways and its role in higher plants: A review. Plant Growth Regul. 2019, 87, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Jin, X.; Liao, W.; Hu, L.; Dawuda, M.; Zhao, X.; Tang, Z.; Gong, T.; Yu, J. 5-Aminolevulinic Acid (ALA) Alleviated Salinity Stress in Cucumber Seedlings by Enhancing Chlorophyll Synthesis Pathway. Front. Plant Sci. 2018, 9, 635. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, K.; Chaudhary, R.; Sarwar, A.; Ahmad, B.; Gul, A.; Hano, C.; Abbasi, B.; Anjum, S. Melatonin as Master Regulator in Plant Growth, Development and Stress Alleviator for Sustainable Agricultural Production: Current Status and Future Perspectives. Sustainability 2021, 13, 294. [Google Scholar] [CrossRef]
- Ke, Q.; Ye, J.; Wang, B.; Ren, J.; Yin, L.; Deng, X.; Wang, S. Melatonin Mitigates Salt Stress in Wheat Seedlings by Modulating Polyamine Metabolism. Front. Plant Sci. 2018, 9, 914. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Shabala, S.; Zhang, J.; Ma, G.; Chen, D.; Shabala, L.; Zeng, F.; Chen, Z.-H.; Zhou, M.; Venkataraman, G.; et al. Melatonin improves rice salinity stress tolerance by NADPH oxidase-dependent control of the plasma membrane K+ transporters and K+ homeostasis. Plant Cell Environ. 2020, 43, 2591–2605. [Google Scholar] [CrossRef]
- Abd El-Azeem, S.; Elwan, M.; Sung, J.-K.; Ok, Y. Alleviation of Salt Stress in Eggplant (Solanum melongena L.) by Plant-Growth-Promoting Rhizobacteria. Commun. Soil Sci. Plant Anal. 2012, 43, 1303–1315. [Google Scholar] [CrossRef]
- Hanin, M.; Ebel, C.; Ngom, M.; Laplaze, L.; Masmoudi, K. New Insights on Plant Salt Tolerance Mechanisms and Their Potential Use for Breeding. Front. Plant Sci. 2016, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.; da Silveira, J.; Bonifacio, A.; Rodrigues, A.; Figueiredo, M. Antioxidant response of cowpea co-inoculated with plant growth-promoting bacteria under salt stress. Braz. J. Microbiol. 2018, 49, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Gill, S.; Tuteja, N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 2010, 48, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Jogawat, A. Chapter 5: Osmolytes and their Role in Abiotic Stress Tolerance in Plants. In Molecular Plant Abiotic Stress: Biology and Biotechnology; Roychoudhury, A., Tripathi, D., Eds.; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2019; pp. 91–104. ISBN 978-1-119-46366-5. [Google Scholar]
- Tester, M.; Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 2003, 91, 503–527. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Woody, O.; McConkey, B.; Glick, B. Combined effects of the plant growth-promoting bacterium Pseudomonas putida UW4 and salinity stress on the Brassica napus proteome. Appl. Soil Ecol. 2012, 61, 255–263. [Google Scholar] [CrossRef]
- Shahid, M.; Sarkhosh, A.; Khan, N.; Balal, R.; Ali, S.; Rossi, L.; Gómez, C.; Mattson, N.; Nasim, W.; Garcia-Sanchez, F. Insights into the Physiological and Biochemical Impacts of Salt Stress on Plant Growth and Development. Agronomy 2020, 10, 938. [Google Scholar] [CrossRef]
- Manishankar, P.; Wang, N.; Köster, P.; Alatar, A.; Kudla, J. Calcium signaling during salt stress and in the regulation of ion homeostasis. J. Exp. Bot. 2018, 69, 4215–4226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, M.; Fang, Y.; Ji, Y.; Jiang, Z.; Wang, L. Effects of salt stress on ion content, antioxidant enzymes and protein profile in different tissues of Broussonetia papyrifera. S. Afr. J. Bot. 2013, 85, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Taïbi, K.; Taïbi, F.; Abderrahim, L.; Ennajah, A.; Belkhodja, M.; Mulet, J. Effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidant defence systems in Phaseolus vulgaris L. S. Afr. J. Bot. 2016, 105, 306–312. [Google Scholar] [CrossRef]
- Abd_Allah, E.; Alqarawi, A.; Hashem, A.; Radhakrishnan, R.; Al-Huqail, A.; Al-Otibi, F.; Malik, J.; Alharbi, R.; Egamberdieva, D. Endophytic bacterium Bacillus subtilis (BERA 71) improves salt tolerance in chickpea plants by regulating the plant defense mechanisms. J. Plant Interact. 2018, 13, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Shahid, M.; Ameen, F.; Maheshwari, H.; Ahmed, B.; AlNadhari, S.; Khan, M. Colonization of Vigna radiata by a halotolerant bacterium Kosakonia sacchari improves the ionic balance, stressor metabolites, antioxidant status and yield under NaCl stress. Appl. Soil Ecol. 2021, 158, 103809. [Google Scholar] [CrossRef]
- Magán, J.; Gallardo, M.; Thompson, R.; Lorenzo, P. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions. Agric. Water Manag. 2008, 95, 1041–1055. [Google Scholar] [CrossRef]
- Navarro, J.; Garrido, C.; Flores, P.; Martínez, V. The effect of salinity on yield and fruit quality of pepper grown in perlite. Span. J. Agric. Res. 2010, 8, 142–150. [Google Scholar] [CrossRef] [Green Version]
- Wungrampha, S.; Joshi, R.; Singla-Pareek, S.; Pareek, A. Photosynthesis and salinity: Are these mutually exclusive? Photosynthetica 2018, 56, 366–381. [Google Scholar] [CrossRef]
- Khan, A.; Sirajuddin;; Zhao, X.; Javed, M.; Khan, K.; Bano, A.; Shen, R.; Masood, S. Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high boron due to limited uptake of Na+. Environ. Exp. Bot. 2016, 124, 120–129. [Google Scholar] [CrossRef]
- Kang, S.-M.; Radhakrishnan, R.; Khan, A.; Kim, M.-J.; Park, J.-M.; Kim, B.-R.; Shin, D.-H.; Lee, I.-J. Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol. Biochem. 2014, 84, 115–124. [Google Scholar] [CrossRef]
- Li, H.; Jiang, X. Inoculation with plant growth-promoting bacteria (PGPB) improves salt tolerance of maize seedling. Russ. J. Plant Physiol. 2017, 64, 235–241. [Google Scholar] [CrossRef]
- Kang, S.-M.; Khan, A.; Waqas, M.; You, Y.-H.; Kim, J.-H.; Kim, J.-G.; Hamayun, M.; Lee, I.-J. Plant growth-promoting rhizobacteria reduce adverse effects of salinity and osmotic stress by regulating phytohormones and antioxidants in Cucumis sativus. J. Plant Interact. 2014, 9, 673–682. [Google Scholar] [CrossRef] [Green Version]
- Sapre, S.; Gontia-Mishra, I.; Tiwari, S. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiol. Res. 2018, 206, 25–32. [Google Scholar] [CrossRef]
- Akram, W.; Aslam, H.; Ahmad, S.; Anjum, T.; Yasin, N.; Khan, W.; Ahmad, A.; Guo, J.; Wu, T.; Luo, W.; et al. Bacillus megaterium strain A12 ameliorates salinity stress in tomato plants through multiple mechanisms. J. Plant Interact. 2019, 14, 506–518. [Google Scholar] [CrossRef] [Green Version]
- Orozco-Mosqueda, M.; Duan, J.; DiBernardo, M.; Zetter, E.; Campos-García, J.; Glick, B.; Santoyo, G. The Production of ACC Deaminase and Trehalose by the Plant Growth Promoting Bacterium Pseudomonas sp. UW4 Synergistically Protect Tomato Plants Against Salt Stress. Front. Microbiol. 2019, 10, 1392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaishnav, A.; Singh, J.; Singh, P.; Rajput, R.; Singh, H.; Sarma, B. Sphingobacterium sp. BHU-AV3 Induces Salt Tolerance in Tomato by Enhancing Antioxidant Activities and Energy Metabolism. Front. Microbiol. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.; Singh, V.; Mishra, A. Halotolerant PGPR Stenotrophomonas maltophilia BJ01 Induces Salt Tolerance by Modulating Physiology and Biochemical Activities of Arachis hypogaea. Front. Microbiol. 2020, 11, 8289. [Google Scholar] [CrossRef]
- Sarkar, A.; Ghosh, P.; Pramanik, K.; Mitra, S.; Soren, T.; Pandey, S.; Mondal, M.; Maiti, T. A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Res. Microbiol. 2018, 169, 20–32. [Google Scholar] [CrossRef]
- Sukweenadhi, J.; Balusamy, S.; Kim, Y.-J.; Lee, C.; Kim, Y.-J.; Koh, S.; Yang, D. A Growth-Promoting Bacteria, Paenibacillus yonginensis DCY84T Enhanced Salt Stress Tolerance by Activating Defense-Related Systems in Panax ginseng. Front. Plant Sci. 2018, 9, 813. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F.; Ahmad, I.; Pichtel, J. Growth stimulation and alleviation of salinity stress to wheat by the biofilm forming Bacillus pumilus strain FAB10. Appl. Soil Ecol. 2019, 143, 45–54. [Google Scholar] [CrossRef]
- Hamann, T. The Plant Cell Wall Integrity Maintenance Mechanism—Concepts for Organization and Mode of Action. Plant Cell Physiol. 2015, 56, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Xu, L.; Porter, N. Free Radical Lipid Peroxidation: Mechanisms and Analysis. Chem. Rev. 2011, 111, 5944–5972. [Google Scholar] [CrossRef]
- Corpas, F.; Gupta, D.; Palma, J. Chapter 1: Production Sites of Reactive Oxygen Species (ROS) in Organelles from Plant Cells. In Reactive Oxygen Species and Oxidative Damage in Plants; Gupta, D., Palma, J., Corpas, F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-20421-5. [Google Scholar]
- Gutteridge, J. Lipid Peroxidation and Antioxidants as Biomarkers of Tissue Damage. Clin. Chem. 1995, 41, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Awasthi, J.; Saha, B.; Chowardhara, B.; Devi, S.; Borgohain, P.; Panda, S. Qualitative Analysis of Lipid Peroxidation in Plants under Multiple Stress Through Schiff’s Reagent: A Histochemical Approach. Bio-Protocol 2018, 8, e2807. [Google Scholar] [CrossRef]
- Sarkar, A.; Pramanik, K.; Mitra, S.; Soren, T.; Maiti, T. Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. J. Plant Physiol. 2018, 231, 434–442. [Google Scholar] [CrossRef]
- Khalid, M.; Bilal, M.; Hassani, D.; Iqbal, H.; Wang, H.; Huang, D. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect. Bot. Stud. 2017, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishibashi, Y.; Kasa, S.; Sakamoto, M.; Aoki, N.; Kai, K.; Yuasa, T.; Hanada, A.; Yamaguchi, S.; Iwaya-Inoue, M. A Role for Reactive Oxygen Species Produced by NADPH Oxidases in the Embryo and Aleurone Cells in Barley Seed Germination. PLoS ONE 2015, 10, e143173. [Google Scholar] [CrossRef]
- Tsukagoshi, H.; Busch, W.; Benfey, P. Transcriptional Regulation of ROS Controls Transition from Proliferation to Differentiation in the Root. Cell 2010, 143, 606–616. [Google Scholar] [CrossRef] [Green Version]
- Tognetti, V.; Bielach, A.; Hrtyan, M. Redox regulation at the site of primary growth: Auxin, cytokinin and ROS crosstalk. Plant Cell Environ. 2017, 40, 2586–2605. [Google Scholar] [CrossRef]
- Zeng, J.; Dong, Z.; Wu, H.; Tian, Z.; Zhao, Z. Redox regulation of plant stem cell fate. EMBO J. 2017, 36, 2844–2855. [Google Scholar] [CrossRef]
- Aarti, P.; Tanaka, R.; Tanaka, A. Effects of oxidative stress on chlorophyll biosynthesis in cucumber (Cucumis sativus) cotyledons. Physiol. Plant. 2006, 128, 186–197. [Google Scholar] [CrossRef]
- Huang, H.; Ullah, F.; Zhou, D.-X.; Yi, M.; Zhao, Y. Mechanisms of ROS Regulation of Plant Development and Stress Responses. Front. Plant Sci. 2019, 10, 800. [Google Scholar] [CrossRef]
- Abdelgawad, H.; Zinta, G.; Hegab, M.; Pandey, R.; Asard, H.; Abuelsoud, W. High Salinity Induces Different Oxidative Stress and Antioxidant Responses in Maize Seedlings Organs. Front. Plant Sci. 2016, 7, 276. [Google Scholar] [CrossRef] [Green Version]
- Nimse, S.; Pal, D. Free radicals, natural antioxidants, and their reaction mechanisms. RSC Adv. 2015, 5, 27986–28006. [Google Scholar] [CrossRef] [Green Version]
- Per, T.; Khan, N.; Reddy, P.; Masood, A.; Hasanuzzaman, M.; Khan, M.; Anjum, N. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics. Plant Physiol. Biochem. 2017, 115, 126–140. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Hayat, Q.; Alyemeni, M.; Wani, A.; Pichtel, J.; Ahmad, A. Role of proline under changing environments. Plant Signal. Behav. 2012, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matysik, J.; Alia; Bhalu, B.; Mohanty, B. Molecular mechanisms of quenching of reactive oxygen species by proline under stress in plants. Curr. Sci. 2002, 82, 525–532. [Google Scholar]
- Hossain, M.; Hoque, M.; Burritt, D.; Fujita, M. Chapter 16: Proline Protects Plants Against Abiotic Oxidative Stress: Biochemical and Molecular Mechanisms. In Oxidative Damage to Plants-Antioxidant Networks and Signaling; Ahmad, P., Ed.; Academic Press Inc.: Cambridge, MA, USA, 2014; pp. 477–522. ISBN 978-0-12-799963-0. [Google Scholar]
- Iqbal, N.; Khan, N.; Ferrante, A.; Trivellini, A.; Francini, A.; Khan, M. Ethylene Role in Plant Growth, Development and Senescence: Interaction with Other Phytohormones. Front. Plant Sci. 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boex-Fontvieille, E.; Rustgi, S.; von Wettstein, D.; Pollmann, S.; Reinbothe, S.; Reinbothe, C. An Ethylene-Protected Achilles’ Heel of Etiolated Seedlings for Arthropod Deterrence. Front. Plant Sci. 2016, 7, 1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zapata, P.; Serrano, M.; García-Legaz, M.; Pretel, M.; Botella, M. Short Term Effect of Salt Shock on Ethylene and Polyamines Depends on Plant Salt Sensitivity. Front. Plant Sci. 2017, 8, 855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arraes, F.; Beneventi, M.; de Sa, M.; Paixao, J.; Albuquerque, E.; Marin, S.; Purgatto, E.; Nepomuceno, A.; Grossi-de-Sa, M. Implications of ethylene biosynthesis and signaling in soybean drought stress tolerance. BMC Plant Biol. 2015, 15. [Google Scholar] [CrossRef]
- Gamalero, E.; Glick, B. Bacterial Modulation of Plant Ethylene Levels. Plant Physiol. 2015, 169, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Tabassum, B.; Khan, A.; Tariq, M.; Ramzan, M.; Khan, M.; Shahid, N.; Aaliya, K. Bottlenecks in commercialisation and future prospects of PGPR. Appl. Soil Ecol. 2017, 121, 102–117. [Google Scholar] [CrossRef]
- Ruiu, L. Plant-Growth-Promoting Bacteria (PGPB) against Insects and Other Agricultural Pests. Agronomy 2020, 10, 861. [Google Scholar] [CrossRef]
- Saravanakumar, D.; Thomas, A.; Banwarie, N. Antagonistic potential of lipopeptide producing Bacillus amyloliquefaciens against major vegetable pathogens. Eur. J. Plant Pathol. 2019, 154, 319–335. [Google Scholar] [CrossRef]
- Oteino, N.; Lally, R.; Kiwanuka, S.; Lloyd, A.; Ryan, D.; Germaine, K.; Dowling, D. Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front. Microbiol. 2015, 6, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahid, M.; Abbasi, M.; Hameed, S.; Rahim, N. Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front. Microbiol. 2015, 6, 207. [Google Scholar] [CrossRef] [PubMed]
- Dimkpa, C.; Weinand, T.; Asch, F. Plant–rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ. 2009, 32, 1682–1694. [Google Scholar] [CrossRef]
- Arora, N.; Fatima, T.; Mishra, J.; Mishra, I.; Verma, S.; Verma, R.; Verma, M.; Bhattacharya, A.; Verma, P.; Mishra, P.; et al. Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. J. Adv. Res. 2020, 26, 69–82. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.; Eid, A.; Ewais, E. The Interaction Between Plants and Bacterial Endophytes Under Salinity Stress. In Endophytes and Secondary Metabolites; Jha, S., Ed.; Reference Series in Phytochemistry; Springer: Cham, Switzerland, 2019; pp. 1–17. ISBN 978-3-319-76900-4. [Google Scholar]
- Lata, R.; Chowdhury, S.; Gond, S.; White Jr, J. Induction of abiotic stress tolerance in plants by endophytic microbes. Lett. Appl. Microbiol. 2018, 66, 268–276. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.; Hasnain, S.; Berge, O.; Mahmood, T. Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. Biol. Fertil. Soils 2004, 40, 157–162. [Google Scholar] [CrossRef]
- Upadhyay, S.; Singh, J.; Singh, D. Exopolysaccharide-Producing Plant Growth-Promoting Rhizobacteria Under Salinity Condition. Pedosphere 2011, 21, 214–222. [Google Scholar] [CrossRef]
- Atouei, M.; Pourbabaee, A.; Shorafa, M. Alleviation of Salinity Stress on Some Growth Parameters of Wheat by Exopolysaccharide-Producing Bacteria. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 2725–2733. [Google Scholar] [CrossRef]
- Gupta, S.; Pandey, S. ACC Deaminase Producing Bacteria With Multifarious Plant Growth Promoting Traits Alleviates Salinity Stress in French Bean (Phaseolus vulgaris) Plants. Front. Microbiol. 2019, 10, 1506. [Google Scholar] [CrossRef]
- Glick, B.; Todorovic, B.; Czarny, J.; Cheng, Z.; Duan, J.; McConkey, B. Promotion of Plant Growth by Bacterial ACC Deaminase. Crit. Rev. Plant Sci. 2007, 26, 227–242. [Google Scholar] [CrossRef]
- Pierik, R.; Tholen, D.; Poorter, H.; Visser, E.; Voesenek, L. The Janus face of ethylene: Growth inhibition and stimulation. Trends Plant Sci. 2006, 11, 176–183. [Google Scholar] [CrossRef]
- Abeles, F.; Morgan, P.; Saltveit, M., Jr. Ethylene in Plant Biology, 2nd ed.; Academic Press Inc.: Cambridge, MA, USA, 1992; ISBN 978-0-08-091628-6. [Google Scholar]
- Stearns, J.; Glick, B. Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol. Adv. 2003, 21, 193–210. [Google Scholar] [CrossRef]
- Glick, B. Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol. Res. 2014, 69, 30–39. [Google Scholar] [CrossRef] [PubMed]
- Fuertes-Mendizábal, T.; Bastías, E.; González-Murua, C.; González-Moro, M. Nitrogen Assimilation in the Highly Salt- and Boron-Tolerant Ecotype Zea mays L. Amylacea. Plants 2020, 9, 322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnawal, D.; Bharti, N.; Maji, D.; Chanotiya, C.; Kalra, A. ACC deaminase-containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J. Plant Physiol. 2014, 171, 884–894. [Google Scholar] [CrossRef]
- Kim, K.; Jang, Y.-J.; Lee, S.-M.; Oh, B.-T.; Chae, J.-C.; Lee, K.-J. Alleviation of Salt Stress by Enterobacter sp. EJ01 in Tomato and Arabidopsis Is Accompanied by Up-Regulation of Conserved Salinity Responsive Factors in Plants. Mol. Cells 2014, 37, 109–117. [Google Scholar] [CrossRef]
- Habib, S.; Kausar, H.; Saud, H. Plant Growth-Promoting Rhizobacteria Enhance Salinity Stress Tolerance in Okra through ROS-Scavenging Enzymes. BioMed Res. Int. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Orhan, F. Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz. J. Microbiol. 2016, 47, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Bhise, K.; Bhagwat, P.; Dandge, P. Synergistic effect of Chryseobacterium gleum sp. SUK with ACC deaminase activity in alleviation of salt stress and plant growth promotion in Triticum aestivum L. 3 Biotech 2017, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerrouk, I.; Benchabane, M.; Khelifi, L.; Yokawa, K.; Ludwig-Müller, J.; Baluska, F. A Pseudomonas strain isolated from date-palm rhizospheres improves root growth and promotes root formation in maize exposed to salt and aluminum stress. J. Plant Physiol. 2016, 191, 111–119. [Google Scholar] [CrossRef]
- Hahm, M.-S.; Son, J.-S.; Hwang, Y.-J.; Kwon, D.-K.; Ghim, S.-Y. Alleviation of Salt Stress in Pepper (Capsicum annum L.) Plants by Plant Growth-Promoting Rhizobacteria. J. Microbiol. Biotechnol. 2017, 27, 1790–1797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Jha, P. The PGPR Stenotrophomonas maltophilia SBP-9 Augments Resistance against Biotic and Abiotic Stress in Wheat Plants. Front. Microbiol. 2017, 8, 1945. [Google Scholar] [CrossRef] [PubMed]
- Cherif-Silini, H.; Thissera, B.; Bouket, A.; Saadaoui, N.; Silini, A.; Eshelli, M.; Alenezi, F.; Vallat, A.; Luptakova, L.; Yahiaoui, B.; et al. Durum Wheat Stress Tolerance Induced by Endophyte Pantoea agglomerans with Genes Contributing to Plant Functions and Secondary Metabolite Arsenal. Int. J. Mol. Sci. 2019, 20, 3989. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, S.-M.; Shahzad, R.; Bilal, S.; Khan, A.; Park, Y.-G.; Lee, K.-E.; Asaf, S.; Khan, M.; Lee, I.-J. Indole-3-acetic-acid and ACC deaminase producing Leclercia adecarboxylata MO1 improves Solanum lycopersicum L. growth and salinity stress tolerance by endogenous secondary metabolites regulation. BMC Microbiol. 2019, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phour, M.; Sindhu, S. Amelioration of salinity stress and growth stimulation of mustard (Brassica juncea L.) by salt-tolerant Pseudomonas species. Appl. Soil Ecol. 2020, 149. [Google Scholar] [CrossRef]
- Misra, S.; Chauhan, P. ACC deaminase-producing rhizosphere competent Bacillus spp. mitigate salt stress and promote Zea mays growth by modulating ethylene metabolism. 3 Biotech 2020, 10. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, H.; Leng, J.; Niu, H.; Chen, X.; Liu, D.; Chen, Y.; Ying, H. Isolation and characterization of plant growth-promoting rhizobacteria and their effects on the growth of Medicago sativa L. under salinity conditions. Antonie Leeuwenhoek 2020, 113, 1263–1278. [Google Scholar] [CrossRef]
- Khan, A.; Waqas, M.; Asaf, S.; Kamran, M.; Shahzad, R.; Bilal, S.; Khan, M.; Kang, S.-M.; Kim, Y.-H.; Yun, B.-W.; et al. Plant growth-promoting endophyte Sphingomonas sp. LK11 alleviates salinity stress in Solanum pimpinellifolium. Environ. Exp. Bot. 2017, 133, 58–69. [Google Scholar] [CrossRef]
- Ilyas, N.; Mazhar, R.; Yasmin, H.; Khan, W.; Iqbal, S.; El Enshasy, H.; Dailin, D. Rhizobacteria Isolated from Saline Soil Induce Systemic Tolerance in Wheat (Triticum aestivum L.) against Salinity Stress. Agronomy 2020, 10, 989. [Google Scholar] [CrossRef]
- Mukherjee, P.; Mitra, A.; Roy, M. Halomonas Rhizobacteria of Avicennia marina of Indian Sundarbans Promote Rice Growth Under Saline and Heavy Metal Stresses Through Exopolysaccharide Production. Front. Microbiol. 2019, 10, 1207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadeem, S.; Zahir, Z.; Naveed, M.; Arshad, M.; Shahzad, S. Variation in growth and ion uptake of maize due to inoculation with plant growth promoting rhizobacteria under salt stress. Soil Environ. 2006, 25, 78–84. [Google Scholar]
- Ahmed, A.; Hasnain, S. Auxins as One of the Factors of Plant Growth Improvement by Plant Growth Promoting Rhizobacteria. Pol. J. Microbiol. 2014, 63, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Cordovez, V.; Schop, S.; Hordijk, K.; de Boulois, H.; Coppens, F.; Hanssen, I.; Raaijmakers, J.; Carrión, V. Priming of Plant Growth Promotion by Volatiles of Root-Associated Microbacterium spp. Appl. Environ. Microbiol. 2018, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahir, H.; Wu, H.; Raza, W.; Hanif, A.; Wu, L.; Colman, M.; Gao, X. Plant Growth Promotion by Volatile Organic Compounds Produced by Bacillus subtilis SYST2. Front. Microbiol. 2017, 8, 171. [Google Scholar] [CrossRef] [Green Version]
- Saraf, M.; Jha, C.; Patel, D. The Role of ACC Deaminase Producing PGPR in Sustainable Agriculture. In Plant Growth and Health Promoting Bacteria; Maheshwari, D., Ed.; Microbiology Monographs; Springer: Berlin/Heidelberg, Germany, 2010; Volume 18, pp. 365–385. ISSN 1862-5584. [Google Scholar]
- López-Bucio, J.; Campos-Cuevas, J.; Hernández-Calderón, E.; Velásquez-Becerra, C.; Farías-Rodríguez, R.; Macías-Rodríguez, L.; Valencia-Cantero, E. Bacillus megaterium Rhizobacteria Promote Growth and Alter Root-System Architecture Through an Auxin- and Ethylene-Independent Signaling Mechanism in Arabidopsis thaliana. MPMI 2007, 20, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, T.N.; Bui, L.V.; Hoang, M.T.T. Pseudomonas PS01 Isolated from Maize Rhizosphere Alters Root System Architecture and Promotes Plant Growth. Microorganisms 2020, 8, 471. [Google Scholar] [CrossRef] [Green Version]
- Liotti, R.; da Silva Figueiredo, M.; da Silva, G.; de Mendonçad, E.; Soares, M. Diversity of cultivable bacterial endophytes in Paullinia cupana and their potential for plant growth promotion and phytopathogen control. Microbiol. Res. 2018, 207, 8–18. [Google Scholar] [CrossRef]
- Khare, E.; Mishra, J.; Arora, N. Multifaceted Interactions Between Endophytes and Plant: Developments and Prospects. Front. Microbiol. 2018, 9, 2732. [Google Scholar] [CrossRef] [PubMed]
- Mena-Violante, H.; Olalde-Portugal, V. Alteration of tomato fruit quality by root inoculation with plant growth-promoting rhizobacteria (PGPR): Bacillus subtilis BEB-13bs. Sci. Hortic. 2007, 113, 103–106. [Google Scholar] [CrossRef]
- Kumar, A.; Maurya, B.; Raghuwanshi, R. Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal. Agric. Biotechnol. 2014, 3, 121–128. [Google Scholar] [CrossRef]
- Nawaz, A.; Shahbaz, M.; Asadullah, A.I.; Marghoob, M.; Imtiaz, M.; Mubeen, F. Potential of Salt Tolerant PGPR in Growth and Yield Augmentation of Wheat (Triticum aestivum L.) Under Saline Conditions. Front. Microbiol. 2020, 11, 2019. [Google Scholar] [CrossRef]
- Awad, N.; Turky, A.; Abdelhamid, M.; Attia, M. Ameliorate of environmental salt stress on the growth of Zea mays L. plants by exopolysaccharides producing bacteria. J. Appl. Sci. Res. 2012, 8, 2033–2044. [Google Scholar]
- Abd El-Ghany, M.; Attia, M. Effect of Exopolysaccharide-Producing Bacteria and Melatonin on Faba Bean Production in Saline and Non-Saline Soil. Agronomy 2020, 10, 316. [Google Scholar] [CrossRef] [Green Version]
- Tsao, R. Chemistry and Biochemistry of Dietary Polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Hichem, H.; Mounir, D.; Naceur, E. Differential responses of two maize (Zea mays L.) varieties to salt stress: Changes on polyphenols composition of foliage and oxidative damages. Ind. Crops Prod. 2009, 30, 144–151. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Tapias, D.; Moreno-Galván, A.; Pardo-Díaz, S.; Obando, M.; Rivera, D.; Bonilla, R. Effect of inoculation with plant growth-promoting bacteria (PGPB) on amelioration of saline stress in maize (Zea mays). Appl. Soil Ecol. 2012, 61, 264–272. [Google Scholar] [CrossRef]
- Kasinath, B.; Senthivel, T.; Ganeshmurthy, A.; Nagegowda, N.; Kumar, M. Effect of Magnesium application on chlorophyll content and yield of tomato. Plant Arch. 2014, 14, 801–804. [Google Scholar]
- Hermans, C.; Verbruggen, N. Physiological characterization of Mg deficiency in Arabidopsis thaliana. J. Exp. Bot. 2005, 56, 2153–2161. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Luna, F.; López-Bucio, J.; Altamirano-Hernández, J.; Valencia-Cantero, E.; de la Cruz, H.; Macías-Rodríguez, L. Plant growth-promoting rhizobacteria modulate root-system architecture in Arabidopsis thaliana through volatile organic compound emission. Symbiosis 2010, 51, 75–83. [Google Scholar] [CrossRef]
- Nassal, D.; Spohn, M.; Eltlbany, N.; Jacquiod, S.; Smalla, K.; Marhan, S.; Kandeler, E. Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant Soil 2018, 427, 17–37. [Google Scholar] [CrossRef] [Green Version]
- Stephen, J.; Shabanamol, S.; Rishad, K.; Jisha, M. Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. 3 Biotech 2015, 5, 831–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, S.; Goos, R.; Swenson, S.; Foster, S.; Schatz, B.; Lawley, Y.; Prischmann-Voldseth, D. Impact of nitrogen fixing and plant growth-promoting bacteria on a phloem-feeding soybean herbivore. Appl. Soil Ecol. 2015, 86, 71–81. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; Srinivas, V.; Samineni, S. Nitrogen fixation, plant growth and yield enhancements by diazotrophic growth-promoting bacteria in two cultivars of chickpea (Cicer arietinum L.). Biocatal. Agric. Biotechnol. 2017, 11, 116–123. [Google Scholar] [CrossRef]
- Navarro-Torre, S.; Barcia-Piedras, J.; Mateos-Naranjo, E.; Redondo-Gomez, S.; Camacho, M.; Caviedes, M.; Pajuelo, E.; Rodríguez-Llorente, I. Assessing the role of endophytic bacteria in the halophyte Arthrocnemum macrostachyum salt tolerance. Plant Biol. 2017, 19, 249–256. [Google Scholar] [CrossRef]
- Pham Thi Thu, H.; Nguyen Thu, T.; Nguyen Dang Nguyen, T.; Le Minh, K.; Do Tan, K. Evaluate the effects of salt stress on physico-chemical characteristics in the germination of rice (Oryza sativa L.) in response to methyl salicylate (MeSA). Biocatal. Agric. Biotechnol. 2020, 23, 1–6. [Google Scholar] [CrossRef]
- Dehnavi, A.; Zahedi, M.; Ludwiczak, A.; Perez, S.; Piernik, A. Effect of Salinity on Seed Germination and Seedling Development of Sorghum (Sorghum bicolor (L.) Moench) Genotypes. Agronomy 2020, 10, 859. [Google Scholar] [CrossRef]
- Liu, T.; Li, R.; Jin, X.; Ding, J.; Zhu, X.; Sun, C.; Guo, W. Evaluation of Seed Emergence Uniformity of Mechanically Sown Wheat with UAV RGB Imagery. Remote Sens. 2017, 9, 1241. [Google Scholar] [CrossRef] [Green Version]
- Dellaquila, A.; Spada, P. The effect of salinity stress upon protein synthesis of germinating wheat embryos. Ann. Bot. 1993, 72, 97–101. [Google Scholar] [CrossRef]
- Fercha, A.; Capriotti, A.; Caruso, G.; Cavaliere, C.; Stampachiacchiere, S.; Chiozzi, R.; Laganà, A. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics 2016, 16, 1537–1546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Luo, W.; Li, Y.; Zhang, X.; Bai, X.; Niu, Z.; Zhang, X.; Li, Z.; Wan, D. Transcriptomic Analysis of Seed Germination Under Salt Stress in Two Desert Sister Species (Populus euphratica and P. pruinosa). Front. Genet. 2019, 10. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Xia, W.; Li, H.; Zeng, H.; Wei, B.; Han, S.; Yin, C. Salinity Inhibits Rice Seed Germination by Reducing α-Amylase Activity via Decreased Bioactive Gibberellin Content. Front. Plant Sci. 2018, 9, 275. [Google Scholar] [CrossRef]
- Mahmood, A.; Turgay, O.; Farooq, M.; Hayat, R. Seed biopriming with plant growth promoting rhizobacteria: A review. FEMS Microbiol. Ecol. 2016, 92. [Google Scholar] [CrossRef]
- Zulueta-Rodríguez, R.; Hernández-Montiel, L.; Murillo-Amador, B.; Rueda-Puente, E.; Capistrán, L.; Troyo-Diéguez, E.; Córdoba-Matson, M. Effect of Hydropriming and Biopriming on Seed Germination and Growth of Two Mexican Fir Tree Species in Danger of Extinction. Forests 2015, 6, 3109–3122. [Google Scholar] [CrossRef] [Green Version]
- Prasad, J.; Gupta, S.; Raghuwanshi, R. Screening Multifunctional Plant Growth Promoting Rhizobacteria Strains for Enhancing Seed Germination in Wheat (Triticum aestivum L.). Int. J. Agric. Res. 2017. [Google Scholar] [CrossRef] [Green Version]
- Vaishnav, A.; Kumari, S.; Jain, S.; Varma, A.; Tuteja, N.; Choudhary, D. PGPR-mediated expression of salt tolerance gene in soybean through volatiles under sodium nitroprusside. J. Basic Microbiol. 2016, 56, 1274–1288. [Google Scholar] [CrossRef]
- Sarropoulou, V.; Dimassi-Theriou, K.; Therios, I.; Koukourikou-Petridou, M. Melatonin enhances root regeneration, photosynthetic pigments, biomass, total carbohydrates and proline content in the cherry rootstock PHL-C (Prunus avium × Prunus cerasus). Plant Physiol. Biochem. 2012, 61, 162–168. [Google Scholar] [CrossRef]
- Tal, O.; Haim, A.; Harel, O.; Gerchman, Y. Melatonin as an antioxidant and its semi-lunar rhythm in green macroalga Ulva sp. J. Exp. Bot. 2011, 62, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Uçarlı, C. Effects of Salinity on Seed Germination and Early Seedling Stage; IntechOpen: London, UK, 2020. [Google Scholar]
- Halo, B.; Khan, A.; Waqas, M.; Al-Harrasi, A.; Hussain, J.; Ali, L.; Adnan, M.; Lee, I. Endophytic bacteria (Sphingomonas sp. LK11) and gibberellin can improve Solanum lycopersicum growth and oxidative stress under salinity. J. Plant Interact. 2015, 10, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Bharti, N.; Pandey, S.; Barnawal, D.; Patel, V.; Kalra, A. Plant growth promoting rhizobacteria Dietzia natronolimnaea modulates the expression of stress responsive genes providing protection of wheat from salinity stress. Sci. Rep. 2016, 6. [Google Scholar] [CrossRef] [Green Version]
- El-Esawi, M.; Alaraidh, I.; Alsahli, A.; Alamri, S.; Ali, H.; Alayafi, A. Bacillus firmus (SW5) augments salt tolerance in soybean (Glycine max L.) by modulating root system architecture, antioxidant defense systems and stress-responsive genes expression. Plant Physiol. Biochem. 2018, 132, 375–384. [Google Scholar] [CrossRef]
- Vimal, S.; Patel, V.; Singh, J. Plant growth promoting Curtobacterium albidum strain SRV4: An agriculturally important microbe to alleviate salinity stress in paddy plants. Ecol. Indic. 2019, 105, 553–562. [Google Scholar] [CrossRef]
- El-Nahrawy, S.; Yassin, M. Response of Different Cultivars of Wheat Plants (Triticum aestivum L.) to Inoculation by Azotobacter sp. under Salinity Stress Conditions. J. Adv. Microbiol. 2020, 20, 60–79. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Lei, P.; Wang, Q.; Ma, J.; Zhan, Y.; Jiang, K.; Xu, Z.; Xu, H. The Endophyte Pantoea alhagi NX-11 Alleviates Salt Stress Damage to Rice Seedlings by Secreting Exopolysaccharides. Front. Microbiol. 2020, 10, 3112. [Google Scholar] [CrossRef]
- Pinedo, I.; Ledger, T.; Greve, M.; Poupin, M. Burkholderia phytofirmans PsJN induces long-term metabolic and transcriptional changes involved in Arabidopsis thaliana salt tolerance. Front. Plant Sci. 2015, 6, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manaf, H.; Zayed, M. Productivity of cowpea as affected by salt stress in presence of endomycorrhizae and Pseudomonas fluorescens. Ann. Agric. Sci. 2015, 60, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.; Asaf, S.; Khan, A.; Ullah, I.; Ali, S.; Kang, S.; Lee, I. Alleviation of salt stress response in soybean plants with the endophytic bacterial isolate Curtobacterium sp. SAK1. Ann. Microbiol. 2019, 69, 797–808. [Google Scholar] [CrossRef]
- Kharusi, L.; Yahyai, R.; Yaish, M. Antioxidant Response to Salinity in Salt-Tolerant and Salt-Susceptible Cultivars of Date Palm. Agriculture 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Ryu, C.-M.; Farag, M.; Hu, C.-H.; Reddy, M.; Kloepper, J.; Paré, P. Bacterial Volatiles Induce Systemic Resistance in Arabidopsis. Plant Physiol. 2004, 134, 1017–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Liu, Y.; Wu, G.; Njeri, K.; Shen, Q.; Zhang, N.; Zhang, R. Induced maize salt tolerance by rhizosphere inoculation of Bacillus amyloliquefaciens SQR9. Physiol. Plant. 2016, 158, 34–44. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.; Sun, H.; Han, X.; Peng, Y.; Liu, J.; Liu, K.; Ding, Y.; Wang, C.; Du, B. Transcriptome Profiles Reveal the Growth-Promoting Mechanisms of Paenibacillus polymyxa YC0136 on Tobacco (Nicotiana tabacum L.). Front. Microbiol. 2020, 11, 4174. [Google Scholar] [CrossRef]
- Li, J.; Han, G.; Sun, C.; Sui, N. Research advances of MYB transcription factors in plant stress resistance and breeding. Plan Signal. Behav. 2019, 14, 1613131. [Google Scholar] [CrossRef]
- Finatto, T.; Viana, V.; Woyann, L.; Busanello, C.; da Maia, L.; de Oliveira, A. Can WRKY transcription factors help plants to overcome environmental challenges? Genet. Mol. Biol. 2018, 41, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Tian, Y.; Liu, X. A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 2015, 464, 428–433. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, N.; Hu, R.; Xiang, F. Genome-wide identification of soybean WRKY transcription factors in response to salt stress. SpringerPlus 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Hu, Y.; Huo, P.; Zhang, Q.; Chen, X.; Zhang, Z. Transcriptome analysis of hexaploid hulless oat in response to salinity stress. PLoS ONE 2017, 12, e171451. [Google Scholar] [CrossRef]
- Thomas, J.; Kim, H.; Rahmatallah, Y.; Wiggins, G.; Yang, Q.; Singh, R.; Glazko, G.; Mukherjee, A. RNA-seq reveals differentially expressed genes in rice (Oryza sativa) roots during interactions with plant-growth promoting bacteria, Azospirillum brasilense. PLoS ONE 2019, 14, e217309. [Google Scholar] [CrossRef]
- Malviya, M.; Solanki, M.; Singh, R.; Htun, R.; Singh, P.; Verma, K.; Yang, L.-T.; Li, Y.-R. Comparative analysis of sugarcane root transcriptome in response to the plant growth-promoting Burkholderia anthina MYSP113. PLoS ONE 2020, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, W.; Hill, C.; Doblin, M.; Shelden, M.; van de Meene, A.; Rupasinghe, T.; Bacic, A.; Roessner, U. Integrative Multi-omics Analyses of Barley Rootzones under Salinity Stress Reveal Two Distinctive Salt Tolerance Mechanisms. Plant Commun. 2020, 1. [Google Scholar] [CrossRef] [PubMed]
- Safdarian, M.; Askari, H.; Shariati, J.V.; Nematzadeh, G. Transcriptional responses of wheat roots inoculated with Arthrobacter nitroguajacolicus to salt stress. Sci. Rep. 2019, 9, 1792. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wu, H.; Chen, L.; Zang, H.; Xie, Y.; Gao, X. Transcriptome profiling of Bacillus subtilis OKB105 in response to rice seedlings. BMC Microbiol. 2015, 15. [Google Scholar] [CrossRef] [Green Version]
PGPR | Treatments | GP | Hormones | PhoPs | MDA | AEs | NEAs | Pro | Ion Content | Sources |
---|---|---|---|---|---|---|---|---|---|---|
B. cepacia SE4, Promicromonospora SE188, and A. calcoaceticus SE370. 7-day-old tomato seedlings inoculated with PGPR. | Control | [43] | ||||||||
120 mM NaCl + Uninoculated | ↓ 17% SFW ↓ 25% SDW | ↑ 255% ABA, ↑ 194% SA | ↓ 14% Tchl | N/A | ↑ 86% CAT ↑ 213% POD ↑ 456% PPO | ↑ 79% PP | N/A | In shoot: ↑ 740% Na+ ↓ 4% K+ Na+/K+ ratio ~0.28 | ||
120 mM NaCl + SE4 | ↓ 11% SFW ↓ 8% SDW | ↑ 10% ABA ↑ 367% SA | ↓ 0% Tchl | ↑ 27% CAT ↑ 163% POD ↑ 333% PPO | ↑ 45% PP | In shoot: ↑ 297% Na+ ↑ 17% K+ Na+/K+ ratio ~0.11 | ||||
120 mM NaCl + SE118 | ↓ 13% SFW ↓ 6% SDW | ↑ 6% ABA ↑ 217% SA | ↓ 0% Tchl | ↑ 23% CAT ↑ 131% POD ↑ 322% PPO | ↑ 35% PP | |||||
120 mM NaCl + SE370 | ↓ 10% SFW ↓ 9% SDW | ↑ 23% ABA, ↑ 261% SA | ↓ 0% Tchl | ↑ 46% CAT ↑ 156% POD ↑ 322% PPO | ↑ 52% PP | |||||
P. putida H-2-3. 21-day-old soybean seedlings inoculated with P. putida. | Control | [41] | ||||||||
120 mM NaCl + Uninoculated | ↓ 18% SL ↓ 12% TPFW | ↑ 33% ABA ↑ 114% SA ↓ 11% JA | ↓ 11% Tchl | N/A | ↑ 301% SOD | ↓ 23% total PP | N/A | In whole plant: ↑ 86% Na+, ↑ 55% P | ||
0 mM NaCl + P. putida | ↑ 17% SL ↑ 8% TPFW | ↑ 18% ABA ↑ 29% SA ↓ 25% JA | ↑ 12% Tchl | ↑ 2% SOD | Unchanged total PP | In whole plant: ↓ 17% Na+, ↑ 22% P | ||||
120 mM NaCl + P. putida | ↓ 9% SL ↓ 0% TPFW | ↓ 6% ABA ↓ 26% SA ↑ 54% JA | ↓ 7% Tchl | ↑ 4% SOD | ↑ 4% total PP | In whole plant: ↑ 45% Na+, ↑ 30% P | ||||
B. pumilus. 14-day-old rice seedlings inoculated with B. pumilus. | Control | [40] | ||||||||
0 mM NaCl + B. pumilus | ↑ 22% SFW | N/A | ↑ 46% Tchl | N/A | ↑ 22% SOD ↑ 20% POD ↑ 73% CAT | N/A | ↑ 7% | In shoot: ↓ 54% Na+, ↑ 57% K+, ↑ 76% Mg2+, ↑ 18% Ca2+, Na+/K+ ratio ~0.27 | ||
10 ppm Boron + Uninoculated | ↓ 0% SFW | ↓ 18% Tchl | ↑ 274% SOD ↑ 212% POD ↑ 204% CAT | ↑ 41% | In shoot: ↓ 23% Na+, ↑ 7% K+, ↑ 5% Mg2+, ↑ 0% Ca2+, Na+/K+ ratio ~0.67 | |||||
10 ppm Boron + Inoculated | ↑ 18% SFW | ↑ 59% Tchl | ↑ 400% SOD ↑ 272% POD ↑ 254% CAT | ↑ 74% | In shoot: ↓ 31% Na+, ↑ 61% K+, ↑ 67% Mg2+, ↑ 18% Ca2+, Na+/K+ ratio ~0.4 | |||||
150 mM NaCl + Uninoculated | ↓ 10% SFW | ↓ 9% Tchl | ↑ 248% SOD ↑ 168% POD ↑ 204% CAT | ↑ 56% | In shoot: ↑ 458% Na+, ↓ 50% K+, ↓ 38% Mg2+, ↓ 76% Ca2+, Na+/K+ ratio ~10.4 | |||||
150 mM NaCl + B. pumilus | ↑ 11% SFW | ↑ 86% Tchl | ↑ 348% SOD ↑ 220% POD ↑ 273% CAT | ↑ 83% | In shoot: ↑ 185% Na+, ↑ 24% Mg2+, ↓ 7% K+, ↓ 18% Ca2+, Na+/K+ ratio ~3 | |||||
10 ppm Boron + 150 mM NaCl + Uninoculated | ↓ 10% SFW | ↓ 23% Tchl | ↑ 300% SOD ↑ 388% POD ↑ 377% CAT | ↑ 146% | In shoot: ↑ 531% Na+, ↓ 32% K+, ↓ 33% Mg2+, ↓ 27% Ca2+, Na+/K+ ratio ~8.6 | |||||
10 ppm Boron + 150 mM NaCl + B. pumilus | ↑ 3% SFW | ↓ 5% Tchl | ↑ 322% SOD ↑ 316% POD ↑ 254% CAT | ↑ 85% | In shoot: ↑ 115% Na+, ↓ 11% K+, ↓ 5% Mg2+, ↓ 4% Ca2+, Na+/K+ ratio ~2.2 | |||||
C. gleum SUK. Wheat plantlets inoculated with C. gleum. | 0 mM NaCl + Uninoculated | [99] | ||||||||
100 mM NaCl + Uninoculated | ↓ 41% SL ↓ 46% RL ↓ 16% TPFW | N/A | ↓ 36% Tchl | N/A | N/A | ↑ 80% FLA | ↑ 31% | In shoot: ↑ 128% Na+, ↓ 30% K+, Na+/K+ ratio ~0.12 | ||
0 mM NaCl + SUK + FLI | ↓ 13% SL ↓ 14% RL ↓ 0% TPFW | ↑ 18% Tchl | ↑ 96% FLA | ↑ 48% | N/A | |||||
100 mM NaCl + SUK + FLI | ↓ 9% SL ↓ 9% RL ↑ 19% TPFW | ↑ 5% Tchl | ↑ 147% FLA | ↑ 63% | In shoot: ↑ 61% Na+, ↓ 19% K+, Na+/K+ ratio ~0.08 | |||||
0 mM NaCl + SUK | ↓ 16% SL ↓36% RL ↓13% TPFW | ↓ 11% Tchl | ↑ 57% FLA | ↑ 25% | N/A | |||||
100 mM NaCl + SUK | ↓ 19% SL, ↓ 9% RL, ↓ 6% TPFW | ↓ 23% Tchl | ↑ 84% FLA | ↑ 47% | In shoot: ↑ 67% Na+, ↓ 19% K+, Na+/K+ ratio 0.08 | |||||
B. aquimaris DY-3. Three-day-old maize seedlings inoculated with DY-3 | Control | [42] | ||||||||
1% (w/v) NaCl + Uninoculated | ↓ 34% TPDW | N/A | ↓ 13% Tchl | ↑ 39% | ↑ 21% SOD ↑ 16% POD ↑18% CAT ↑ 23% APX | ↑ 22% PHE | ↑ 36% | N/A | ||
0% NaCl + DY-3 | ↑ 12% TPDW | ↑ 5% Tchl | ↓ 8% | ↑ 13% SOD ↑ 9% CAT ↑ 9% APX ↓ 12% POD | ↑ 11% PHE | ↑ 24% | ||||
1% (w/v) NaCl + DY-3 | ↓ 13% TPDW | ↓ 9% Tchl | ↑ 26% | ↑ 53% SOD ↑ 42% CAT ↑ 65% APX ↓ 2% POD | ↑ 67% PHE | ↑ 77% | ||||
Klebsiella IG3. Oat seedlings inoculated with IG3 | Control | [44] | ||||||||
100 mM NaCl + Uninoculated | ↓ 22% SL ↓ 31% SFW ↓ 29% RFW ↓ 18% RL | ↓ 6% IAA | ↓ 22% Tchl | In shoot: ↑ 135% In root: ↑ 231% | ↑ 353% SOD ↑ 540% POD | N/A | ↑ 230% | N/A | ||
0 mM NaCl + IG3 | ↑ 3% SL ↑ 3% SFW ↑ 1% RFW ↑ 13% RL | ↑ 41% IAA | ↑ 4% Tchl | In shoot: ↑ 3% In root: ↑ 18% | ↑ 0% SOD ↑ 2% POD | ↑ 42% | ||||
100 mM NaCl + IG3 | ↓ 10% SL, ↓ 18% SFW ↓ 16% RFW ↓ 2% RL | ↑ 67% IAA | ↓ 13% Tchl | In shoot: ↑ 27% In root: ↑ 45% | ↑ 96% SOD ↑ 286% POD | ↑ 155% | ||||
P. yonginensis DCY84. Root seedlings of ginseng inoculated with P. yonginensis DCY84 | Short period of stress (3 days of 300 mM NaCl exposure) | [50] | ||||||||
Control | In shoot: Na+/K+ ratio ~13 In root: Na+/K+ ratio ~11 | |||||||||
0 mM NaCl + DCY84 | ↑ 15% SFW ↑ 5% RFW | N/A | ↑ 3% Chl a ↑ 2% Chl b ↑ 2% Car | Unchanged | ↑ 62% APX ↑ 40% POD ↑ 114% CAT | N/A | ↑ 253% | In shoot: Na+/K+ ratio ~15 In root: Na+/K+ ratio ~11 | ||
300 mM NaCl + Uninoculated | ↓ 13% SFW ↓ 9% RFW | ↓ 15% Chl a ↓ 13% Chl b ↓ 16% Car | ↑ 29% | ↑ 55% POD ↑ 0% APX ↓ 14% CAT | ↑ 20% | In shoot: Na+/K+ ratio ~6.4 In root: Na+/K+ ratio ~7 | ||||
300 mM NaCl + DCY84 | ↑ 12% SFW ↑ 0% RFW | ↑ 3% Chl a ↓ 2% Chl b ↓ 9% Car | ↑ 21% | ↑ 54% APX ↑ 80% POD ↑ 114% CAT | ↑ 233% | In shoot: Na+/K+ ratio ~8.2 In root: Na+/K+ ratio ~9.8 | ||||
Long period of stress (12 days of 300 mM NaCl exposure) | ||||||||||
Control | In shoot: Na+/K+ ratio ~7.2; In root: Na+/K+ ratio ~9.9 | |||||||||
0 mM NaCl + DCY84 | ↑ 17% SFW ↑1% RFW | N/A | ↑ 3% Chl a ↑ 2% Chl b ↓ 2% Car | Unchanged | ↑ 45% APX ↑ 100% POD ↑ 143% CAT | N/A | ↑ 300% | In shoot: Na+/K+ ratio ~7.8, In root: Na+/K+ ratio ~11 | ||
300 mM NaCl + Uninoculated | ↓ 18% SFW ↓22% RFW | ↓ 53% Chl a ↓ 66% Chl b ↓ 57% Car | ↑ 36% | ↓ 31% APX ↓ 33% POD ↓ 71% CAT | ↑ 13% | In shoot: Na+/K+ ratio ~4.4, In root: Na+/K+ ratio ~3.8 | ||||
300 mM NaCl + DCY84 | ↑ 12% SFW ↓ 3% RFW | ↓ 3% Chl a ↓ 11% Chl b ↓ 7% Car | ↑ 14% | ↑ 90% APX ↑ 317% POD ↑ 343% CAT | ↑ 287% | In shoot: Na+/K+ ratio ~6.5, In root: Na+/K+ ratio ~7.7 | ||||
B. megaterium A12 (BMA12). Ten-day-old tomato seedlings inoculated with BMA12 | Control | [45] | ||||||||
200 mM NaCl + Uninoculated | ↓ 37% PH ↓ 50% RL ↓ 59% TPFW ↓ 54% TPDW ↓ 35% TLA | ↓ 32% IAA ↓ 43% GA4 ↑ 100% C2H4 ↑ 82% ABA | ↓ 32% Chl a ↓ 40% Chl b ↓ 41% TChl ↓ 49% Car | N/A | ↑ 24% SOD ↑ 27% CAT ↓ 24% APX ↓ 24% POD ↓ 57% PPO | ↑ 74% GSH ↑ 228% ASC | N/A | N/A | ||
0 mM NaCl + BMA12 | ↑ 23% PH ↑ 37% RL ↑ 28% TPFW ↑ 40% TPDW ↑ 25% TLA | ↑ 53% IAA, ↑ 170% GA4 ↓ 16% C2H4 ↓ 14% ABA | ↑ 53% Chl a ↑ 14% Chl b ↑ 41% TChl ↑ 35% Car | ↑ 86% SOD ↑ 54% CAT ↑ 34% APX ↑ 37% POD ↑ 55% PPO | ↑ 17% GSH ↑ 5% ASC | |||||
2000 mM NaCl + BMA12 | ↓ 13% PH ↓ 28% RL ↓ 33% TPFW ↓ 35% TPDW ↓ 21% TLA | ↑ 0% IAA ↑ 11%C2H4 ↑186% ABA, ↑ 86% GA4 | ↑ 5% Chl a ↓ 17% Chl b ↓ 4% TChl ↓ 24% Car | ↑ 213% SOD ↑ 91% CAT ↑ 78% APX ↑ 18% POD ↓ 10% PPO | ↑ 250% GSH ↑ 100% ASC | |||||
Pseudomonas (wild-type UW4 and mutant strains). Seven-day-old tomato plants inoculated with UW4. | Control | [46] | ||||||||
200 mM NaCl + Uninoculated | ↓ 56% RL ↓ 37% SL ↓ 37% TPDW | N/A | ↓ 42% Tchl | N/A | ||||||
200 mM NaCl + WT UW4 | ↑ 16% RL ↑ 3% SL ↑ 25% TPDW | ↑ 31% Tchl | ||||||||
200 mM NaCl + acdS-mutant | ↓ 33% RL ↓ 9% SL ↓ 17% TPDW | ↓ 25% Tchl | ||||||||
200 mM NaCl + treS- mutant | ↓ 39% RL ↓ 31% SL ↓ 8% TPDW | ↓ 13% Tchl | ||||||||
200 mM NaCl + acdS-/treS- double mutant | ↓ 58% RL ↓ 37% SL ↓ 35% TPDW | ↓ 56% Tchl | ||||||||
200 mM NaCl + OxtreS | ↑ 45% RL ↑ 3% SL ↑ 54% TPDW | ↑ 61% Tchl | ||||||||
S. maltophilia BJ01. Seven-day-old peanut seedlings inoculated with BJ01 | Control | [48] | ||||||||
0 mM NaCl + BJ01 | ↑ 4% SL, ↑ 11% TPFW, ↓ 15% RL | ↑ 19% Aux | ↑ 11% Chla, ↑ 0% Chl b, ↑ 17% Tchl | ↓ 26% | N/A | ↓ 32% | N/A | |||
100 mM NaCl + Uninoculated | ↑ 9% RL, ↓ 45% TPFW, ↓ 39% SL | ↑ 16% Aux | ↓ 56% Chl a, ↓ 42% Chl b, ↓ 50% Tchl | ↑ 47% | ↑ 1355% | |||||
100 mM NaCl + BJ01 | ↓ 26% SL, ↓ 3% RL, ↓ 26% TPFW | ↑ 29% Aux | ↓ 11% Chl a ↓ 34% Chl b ↓ 23% Tchl | ↑ 16% | ↑ 1173% |
PGPR | Treatments | GP | PhoPs | AEs | MDA | Ion Content | Pro | Ethylene | Sources |
---|---|---|---|---|---|---|---|---|---|
S. maltophilia SBP-9. Bacterized wheat seeds with S. maltophilia SBP-9 for 1 h. | Control | [102] | |||||||
0 mM NaCl + SBP-9 | ↑ 15% SL, ↑ 10% RL, ↑ 12% SFW, ↑ 17% SDW, ↑ 33% RFW, ↑ 9% RDW | ↑ 8% Tchl | ↑ 33% SOD ↑ 20% CAT ↑ 33% POD | ↓ 27% | In shoot: ↓ 4% Na+, ↑ 12% K+, Na+/K+ ratio ~0.54 | ↓ 10% | N/A | ||
150 mM NaCl + Unprimed | ↓ 11% SL, ↓ 5% RL, ↓ 8% SFW, ↓ 24% SDW, ↓ 11% RFW, ↓ 23% RDW | ↓ 15% Tchl | ↑ 58% SOD ↑ 7% CAT ↑ 67% POD | ↑ 17% | In shoot: ↑ 48% Na+, ↓ 17% K+, Na+/K+ ratio ~1.12 | ↑ 74% | |||
150 mM NaCl + SBP-9 | ↑ 4% SL, ↑ 15% RL, ↑ 4% SFW, ↑ 7% SDW, ↑ 22% RFW, ↓ 5% RDW | ↑ 5% Tchl | ↑ 133% SOD ↑ 93% CAT ↑ 133% POD | ↓ 13% | In shoot: ↑ 20% Na+, ↑ 3% K+ Na+/K+ ratio ~0.73 | ↑ 23% | |||
200 mM NaCl + Unprimed | ↓ 37% SL, ↓ 20% RL, ↓ 32% SFW, ↓ 38% SDW, ↓ 33% RFW, ↓ 64% RDW | ↓ 59% Tchl | ↑ 217% SOD ↑ 100% CAT ↑ 192% POD | ↑ 93% | In shoot: ↑ 107% Na+, ↓ 25% K+, Na+/K+ ratio ~1.73 | ↑ 165% | |||
200 mM NaCl + SBP-9 | ↓ 11% SL, ↓ 5% RL, ↓ 16% SFW, ↓ 17% SDW, ↓ 6% RFW, ↓ 41% RDW | ↓ 39% Tchl | ↑ 350% SOD ↑ 180% CAT ↑ 283% POD | ↑ 50% | In shoot: ↑ 54% Na+, ↓ 3% K+ Na+/K+ ratio ~1 | ↑ 110% | |||
Enterobacter P23. Seeds of Oryza sativa cv. Ratna treated with bacterial suspension. | Control | [49] | |||||||
150 mM NaCl + Unprimed | ↓ 51% GP, ↓ 97% SVI, ↓ 45% SFW, ↓ 58% SDW, ↓ 33% SL, ↓ 39% RFW, ↓ 63% RDW, ↓ 44% RL | ↓ 54% Chl a ↓ 80% Chl b ↓ 56% Tchl | ↑ 120% SOD ↑ 112% CAT ↑ 174% POD ↑ 700% PPO | ↑ 300% | N/A | ↑ 175% | N/A | ||
150 mM NaCl + P23 | ↓ 22% GP, ↓ 58% SVI, ↓ 16% SFW, ↓ 11% SL, ↓ 23% SDW, ↓ 15% RFW, ↓ 30% RDW, ↓ 11% RL | ↓ 13% Chl a ↓ 10% Chl b ↓ 8% Tchl | ↑ 32% SOD ↑ 46% CAT ↑ 70% POD ↑ 300% PPO | ↑ 195% | ↑ 75% | ||||
B. pumilus FAB10. Wheat seeds cv. 343 treated with FAB10. | Control | [51] | |||||||
75 mM NaCl + Unprimed | ↓ 17% SL, ↓ 35% RL, ↓ 49% SDW, ↓ 53% RDW, ↓ 35% SpDW, ↓ 21% GY, ↓ 17% GPr | N/A | ↑ 20% SOD ↑ 40% CAT ↑ 50% GR | ↑ 189% | N/A | ↑ 105% | |||
125 mM NaCl + Unprimed | ↓ 24% SL, ↓ 49% RL, ↓ 42% SDW, ↓ 67% RDW, ↓ 48% SpDW, ↓ 31% GY, ↓ 22% GPr | ↑ 23% SOD ↑ 80% CAT ↑ 75% GR | ↑ 189% | ↑ 146% | |||||
250 mM NaCl + Unprimed | ↓ 35% SL, ↓ 52% RL, ↓ 40% SDW, ↓ 76% RDW, ↓ 61% SpDW, ↓ 41% GY, ↓ 29% GPr | ↑ 25% SOD ↑ 80% CAT ↑ 75% GR | ↑ 260% | ↑ 171% | |||||
75 mM NaCl + FAB10 | ↓ 13% SL, ↓ 11% RL, ↓ 13% SDW, ↓ 20% RDW, ↓ 4% SpDW, ↓ 3% GY, ↓ 11% GPr | ↑ 5% SOD ↓ 20% CAT ↓ 25% GR | ↑ 103% | ↑ 77% | |||||
125 mM NaCl + FAB10 | ↓ 17% SL, ↓ 22% RL, ↓ 18% SDW, ↓ 43% RDW, ↓ 9% SpDW, ↓ 13% GY, ↓ 16% GPr | ↑ 10% SOD ↑ 20% CAT ↑ 0% GR | ↑ 180% | ↑ 123% | |||||
250 mM NaCl + FAB10 | ↓ 25% SL, ↓ 24% RL, ↓ 18% SDW, ↓ 51% RDW, ↓ 61% SpDW, ↓ 25% GY, ↓ 27% GPr | ↑ 12% SOD ↑ 20% CAT ↑ 0% GR | ↑ 237% | ↑ 139% | |||||
Consortium (R. leguminosarum + A. chroococcum) and/or Mel. Vicia faba seeds were treated with the consortium as peat-based inoculant and/or Mel solution | Saline soil Control | [124] | |||||||
25 µM Mel + Unprimed | ↑ 6% SL, ↑ 37% NL, ↑ 18% SFW, ↑ 24% SDW, ↑ 23% Y | ↑ 6% Chl a ↑ 11% Chl b ↑ 9% Car | N/A | N/A | N/A | ↑ 17% | N/A | ||
50 µM Mel + Unprimed | ↑ 24% SL, ↑ 56% NL, ↑ 41% SFW, ↑ 36% SDW, ↑ 41% Y | ↑ 30% Chl a ↑ 26% Chl b ↑ 18% Car | ↑ 30% | ||||||
100 µM Mel + Unprimed | ↑ 41% SL, ↑ 93% NL, ↑ 72% SFW, ↑ 78% SDW, ↑ 58% Y | ↑ 44% Chl a ↑ 80% Chl b ↑ 35% Car | ↑ 39% | ||||||
0 µM Mel + Primed | ↑ 18% SL, ↑ 43% NL, ↑ 25% SFW, ↑ 36% SDW, ↑ 48% Y | ↑ 31% Chl a ↑ 35% Chl b ↑ 28% Car | ↑ 44% | ||||||
25 µM Mel + Primed | ↑ 30% SL, ↑ 79% NL, ↑ 49% SFW, ↑ 56% SDW, ↑ 71% Y | ↑ 42% Chl a ↑ 59% Chl b ↑ 43% Car | ↑ 57% | ||||||
50 µM Mel + Primed | ↑ 70% SL, ↑ 97% NL, ↑ 68% SFW, ↑ 68% SDW, ↑ 82% Y | ↑ 56% Chl a ↑ 107% Chl b ↑ 66% Car | ↑ 89% | ||||||
100 µM Mel + Primed | ↑ 74% SL, ↑ 118% NL, ↑ 98% SFW, ↑ 104% SDW, ↑ 96% Y | ↑ 71% Chl a ↑ 118% Chl b ↑ 71% Car | ↑ 110% | ||||||
Non-saline soil Control | |||||||||
25 µM Mel + Unprimed | ↑ 6% SL, ↑ 14% NL, ↑ 10% SFW, ↑ 21% SDW, ↑ 18% Y | ↑ 9% Chl a ↑ 10% Chl b ↑ 4% Car | ↑ 5% | ||||||
50 µM Mel + Unprimed | ↑ 12% SL, ↑ 35% NL, ↑ 23% SFW, ↑ 31% SDW, ↑ 29% Y | ↑ 11% Chl a ↑ 24% Chl b ↑ 21% Car | ↑ 11% | ||||||
100 µM Mel + Unprimed | ↑ 16% SL, ↑ 49% NL, ↑ 38% SFW, ↑ 69% SDW, ↑ 32% Y | ↑ 16% Chl a ↑ 34% Chl b ↑ 24% Car | ↑ 45% | ||||||
0 µM Mel + Primed | ↑ 20% SL, ↑ 28% NL, ↑ 14% SFW, ↑ 27% SDW, ↑ 17% Y | ↑ 17% Chl a ↑ 24% Chl b ↑ 21% Car | ↑ 36% | ||||||
25 µM Mel + Primed | ↑ 29% SL, ↑ 49% NL, ↑ 24% SFW, ↑ 46% SDW, ↑ 25% Y | ↑ 23% Chl a ↑ 30% Chl b ↑ 30% Car | ↑ 94% | ||||||
50 µM Mel + Primed | ↑ 45% SL, ↑ 55% NL, ↑ 33% SFW, ↑ 57% SDW, ↑ 38% Y | ↑ 26% Chl a ↑ 42% Chl b ↑ 33% Car | ↑ 110% | ||||||
100 µM Mel + Primed | ↑ 49% SL, ↑ 76% NL, ↑ 52% SFW, ↑ 87% SDW, ↑ 45% Y | ↑ 30% Chl a ↑ 29% Chl b ↑ 40% Car | ↑ 139% | ||||||
A. aneurinilyticus ACC02, Paenibacillus ACC06 and Consortium (ACC02+ ACC06). French bean seeds inoculated with ACC02, ACC06 and consortium (ACC02 + ACC06) | Control | [88] | |||||||
0 mM NaCl + ACC02 | ↑ 10% SL, ↑ 50% RL, ↑ 158% SFW, ↑ 10% SDW, ↑ 50% RFW, ↑ 21% RDW | ↑ 36% Tchl | N/A | N/A | N/A | N/A | ↑ 9% | ||
0 mM NaCl + ACC06 | ↑ 30% SL, ↑ 30% RL, ↑ 216% SFW, ↑ 10% SDW, ↑ 60% RFW, ↑ 14% RDW | ↑ 29% Tchl | ↓ 9% | ||||||
0 mM NaCl + Consortium | ↑ 50% SL, ↑ 70% RL, ↑ 233% SFW, ↑ 80% SDW, ↑ 90% RFW, ↑ 85% RDW | ↑ 57% Tchl | ↑ 27% | ||||||
25 mM NaCl + Unprimed | |||||||||
25 mM NaCl + ACC02 | ↑ 33% SL, ↑ 79% RL, ↑ 120% SFW, ↑ 300% SDW, ↑ 46% RFW, ↑ 182% RDW | ↑ 28% Tchl | N/A | N/A | N/A | N/A | ↓ 38% | ||
25 mM NaCl + ACC06 | ↑ 47% SL, ↑ 58% RL, ↑ 120% SFW, ↑ 350% SDW, ↑ 36% RFW, ↑ 142% RDW | ↑ 35% Tchl | ↓ 42% | ||||||
25 mM NaCl + Consortium | ↑ 60% SL, ↑ 110% RL, ↑ 255% SFW, ↑ 425% SDW, ↑ 81% RFW, ↑ 220% RDW | ↑ 57% Tchl | ↓ 61% | ||||||
P. fluorescence, B. pumilus, E. aurantiacum and consortium (P. fluorescence + B. pumilus + E.aurantiacum) Wheat seeds soaked in bacterial inoculant containing single PGPR strains or the consortium of three bacterial cultures for 2 h. Saline soil ECe 13.41 | Unprimed seeds | [122] | |||||||
Seeds primed with P. fluorescence | Galaxy-13: ↑ 5% SL, ↑ 7% RL, ↑ 3% SFW, ↑ 2% SDW, ↑ 33% 100 GW, ↓ 13% RFW, ↓ 29% RDW Aas-11: ↑ 11% SL, ↑ 24% RL, ↑ 48% SFW, ↑ 144% RFW, ↑ 57% SDW, ↑ 75% RDW, ↑ 23% 100 GW | N/A | Galaxy-13: ↓ 30% SOD ↓ 0% POD ↑ 27% CAT Aas-11: ↓ 57% SOD ↓ 14% POD ↑ 25% CAT | N/A | Galaxy-13: In root: ↑ 50% Na+, ↑ 40% K+, Na+/K+ ratio ~0.19 In shoot: ↑ 28% Na+, ↑ 23% K+, Na+/K+ ratio ~3.9 Aas-11: In root: ↓ 13% Na+, ↑ 99% K+, Na+/K+ ratio ~0.16. In shoot: ↑ 92% Na+, ↑ 16% K+, Na+/K+ ratio ~3.4 | Galaxy-13: ↓ 20% Aas-11: ↑ 33% | N/A | ||
Seeds primed with B. pumilus | Galaxy-13: ↓ 7% SL, ↓ 18% SFW, ↓ 26% SDW, ↓ 8% RFW, ↓ 57% RDW, ↑ 67% RL, 31% 100 GW Aas-11: ↑ 13% SL, ↑ 21% RL, ↑ 61% SFW, ↑ 678% RFW, ↑ 66% SDW, ↑ 838% RDW, ↑ 53% 100 GW | Galaxy-13: ↓ 35% SOD ↓ 5% POD ↑ 4% CAT Aas-11: ↓ 65% SOD ↓ 38% POD ↑ 35% CAT | Galaxy-13: In root: ↑ 0% Na+, ↑ 34% K+, Na+/K+ ratio ~0.13 In shoot: ↓ 8% Na+, ↓ 19% K+, Na+/K+ ratio ~4.3 Aas-11: In root: ↓ 13% Na+, ↑ 195% K+, Na+/K+ ratio ~0.11. In shoot: ↑ 59% Na+, ↓ 12% K+, Na+/K+ ratio ~3.7 | Galaxy-13: ↑ 287% Aas-11: ↑ 150% | |||||
Seeds primed with E.aurantiacum | Galaxy-13: ↑ 6% SL, ↑ 47% RL, ↑ 3% SFW, ↑ 49% 100 GW, ↓ 17% RFW, ↓ 2% SDW, ↓ 28% RDW Aas-11: ↑ 10% SL, ↑ 7% RL, ↑ 52% SFW, ↑ 511% RFW, ↑ 71% SDW, ↑ 713% RDW, ↑ 47% 100 GW | Galaxy-13: ↑ 2% SOD ↑ 48% CAT ↓ 43% POD Aas-11: ↓ 65% SOD ↓ 57% POD ↓ 5% CAT | Galaxy-13: In root: ↑ 33% Na+, ↑ 34% K+, Na+/K+ ratio ~0.18 In shoot: ↑ 27% Na+, ↑ 0% K+, Na+/K+ ratio ~4.77. Aas-11: In root: ↓ 13% Na+, ↑ 286% K+, Na+/K+ ratio ~0.08 In shoot: ↑ 40% Na+, ↑ 22% K+, Na+/K+ ratio ~2.36 | Galaxy-13: ↑ 227% Aas-11: ↑ 110% | |||||
Seeds primed with a consortium | Galaxy-13: ↓ 1% SL, ↑ 73% RL, ↑ 6% SFW, ↑ 30% RFW, ↑ 7% SDW, ↑ 43% RDW, ↑ 53% 100 GW Aas-11: ↑ 13% SL, ↑ 3% RL, ↑ 65% SFW, ↑ 556% RFW, ↑ 77% SDW, ↑ 725% RDW, ↑ 48% 100 GW | Galaxy-13: ↑ 37% SOD ↓ 32% POD ↓ 6% CAT Aas-11: ↓ 57% SOD ↑ 24% POD ↑ 28% CAT | Galaxy-13: In root: ↑ 0% Na+, ↑ 114% K+, Na+/K+ ratio ~0.08 In shoot: ↑ 17% Na+, ↑ 15% K+, Na+/K+ ratio ~3.8 Aas-11: In root: ↑ 0% Na+, ↑ 173% K+, Na+/K+ ratio ~0.13 In shoot: ↑ 68% Na+, ↑ 30% K+, Na+/K+ ratio ~2.67 | Galaxy-13: ↑ 327% Aas-11: ↑ 17% | |||||
Sphingobacterium BHU-AV3. Bacterized tomato seeds with BHU-AV3 for 24h | Control | [47] | |||||||
200 mM NaCl + Unprimed | ↓ 52% SL, ↓ 49% RL, ↓ 54% TPDW | ↓ 44% Tchl | In shoot: ↑ 90% SOD ↑ 260% POD ↑ 100% PPO In root: ↑ 83% SOD ↑ 100% POD ↑ 53% PPO | N/A | In shoot: ↑ 258% Na+, ↓ 63% K+, Na+/K+ ratio ~3.6 In root: ↑ 190% Na+, ↓ 53% K+, Na+/K+ ratio ~3.5 | In shoot: ↑ 153% In root: ↑ 56% | N/A | ||
0 mM NaCl + BHU-AV3 | ↓ 11.3% SL, ↑ 16% RL, ↑ 11% TPDW | ↑ 5% Tchl | In shoot: ↓ 20% SOD ↓ 0% POD ↓ 25% PPO In root: ↑ 16% SOD ↑ 6% POD ↓ 12% PPO | In shoot: ↑ 9% Na+, ↑ 9% K+, Na+/K+ ratio ~0.3 In root: ↓ 5% Na+, ↑ 8% K+, Na+/K+ ratio ~0.5 | In shoot: ↓ 7% In root: ↓ 5% | ||||
200 mM NaCl + BHU-AV3 | ↓ 30% SL, ↓ 22% RL, ↓ 29% TPDW | ↓ 14% Tchl | In shoot: ↑ 10% SOD ↑ 1000% POD ↑ 50% PPO In root: ↑ 117% SOD ↑ 200% POD ↑ 71% PPO | In shoot: ↑ 130% Na+, ↓ 20% K+, Na+/K+ ratio ~1 In root: ↑ 115% Na+, ↓ 24% K+, Na+/K+ ratio ~1.6 | In shoot: ↑ 84% In root: ↑ 111% | ||||
K. sacchari MSK1. Mung bean seeds primed with MSK1 | Control | [36] | |||||||
50 mM NaCl + Unprimed | ↓ 8% SL, ↓ 8% RL, ↓ 5% SDW, ↓ 5% RDW, ↓ 15% SY, ↓ 3% GP | ↓ 15% Tchl ↓ 4% Car | ↑ 5% GR, ↑ 33% CAT ↑ 13% SOD ↑ 23% APX | ↑ 32% | In shoor: ↑ 100% Na+, ↑ 44% K+, Na+/K+ ratio ~0.46, ↓ 4% N, ↓ 19% P | ↑ 63% | N/A | ||
100 mM NaCl + Unprimed | ↓ 16% SL, ↓ 20% RL, ↓ 10% SDW, ↓ 15% RDW, ↓ 21% SY, ↓ 6% GP | ↓ 35% Tchl ↓ 9% Car | ↑ 15% GR ↑ 58% CAT ↑ 39% SOD ↑ 45% APX | ↑ 47% | In shoot: ↑ 200% Na+, ↑ 100% K+, Na+/K+ ratio ~0.5, ↓ 4% N, ↓ 28% P | ↑ 88% | |||
200 mM NaCl + Unprimed | ↓ 24% SL, ↓ 28% RL, ↓ 21% SDW, ↓ 35% RDW, ↓ 26% SY, ↓ 8% GP | ↓ 42% Tchl ↓ 19% Car | ↑ 35% GR ↑ 108% CAT ↑ 52% SOD ↑ 73% APX | ↑ 84% | In shoot: ↑ 450% Na+, ↑ 222% K+, Na+/K+ ratio ~0.57, ↓ 12% N, ↓ 44% P | ↑ 213% | |||
400 mM NaCl + Unprimed | ↓ 41% SL, ↓ 52% RL, ↓ 34% SDW, ↓ 55% RDW, ↓ 34% SY, ↓ 26% GP | ↓ 62% Tchl ↓ 33% Car | ↑ 64% GR ↑ 208% CAT ↑ 96% SOD ↑ 102% APX | ↑ 153% | In shoot: ↑ 800% Na+, ↑ 378% K+, Na+/K+ ratio ~0.63, ↓ 21% N, ↓ 59% P | ↑ 350% | |||
0 mM NaCl + MSK1 | ↑ 5% SL, ↑ 12% RL, ↑ 7% SDW, ↑ 15% RDW, ↑ 9% SY, ↑ 7% GP | ↑ 29% Tchl ↑ 7% Car | ↓ 9% GR ↓ 33% CAT ↓ 22% SOD ↓ 9% APX | ↓ 37% | In shoot: ↓ 67% Na+, ↓ 22% K+, Na+/K+ ratio ~0.14, ↑ 9% N, ↑ 15% P | ↓ 25% | |||
50 mM NaCl + MSK1 | ↓ 3% SL, ↑ 4% RL, ↓ 2% SDW, ↑ 3% RDW, ↑ 10% SY, ↑ 2% GP | ↓ 3% Tchl ↓ 0% Car | ↑ 2% GR ↑ 8% CAT ↑ 9% SOD ↑ 9% APX | ↑ 11% | In shoot: ↑ 33% Na+, ↑ 22% K+, Na+/K+ ratio ~0.36, ↓ 1% N, ↓ 41% P | ↑ 30% | |||
100 mM NaCl + MSK1 | ↓ 8% SL, ↓ 12% RL, ↓ 7% SDW, ↓ 10% RDW, ↓ 19% SY, ↓ 5% GP | ↓ 31% Tchl ↓ 8% Car | ↑ 11% GR ↑ 50% CAT ↑ 22% SOD ↑ 32% APX | ↑ 37% | In shoot: ↑ 183% Na+, ↑ 89% K+, Na+/K+ ratio ~0.5, ↓ 4% N, ↓ 22% P | ↑ 75% | |||
200 mM NaCl + MSK1 | ↓ 22% SL, ↓ 16% RL, ↓ 17% SDW, ↓ 25% RDW, ↓ 24% SY, ↓ 7% GP | ↓ 35% Tchl ↓ 13% Car | ↑ 33% GR ↑ 100% CAT ↑ 48% SOD ↑ 64% APX | ↑ 79% | In shoot: ↑ 433% Na+, ↑ 211% K+, Na+/K+ ratio ~0.57, ↓ 9% N, ↓ 37% P | ↑ 200% | |||
400 mM NaCl + MSK1 | ↓ 35% SL, ↓ 24% RL, ↓ 32% SDW, ↓ 48% RDW, ↓ 32% SY, ↓ 25% GP | ↓ 54% Tchl ↓ 27% Car | ↑ 60% GR ↑ 192% CAT ↑ 91% SOD ↑ 91% APX | ↑ 137% | In shoot: ↑ 783% Na+, ↑ 367% K+, Na+/K+ ratio ~0.63, ↓ 19% N, ↓ 57% P | ↑ 325% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha-Tran, D.M.; Nguyen, T.T.M.; Hung, S.-H.; Huang, E.; Huang, C.-C. Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. Int. J. Mol. Sci. 2021, 22, 3154. https://doi.org/10.3390/ijms22063154
Ha-Tran DM, Nguyen TTM, Hung S-H, Huang E, Huang C-C. Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. International Journal of Molecular Sciences. 2021; 22(6):3154. https://doi.org/10.3390/ijms22063154
Chicago/Turabian StyleHa-Tran, Dung Minh, Trinh Thi My Nguyen, Shih-Hsun Hung, Eugene Huang, and Chieh-Chen Huang. 2021. "Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review" International Journal of Molecular Sciences 22, no. 6: 3154. https://doi.org/10.3390/ijms22063154
APA StyleHa-Tran, D. M., Nguyen, T. T. M., Hung, S. -H., Huang, E., & Huang, C. -C. (2021). Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. International Journal of Molecular Sciences, 22(6), 3154. https://doi.org/10.3390/ijms22063154