Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce (Lactuca sativa L.)
Abstract
:1. Introduction
2. Results
2.1. Analysis of the Morphological and Growth Parameters
2.2. Analysis of the Epidermal Cell Morphology
2.3. Analysis of the Stomatal Properties
2.4. Anaysis of the Stomotal Conductance and Quantum Yield (Fv/Fm)
2.5. Analysis of the Proline Content
2.6. Analysis of the Chlorophyll Content
2.7. Analysis of Carbohydrates and Soluble Proteins
2.8. Expression of Photosysthesis-Related Genes
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Experimental Setup
4.2. Epidermal Cell and Stomata Characteristics
4.3. Stomatal Conductance and Quantum Yield (Fv/Fm)
4.4. Determination of the Proline Content
4.5. Chlorophyll Analyses
4.6. Determination of the Carbohydrate and Soluble Protein Contents
4.7. Quantitative Real-Time PCR Analysis
4.8. Data Collection and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McNellis, T.W.; Deng, X.W. Light control of seedling morphogenetic pattern. Plant Cell 1995, 7, 1749–1761. [Google Scholar] [PubMed] [Green Version]
- Chen, M.; Chory, J.; Fankhauser, C. Light signal transduction in higher plants. Annu. Rev. Genet. 2004, 38, 87–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fankhauser, C.; Chory, J. Light control of plant development. Annu. Rev. Cell Dev. Biol. 1997, 13, 203–229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quail, P.H. Photosensory perception and signalling in plant cells: New paradigms? Curr. Opin. Cell Biol. 2002, 14, 180–188. [Google Scholar] [CrossRef]
- Kendrick, R.E.; Kronenberg, G.H. Photomorphogenesis in Plants; Springer Science & Business Media: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Feng, L.; Raza, M.A.; Li, Z.; Chen, Y.; Khalid, M.H.B.; Du, J.; Liu, W.; Wu, X.; Song, C.; Yu, L.; et al. The influence of light intensity and leaf movement on photosynthesis characteristics and carbon balance of soybean. Front. Plant Sci. 2019, 9, 1952. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Shao, Q.; Xu, M.; Li, S.; Wu, M.; Tan, X.; Su, L. Effects of light quality on morphology, enzyme activities, and bioactive compound contents in Anoectochilus roxburghii. Front. Plant Sci. 2017, 8, 857. [Google Scholar] [CrossRef] [Green Version]
- Ouzounis, T.; Heuvelink, E.; Ji, Y.; Schouten, H.; Visser, R.; Marcelis, L. Blue and red LED lighting effects on plant biomass, stomatal conductance, and metabolite content in nine tomato genotypes. In Proceedings of the VIII International Symposium on Light in Horticulture, East Lansing, MI, USA, 22–26 May 2016; pp. 251–258. [Google Scholar]
- Fukuda, N.; Fujita, M.; Ohta, Y.; Sase, S.; Nishimura, S.; Ezura, H. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. Sci. Hortic. 2008, 115, 176–182. [Google Scholar] [CrossRef]
- Park, Y.G.; Jeong, B.R. How supplementary or night-interrupting low-intensity blue light affects the flower induction in chrysanthemum, a qualitative short-day plant. Plants 2020, 9, 1694. [Google Scholar] [CrossRef]
- Mou, B. Lettuce. In Leafy Salad Vegetables; Springer: Dordrecht, The Netherlands, 2008; pp. 75–116. [Google Scholar]
- Dougher, T.A.; Bugbee, B. Differences in the response of wheat, soybean and lettuce to reduced blue radiation. Photochem. Photobiol. 2001, 73, 199–207. [Google Scholar] [CrossRef]
- Lin, K.-H.; Huang, M.-Y.; Huang, W.-D.; Hsu, M.-H.; Yang, Z.-W.; Yang, C.-M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Borthwick, H.; Hendricks, S.; Toole, E.; Toole, V.K. Action of light on lettuce-seed germination. Bot. Gaz. 1954, 115, 205–225. [Google Scholar] [CrossRef]
- Fu, W.; Li, P.; Wu, Y. Effects of different light intensities on chlorophyll fluorescence characteristics and yield in lettuce. Sci. Hortic. 2012, 135, 45–51. [Google Scholar] [CrossRef]
- Stutte, G.W.; Edney, S.; Skerritt, T. Photoregulation of bioprotectant content of red leaf lettuce with light-emitting diodes. HortScience 2009, 44, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-H.; Goins, G.D.; Wheeler, R.M.; Sager, J.C. Green-light supplementation for enhanced lettuce growth under red-and blue-light-emitting diodes. HortScience 2004, 39, 1617–1622. [Google Scholar] [CrossRef] [Green Version]
- Dougher, T.A.; Bugbee, B. Evidence for yellow light suppression of lettuce growth. Photochem. Photobiol. 2001, 73, 208–212. [Google Scholar] [CrossRef]
- Jin, H.; Zhu, Z. Dark, light, and temperature: Key players in plant morphogenesis. Plant Physiol. 2019, 180, 1793. [Google Scholar] [CrossRef] [Green Version]
- Kozai, T.; Kino, S.; Jeong, B.; Kinowaki, M.; Ochiai, M.; Hayashi, M.; Mori, K. A sideward lighting system using diffusive optical fibers for production of vigorous micropropagated plantlets. In Proceedings of the International Symposium on Transplant Production Systems, Yokohama, Japan, 21–26 July 1992; pp. 237–242. [Google Scholar]
- Darwin, F. Über das Wachstum negativ heliotropischer Wurzeln im Licht und im Finstern. Arb. Bot. Instit. Würzburg 1879, 2, 521–528. [Google Scholar]
- Briggs, W.R.; Lin, C.-T. Photomorphogenesis—from one photoreceptor to 14: 40 years of progress. Mol. Plant 2012, 5, 531–532. [Google Scholar] [CrossRef] [Green Version]
- Briggs, W.R. Phototropism: Some history, some puzzles, and a look ahead. Plant. Physiol. 2014, 164, 13–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, J.; Choi, G. Phytochrome-interacting factors have both shared and distinct biological roles. Mol. Cells 2013, 35, 371–380. [Google Scholar] [CrossRef] [Green Version]
- Yokawa, K.; Kagenishi, T.; Baluška, F. Root photomorphogenesis in laboratory-maintained Arabidopsis seedlings. Trends Plant Sci. 2013, 18, 117–119. [Google Scholar] [CrossRef]
- Yokawa, K.; Kagenishi, T.; Kawano, T.; Mancuso, S.; Baluška, F. Illumination of Arabidopsis roots induces immediate burst of ROS production. Plant Signal. Behav. 2011, 6, 1460–1464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.; Liu, Y.; Jeong, H.K.; Jeong, B.R. Supplementary light source affects the growth and development of Codonopsis lanceolata seedlings. Int. J. Mol. Sci. 2018, 19, 3074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sack, L.; Buckley, T.N. The developmental basis of stomatal density and flux. Plant Physiol. 2016, 171, 2358–2363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Ren, X.; Jeong, B.R. Manipulating the difference between the day and night temperatures can enhance the quality of Astragalus membranaceus and Codonopsis lanceolata plug seedlings. Agronomy 2019, 9, 654. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.K.; Tiwari, Y.K.; Singh, V.; Patil, A.A.; Shanker, A.K.; Jyothi Lakshmi, N.; Vanaja, M.; Maheswari, M. Physiological and biochemical basis of extended and sudden heat stress tolerance in maize. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2018, 88, 249–263. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Zhang, Q.; Liu, N.; Xu, Q.; Hu, L. Differential physiological and metabolic response to low temperature in two zoysiagrass genotypes native to high and low latitude. PLoS ONE 2018, 13, e0198885. [Google Scholar]
- Liu, J.; Wang, W.; Wang, L.; Sun, Y. Exogenous melatonin improves seedling health index and drought tolerance in tomato. Plant Growth Regul. 2015, 77, 317–326. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C. Proline accumulation in plants: A review. Amino Acids 2008, 35, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef] [Green Version]
- Khedr, A.H.A.; Abbas, M.A.; Wahid, A.A.A.; Quick, W.P.; Abogadallah, G.M. Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J. Exp. Bot. 2003, 54, 2553–2562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, M.; Morishita, H.; Urano, K.; Shiozaki, N.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Yoshiba, Y. Effects of free proline accumulation in petunias under drought stress. J. Exp. Bot. 2005, 56, 1975–1981. [Google Scholar] [CrossRef] [Green Version]
- Kuznetsov, V.V.; Shevyakova, N.I. Stress responses of tobacco cells to high temperature and salinity. Proline accumulation and phosphorylation of polypeptides. Physiol. Plant. 1997, 100, 320–326. [Google Scholar] [CrossRef]
- Parvanova, D.; Popova, A.; Zaharieva, I.; Lambrev, P.; Konstantinova, T.; Taneva, S.; Atanassov, A.; Goltsev, V.; Djilianov, D. Low temperature tolerance of tobacco plants transformed to accumulate proline, fructans, or glycine betaine. Variable chlorophyll fluorescence evidence. Photosynthetica 2004, 42, 179–185. [Google Scholar] [CrossRef]
- Saradhi, P.P.; AliaArora, S.; Prasad, K.V.S.K. Proline accumulates in plants exposed to uv radiation and protects them against uv-induced peroxidation. Biochem. Biophys. Res. Commun. 1995, 209, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Díaz, P.; Borsani, O.; Marquez, A.; Monza, J. Osmotically induced proline accumulation in Lotus corniculatus leaves is affected by light and nitrogen source. Plant Growth Regul. 2005, 46, 223–232. [Google Scholar] [CrossRef]
- Calatayud, A.; Barreno, E. Response to ozone in two lettuce varieties on chlorophyll a fluorescence, photosynthetic pigments and lipid peroxidation. Plant. Physiol. Biochem. 2004, 42, 549–555. [Google Scholar] [CrossRef]
- Liu, Y.; Ren, X.; Jeong, B.R. Supplementary light source affects growth, metabolism, and physiology of Adenophora triphylla (Thunb.) A.D.C. seedlings. BioMed Res. Int. 2019, 2019, 6283989. [Google Scholar]
- Wei, H.; Zhao, J.; Hu, J.; Jeong, B.R. Effect of supplementary light intensity on quality of grafted tomato seedlings and expression of two photosynthetic genes and proteins. Agronomy 2019, 9, 339. [Google Scholar] [CrossRef] [Green Version]
- Leelavathi, S.; Bhardwaj, A.; Kumar, S.; Dass, A.; Pathak, R.; Pandey, S.S.; Tripathy, B.C.; Padmalatha, K.V.; Dhandapani, G.; Kanakachari, M.; et al. Genome-wide transcriptome and proteome analyses of tobacco psaA and psbA deletion mutants. Plant. Mol. Biol. 2011, 76, 407–423. [Google Scholar] [CrossRef]
- Khan, M.S.; Hameed, W.; Nozoe, M.; Shiina, T. Disruption of the psbA gene by the copy correction mechanism reveals that the expression of plastid-encoded genes is regulated by photosynthesis activity. J. Plant. Res. 2007, 120, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Xiao, J.; Wei, H.; Jeong, B.R. Supplementary light source affects growth and development of carnation ‘Dreambyul’ cuttings. Agronomy 2020, 10, 1217. [Google Scholar] [CrossRef]
- Ren, X.; Xue, J.; Wang, S.; Xue, Y.; Zhang, P.; Jiang, H.; Zhang, X. Proteomic analysis of tree peony (Paeonia ostii ‘Feng Dan’) seed germination affected by low temperature. J. Plant. Physiol. 2018, 224, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Muneer, S.; Soundararajan, P.; Jeong, B.R. Proteomic and antioxidant analysis elucidates the underlying mechanism of tolerance to hyperhydricity stress in in vitro shoot cultures of Dianthus caryophyllus. J. Plant Growth Regul. 2016, 35, 667–679. [Google Scholar] [CrossRef]
Cultivar (A) | Lighting Direction (B) | Shoot | Leaf | Root | Shoot/Root Ratio (Fresh Weight) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Height (cm) | Crown Diameter (mm) | Canopy Diameter (cm) | Fresh Weight (g) | Dry Weight (g) | Number | Length (cm) | Width (cm) | Length (cm) | Fresh Weight (g) | Dry Weight (g) | |||
“Caesar Green” | Top | 16.0 a z | 7.8 a | 15.7 cd | 19.34 b | 1.28 ab | 21 a | 11.5 c | 6.3 c | 20.3 b | 6.74 a | 0.43 a | 2.96 c |
Side | 15.4 ab | 7.2 ab | 19.2 ab | 20.50 ab | 1.24 ab | 20 a | 13.2 a-c | 6.9 c | 21.8 b | 5.39 ab | 0.28 b | 4.10 bc | |
Bottom | 14.2 c | 6.1 b | 19.3 ab | 19.21 b | 1.05 b | 17 b | 14.8 a | 6.3 c | 21.1 b | 3.82 bc | 0.22 bc | 5.72 b | |
“Polla” | Top | 15.8 ab | 7.2 ab | 15.1 d | 20.39 ab | 1.28 ab | 16 b | 11.8 c | 9.8 a | 26.4 a | 4.83 b | 0.32 ab | 4.59 bc |
Side | 15.8 ab | 6.5 b | 17.5 bc | 23.57 a | 1.38 a | 16 b | 12.5 bc | 10.0 a | 23.3 ab | 4.23 bc | 0.28 b | 5.82 b | |
Bottom | 14.9 bc | 6.3 b | 20.0 a | 18.85 b | 1.00 b | 13 c | 13.6 ab | 8.7 b | 23.9 ab | 2.75 c | 0.16 c | 7.48 a | |
F-test | A | NS y | NS | NS | NS | NS | *** | NS | *** | ** | * | NS | *** |
B | *** | * | *** | * | NS | *** | *** | * | NS | ** | * | *** | |
A × B | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS |
Gene | Forward (5′ to 3′) | Reverse (5′ to 3′) |
---|---|---|
PsaA | ATTTGACTGTTGGCGGGTCT | CCCGGTCTAGCCCATTCC |
PsbA | ATTCGTGCGCTTGGGAGTC | AAGACGGTTTTCGGTGCTG |
18S | ATGATAACTCGACGGATCGC | CTTGGATGTGGTAGCCGT |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Wei, H.; Jeong, B.R. Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce (Lactuca sativa L.). Int. J. Mol. Sci. 2021, 22, 3157. https://doi.org/10.3390/ijms22063157
Wang M, Wei H, Jeong BR. Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce (Lactuca sativa L.). International Journal of Molecular Sciences. 2021; 22(6):3157. https://doi.org/10.3390/ijms22063157
Chicago/Turabian StyleWang, Mengzhao, Hao Wei, and Byoung Ryong Jeong. 2021. "Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce (Lactuca sativa L.)" International Journal of Molecular Sciences 22, no. 6: 3157. https://doi.org/10.3390/ijms22063157
APA StyleWang, M., Wei, H., & Jeong, B. R. (2021). Lighting Direction Affects Leaf Morphology, Stomatal Characteristics, and Physiology of Head Lettuce (Lactuca sativa L.). International Journal of Molecular Sciences, 22(6), 3157. https://doi.org/10.3390/ijms22063157