Lipids and Antiplatelet Therapy: Important Considerations and Future Perspectives
Abstract
:1. Platelet Lipids
2. Antiplatelet Therapy
3. High-Density Lipoprotein (HDL) and Discontinuation of P2Y12 Inhibitors
4. Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- O’Donnell, V.B.; Murphy, R.C.; Watson, S.P. Platelet Lipidomics: Modern day perspective on lipid discovery and characterization in platelets. Circ. Res. 2014, 114, 1185–1203. [Google Scholar] [CrossRef]
- Reddy, E.C.; Rand, M.L. Procoagulant phosphatidylserine-exposing platelets in vitro and in vivo. Front. Cardiovasc. Med. 2020, 7, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zwaal, R.F.A.; Comfurius, P.; Van Deenen, L.L.M. Membrane asymmetry and blood coagulation. Nat. Cell Biol. 1977, 268, 358–360. [Google Scholar] [CrossRef] [PubMed]
- Clark, S.R.; Thomas, C.P.; Hammond, V.J.; Aldrovandi, M.; Wilkinson, G.W.; Hart, K.W.; Murphy, R.C.; Collins, P.W.; O’Donnell, V.B. Characterization of platelet aminophospholipid externalization reveals fatty acids as molecular determinants that regulate coagulation. Proc. Natl. Acad. Sci. USA 2013, 110, 5875–5880. [Google Scholar] [CrossRef] [Green Version]
- Van Kruchten, R.; Mattheij, N.J.A.; Saunders, C.; Feijge, M.A.H.; Swieringa, F.; Wolfs, J.L.N.; Collins, P.W.; Heemskerk, J.W.M.; Bevers, E.M. Both TMEM16F-dependent and TMEM16F-independent pathways contribute to phosphatidylserine exposure in platelet apoptosis and platelet activation. Blood 2013, 121, 1850–1857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lagoutte-Renosi, J.; Allemand, F.; Ramseyer, C.; Rabani, V.; Davani, S. Influence of antiplatelet agents on the lipid composition of platelet plasma membrane: A lipidomics approach with ticagrelor and its active metabolite. Int. J. Mol. Sci. 2021, 22, 1432. [Google Scholar] [CrossRef]
- Tang, X.; Halleck, M.S.; Schlegel, R.A.; Williamson, P. A subfamily of P-type ATpases with aminophospholipid transporting activity. Science 1996, 272, 1495–1497. [Google Scholar] [CrossRef]
- Kamp, D.; Haest, C.W. Evidence for a role of the multidrug resistance protein (MRP) in the outward translocation of NBD-phospholipids in the erythrocyte membrane. Biochim. Biophys. Acta (BBA) Biomembr. 1998, 1372, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Ravi, S.; Chacko, B.; Sawada, H.; Kramer, P.A.; Johnson, M.S.; Benavides, G.A.; O’Donnell, V.; Marques, M.B.; Darley-Usmar, V.M. Metabolic plasticity in resting and thrombin activated platelets. PLoS ONE 2015, 10, e0123597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adili, R.; Voigt, E.M.; Bormann, J.L.; Foss, K.N.; Hurley, L.J.; Meyer, E.S.; Veldman, A.J.; Mast, K.A.; West, J.L.; Whiteheart, S.W.; et al. In vivo modeling of docosahexaenoic acid and eicosapentaenoic acid-mediated inhibition of both platelet function and accumulation in arterial thrombi. Platelets 2019, 30, 271–279. [Google Scholar] [CrossRef]
- Herová, M.; Schmid, M.; Gemperle, C.; Hersberger, M. ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J. Immunol. 2015, 194, 2330–2337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, J.; Hawley, M.; Holinstat, M. The expansive role of oxylipins on platelet biology. J. Mol. Med. (Berl.) 2017, 95, 575–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, J.J.; Chen, J.; Jiang, Z.X.; Zhou, Z.; Zhou, C.N. Resolvin D1 alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 signaling pathway. J. Biol. Regul. Homeost. Agents 2020, 34. [Google Scholar] [CrossRef]
- Valles, J.; Aznar, J.; Santos, M. Composition of platelet fatty acids and their modulation by plasma fatty acids in humans: Effect of age and sex. Atherosclerosis 1988, 71, 215–225. [Google Scholar] [CrossRef]
- Les, I.; Ruiz-Irastorza, G.; Khamashta, M.A. Intensity and duration of anticoagulation therapy in antiphospholipid syndrome. Semin. Thromb. Hemost. 2012, 38, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Lordan, R.; Tsoupras, A.; Zabetakis, I.; Demopoulos, C.A. Forty years since the structural elucidation of platelet-activating factor (PAF): Historical, current, and future research perspectives. Molecules 2019, 24, 4414. [Google Scholar] [CrossRef] [Green Version]
- Thomas, C.P.; Morgan, L.T.; Maskrey, B.H.; Murphy, R.C.; Kühn, H.; Hazen, S.L.; Goodall, A.H.; Hamali, H.A.; Collins, P.W.; O’Donnell, V.B. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J. Biol. Chem. 2010, 285, 6891–6903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Futerman, A.H.; Hannun, Y.A. The complex life of simple sphingolipids. EMBO Rep. 2004, 5, 777–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jang, D.; Kwon, H.; Jeong, K.; Lee, J.; Pak, Y. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J. Cell Sci. 2015, 128, 2179–2190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, A.; Cheng, J.; Hirakawa, M.; Furukawa, K.; Kusunoki, S.; Fujimoto, T. Gangliosides GM1 and GM3 in the living cell membrane form clusters susceptible to cholesterol depletion and chilling. Mol. Biol. Cell 2007, 18, 2112–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsuya, K.; Kaneko, K.; Kasahara, K. Function of platelet glycosphingolipid microdomains/lipid rafts. Int. J. Mol. Sci. 2020, 21, 5539. [Google Scholar] [CrossRef]
- Zhang, L.; Orban, M.; Lorenz, M.; Barocke, V.; Braun, D.; Urtz, N.; Schulz, C.; Von Brühl, M.-L.; Tirniceriu, A.; Gaertner, F.; et al. A novel role of sphingosine 1-phosphate receptor S1pr1 in mouse thrombopoiesis. J. Exp. Med. 2012, 209, 2165–2181. [Google Scholar] [CrossRef] [PubMed]
- Fotakis, P.; Kothari, V.; Bornfeldt, K.E.; Tall, A.R.; Thomas, D.G.; Westerterp, M.; Molusky, M.M.; Altin, E.; Abramowicz, S.; Wang, N.; et al. Anti-inflammatory effects of HDL (high-density lipoprotein) In macrophages predominate over proinflammatory effects in atherosclerotic plaques. Arter. Thromb. Vasc. Biol. 2019, 39, e253–e272. [Google Scholar] [CrossRef]
- Denorme, F.; Vanhoorelbeke, K.; De Meyer, S.F. Von willebrand factor and platelet glycoprotein ib: A thromboinflammatory axis in stroke. Front. Immunol. 2019, 10, 2884. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, X.; Shi, X.; Zhu, M.; Wang, J.; Huang, S.; Huang, X.; Wang, H.; Li, L.; Deng, H.; et al. Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J. Hematol. Oncol. 2019, 12, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Dobrotova, M.; Skornova, I.; Sokol, J.; Kubisz, P.; Stasko, J.; Simurda, T. Successful use of a highly purified plasma von willebrand factor concentrate containing little FVIII for the long-term prophylaxis of severe (Type 3) Von willebrand’s disease. Semin. Thromb. Hemost. 2017, 43, 639–641. [Google Scholar] [CrossRef] [Green Version]
- Swystun, L.L.; Lillicrap, D. Genetic regulation of plasma von Willebrand factor levels in health and disease. J. Thromb. Haemost. 2018, 16, 2375–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leebeek, F.W.G. A prothrombotic von Willebrand factor variant. Blood 2019, 133, 288–289. [Google Scholar] [CrossRef] [Green Version]
- Sokol, J.; Skereňová, M.; Ivanková, J.; Simurda, T.; Staško, J. Association of genetic variability in selected genes in patients with deep vein thrombosis and platelet hyperaggregability. Clin. Appl. Thromb. Hemost. 2018, 24, 1027–1032. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Galeano, J.E.; Becker, D.M.; Wilson, A.F.; Yanek, L.R.; Bray, P.; Vaidya, D.; Faraday, N.; Becker, L.C. A novel variant in the platelet endothelial aggregation receptor-1 gene is associated with increased platelet aggregability. Arter. Thromb. Vasc. Biol. 2008, 28, 1484–1490. [Google Scholar] [CrossRef] [Green Version]
- Tomaniak, M.; Katagiri, Y.; Modolo, R.; De Silva, R.; Khamis, R.Y.; Bourantas, C.V.; Torii, R.; Wentzel, J.J.; Gijsen, F.J.H.; Van Soest, G.; et al. Vulnerable plaques and patients: State-of-the-art. Eur. Hear. J. 2020, 41, 2997–3004. [Google Scholar] [CrossRef] [PubMed]
- Badimon, L.; Vilahur, G. Thrombosis formation on atherosclerotic lesions and plaque rupture. J. Intern. Med. 2014, 276, 618–632. [Google Scholar] [CrossRef] [PubMed]
- Van De Werf, F. New antithrombotic agents: Are they needed and what can they offer to patients with a non-ST-elevation acute coronary syndrome? Eur. Hear. J. 2009, 30, 1695–1702. [Google Scholar] [CrossRef]
- Angiolillo, D.J. The evolution of antiplatelet therapy in the treatment of acute coronary syndromes from aspirin to the present day. Drugs 2012, 72, 2087–2116. [Google Scholar] [CrossRef]
- Hybiak, J.; Broniarek, I.; Kiryczyński, G.; Los, L.; Rosik, J.; Machaj, F.; Sławiński, H.; Jankowska, K.; Urasińska, E.; Laura, D.L. Aspirin and its pleiotropic application. Eur. J. Pharmacol. 2020, 866, 172762. [Google Scholar] [CrossRef]
- Flower, R. What are all the things that aspirin does? BMJ 2003, 327, 572–573. [Google Scholar] [CrossRef]
- Jin, J.; Daniel, J.L.; Kunapuli, S.P. Molecular basis for ADP-induced platelet activation. IIJ. The P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J. Biol. Chem. 1998, 273, 2030–2034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geiger, J.; Brich, J.; Hönig-Liedl, P.; Eigenthaler, M.; Schanzenbächer, P.; Herbert, J.M.; Walter, U. Specific impairment of human platelet P2YACADP receptor–mediated signaling by the antiplatelet drug clopidogrel. Arter. Thromb. Vasc. Biol. 1999, 19, 2007–2011. [Google Scholar] [CrossRef] [Green Version]
- Cattaneo, M. 14-The platelet P2 receptors. In Platelets, 4th ed.; Michelson, A.D., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 259–277. [Google Scholar]
- Dorsam, R.T.; Kunapuli, S.P. Central role of the P2Y12 receptor in platelet activation. J. Clin. Investig. 2004, 113, 340–345. [Google Scholar] [CrossRef]
- Valgimigli, M.; Bueno, H.; Byrne, R.A.; Collet, J.-P.; Costa, F.; Jeppsson, A.; Jüni, P.; Kastrati, A.; Kolh, P.; Mauri, L.; et al. 2017 ESC focused update on dual antiplatelet therapy in coronary artery disease developed in collaboration with EACTS: The Task Force for dual antiplatelet therapy in coronary artery disease of the European Society of Cardiology (ESC) and of the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Hear. J. 2018, 39, 213–260. [Google Scholar] [CrossRef]
- Knuuti, J.; Wijns, W.; Achenbach, S.; Agewall, S.; Barbato, E.; Bax, J.J.; Capodanno, D.; Cuisset, T.; Deaton, C.; Dickstein, K.; et al. 2019 ESC Guidelines for the diagnosis and management of chronic coronary syndromes. Eur. Heart J. 2020, 41, 407–477. [Google Scholar] [CrossRef]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur. Hear. J. 2020. [Google Scholar] [CrossRef]
- Schüpke, S.; Neumann, F.-J.; Menichelli, M.; Mayer, K.; Bernlochner, I.; Wöhrle, J.; Richardt, G.; Liebetrau, C.; Witzenbichler, B.; Antoniucci, D.; et al. Ticagrelor or prasugrel in patients with acute coronary syndromes. N. Engl. J. Med. 2019, 381, 1524–1534. [Google Scholar] [CrossRef]
- Ibanez, B.; James, S.; Agewall, S.; Antunes, M.J.; Bucciarelli-Ducci, C.; Bueno, H.; Caforio, A.L.P.; Crea, F.; Goudevenos, J.A.; Halvorsen, S.; et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC). Eur. Hear. J. 2017, 39, 119–177. [Google Scholar] [CrossRef] [Green Version]
- Angiolillo, D.J.; Rollini, F.; Gurbel, P.A.; Hochholzer, W.; De Luca, L.; Bonello, L.; Aradi, D.; Cuisset, T.; Tantry, U.S.; Wang, T.Y.; et al. International expert consensus on switching platelet P2Y 12 receptor–inhibiting therapies. Circulation 2017, 136, 1955–1975. [Google Scholar] [CrossRef] [PubMed]
- AstraZeneca. Brilique 60 mg Film Coated Tablets. Available online: https://www.medicines.org.uk/emc/product/7606/smpc (accessed on 31 January 2021).
- SANOFI. Plavix 75 mg Film-Coated Tablets. Available online: https://www.medicines.org.uk/emc/product/5935/smpc (accessed on 31 January 2021).
- Accord. Prasugrel 10mg Film-Coated Tablets. Available online: https://www.medicines.org.uk/emc/product/10033/smpc (accessed on 31 January 2021).
- Farid, N.A.; Kurihara, A.; Wrighton, S.A. Metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and Prasugrel in humans. J. Clin. Pharmacol. 2010, 50, 126–142. [Google Scholar] [CrossRef]
- Rabani, V.; Montange, D.; Meneveau, N.; Davani, S. Impact of ticagrelor on P2Y1 and P2Y12 localization and on cholesterol levels in platelet plasma membrane. Platelets 2017, 29, 709–715. [Google Scholar] [CrossRef]
- Swami, A.; Kaur, V. von Willebrand disease: A concise review and update for the practicing physician. Clin. Appl. Thromb. Hemost. 2017, 23, 900–910. [Google Scholar] [CrossRef]
- Van Der Stoep, M.; Korporaal, S.J.; Van Eck, M. High-density lipoprotein as a modulator of platelet and coagulation responses. Cardiovasc. Res. 2014, 103, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Paes, A.M.D.A.; Gaspar, R.S.; Fuentes, E.; Wehinger, S.; Palomo, I.; Trostchansky, A. Lipid metabolism and signaling in platelet function. Single Mol. Single Cell Seq. 2019, 1127, 97–115. [Google Scholar] [CrossRef]
- Camont, L.; Lhomme, M.; Rached, F.; Le Goff, W.; Nègre-Salvayre, A.; Salvayre, R.; Calzada, C.; Lagarde, M.; Chapman, M.J.; Kontush, A. Small, dense high-density lipoprotein-3 particles are enriched in negatively charged phospholipids: Relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti-inflammatory, and antiapoptotic functionalities. Arter. Thromb. Vasc. Biol. 2013, 33, 2715–2723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Aicha, S.; Badimon, L.; Vilahur, G. Advances in HDL: Much more than lipid transporters. Int. J. Mol. Sci. 2020, 21, 732. [Google Scholar] [CrossRef] [Green Version]
- Naqvi, T.Z.; Shah, P.K.; Ivey, P.A.; Molloy, M.D.; Thomas, A.M.; Panicker, S.; Ahmed, A.; Cercek, B.; Kaul, S. Evidence that high-density lipoprotein cholesterol is an independent predictor of acute platelet-dependent thrombus formation. Am. J. Cardiol. 1999, 84, 1011–1017. [Google Scholar] [CrossRef]
- Ho, P.M.; Peterson, E.D.; Wang, L.; Magid, D.J.; Fihn, S.D.; Larsen, G.C.; Jesse, R.A.; Rumsfeld, J.S. Incidence of death and acute myocardial infarction associated with stopping clopidogrel after acute coronary syndrome. JAMA 2008, 299, 532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lordkipanidzé, M.; Diodati, J.G.; Pharand, C. Possibility of a rebound phenomenon following antiplatelet therapy withdrawal: A look at the clinical and pharmacological evidence. Pharmacol. Ther. 2009, 123, 178–186. [Google Scholar] [CrossRef]
- Ho, P.M.; Tsai, T.T.; Wang, T.Y.; Shetterly, S.M.; Clarke, C.L.; Go, A.S.; Sedrakyan, A.; Rumsfeld, J.S.; Peterson, E.D.; Magid, D.J. Adverse events after stopping clopidogrel in post–acute coronary syndrome patients: Insights from a large integrated healthcare delivery system. Circ. Cardiovasc. Qual. Outcomes 2010, 3, 303–308. [Google Scholar] [CrossRef] [Green Version]
- Djukanovic, N.; Todorovic, Z.; Obradovic, S.; Zamaklar-Trifunovic, D.; Njegomirovic, S.; Milic, N.M.; Prostran, M.; Ostojic, M. Abrupt cessation of one-year clopidogrel treatment is not associated with thrombotic events. J. Pharmacol. Sci. 2011, 117, 12–18. [Google Scholar] [CrossRef] [Green Version]
- Obradović, S.; Djukanović, N.; Todorović, Z.; Markovic, I.; Zamaklar-Trifunovic, D.; Protic, D.; Ostojic, M. Men with lower HDL cholesterol levels have significant increment of soluble CD40 ligand and high-sensitivity CRP levels following the cessation of long-term clopidogrel therapy. J. Atheroscler. Thromb. 2015, 22, 284–292. [Google Scholar] [CrossRef] [Green Version]
- Gautam, I.; Storad, Z.; Filipiak, L.; Huss, C.; Meikle, C.K.; Worth, R.G.; Wuescher, L.M. From classical to unconventional: The immune receptors facilitating platelet responses to infection and inflammation. Biology (Basel) 2020, 9, 343. [Google Scholar] [CrossRef] [PubMed]
- Zoccal, K.F.; Gardinassi, L.G.; Guimarães, F.S.; Faccioli, L.H.; Sorgi, C.A.; Meirelles, A.F.G.; Bordon, K.C.F.; Glezer, I.; Cupo, P.; Matsuno, A.K.; et al. Cd36 shunts eicosanoid metabolism to repress CD14 licensed interleukin-1β release and inflammation. Front. Immunol. 2018, 9, 890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pérez, M.M.; Pimentel, V.E.; Fuzo, C.A.; da Silva-Neto, P.V.; Toro, D.M.; Souza, C.O.S.; Fraga-Silva, T.F.C.; Gardinassi, L.G.; de Carvalho, J.C.S.; Neto, N.T.; et al. Cholinergic and lipid mediators crosstalk in Covid-19 and the impact of glucocorticoid therapy. medRxiv 2021. [Google Scholar] [CrossRef]
- Berger, M.; Raslan, Z.; Aburima, A.; Magwenzi, S.; Wraith, K.S.; Spurgeon, B.E.; Hindle, M.S.; Law, R.; Febbraio, M.; Naseem, K.M. Atherogenic lipid stress induces platelet hyperactivity through CD36-mediated hyposensitivity to prostacyclin: The role of phosphodiesterase 3A. Haematologica 2019, 105, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Brundert, M.; Heeren, J.; Merkel, M.; Carambia, A.; Herkel, J.; Groitl, P.; Dobner, T.; Ramakrishnan, R.; Moore, K.J.; Rinninger, F. Scavenger receptor CD36 mediates uptake of high density lipoproteins in mice and by cultured cells. J. Lipid Res. 2011, 52, 745–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valiyaveettil, M.; Kar, N.; Ashraf, M.Z.; Byzova, T.V.; Febbraio, M.; Podrez, E.A. Oxidized high-density lipoprotein inhibits platelet activation and aggregation via scavenger receptor BI. Blood 2008, 111, 1962–1971. [Google Scholar] [CrossRef]
- Nofer, J.-R.; Van Eck, M. HDL scavenger receptor class B type I and platelet function. Curr. Opin. Lipidol. 2011, 22, 277–282. [Google Scholar] [CrossRef] [PubMed]
- Mineo, C.; Deguchi, H.; Griffin, J.H.; Shaul, P.W. Endothelial and antithrombotic actions of HDL. Circ. Res. 2006, 98, 1352–1364. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Q.; Zhao, S.; Yu, B.; Wang, X.; Matyal, R.; Li, Y.; Jiang, Z. High-density lipoprotein increases the uptake of oxidized low density lipoprotein via PPARY/CD36 pathway in inflammatory adipocytes. Int. J. Biol. Sci. 2015, 11, 256–265. [Google Scholar] [CrossRef] [PubMed]
- Assinger, A.; Koller, F.; Schmid, W.; Zellner, M.; Babeluk, R.; Koller, E.; Volf, I. Specific binding of hypochlorite-oxidized HDL to platelet CD36 triggers proinflammatory and procoagulant effects. Atherosclerosis 2010, 212, 153–160. [Google Scholar] [CrossRef]
- Podrez, E.A.; Byzova, T.V.; Febbraio, M.; Salomon, R.G.; Ma, Y.; Valiyaveettil, M.; Poliakov, E.; Sun, M.; Finton, P.J.; Curtis, B.R.; et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat. Med. 2007, 13, 1086–1095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Djukanovic, N.; Todorovic, Z.; Obradovic, S.; Njegomirovic, S.; Zamaklar-Trifunovic, D.; Protic, D.; Ostojic, M. Clopidogrel cessation triggers aspirin rebound in patients with coronary stent. J. Clin. Pharm. Ther. 2013, 39, 69–72. [Google Scholar] [CrossRef]
- Viñals, M.; Bermúdez, I.; Alegret, M.; Laguna, J.C.; Sanchez, R.M.; Llaverias, G.; Alegret, M.; Sanchez, R.M.; Vázquez-Carrera, M.; Laguna, J.C. Aspirin increases CD36, SR-BI, and ABCA1 expression in human THP-1 macrophages. Cardiovasc. Res. 2005, 66, 141–149. [Google Scholar] [CrossRef] [Green Version]
- Đurašević, S.; Stojković, M.; Đorđević, J.; Todorović, Z.; Mitić, B.; Bogdanović, L.; Pavlović, S.; Borković-Mitić, S.; Grigorov, I.; Bogojević, D.; et al. The effects of meldonium on the renal acute ischemia/reperfusion injury in rats. Int. J. Mol. Sci. 2019, 20, 5747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Đurašević, S.; Stojković, M.; Sopta, J.; Pavlović, S.; Borković-Mitić, S.; Ivanović, A.; Jasnić, N.; Tosti, T.; Đurović, S.; Đorđević, J.; et al. The effects of meldonium on the acute ischemia/reperfusion liver injury in rats. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Skotland, T.; Sandvig, K.; Llorente, A. Lipids in exosomes: Current knowledge and the way forward. Prog. Lipid Res. 2017, 66, 30–41. [Google Scholar] [CrossRef]
- Valkonen, S.; Holopainen, M.; Colas, R.A.; Impola, U.; Dalli, J.; Käkelä, R.; Siljander, P.R.-M.; Laitinen, S. Lipid mediators in platelet concentrate and extracellular vesicles: Molecular mechanisms from membrane glycerophospholipids to bioactive molecules. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 2019, 1864, 1168–1182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Lipid Categories | |
---|---|
01. Fatty Acyls (FA) | 04. Sphingolipids (SP) |
(FA01) Fatty Acids and Conjugates | (SP01) Sphingoid bases |
(FA02) Octadecanoids | (SP02) Ceramides |
(FA03) Eicosanoids | (SP03) Phosphosphingolipids |
(FA04) Docosanoids | (SP04) Phosphonosphingolipids |
(FA05) Fatty alcohols | (SP05) Neutral glycosphingolipids |
(FA06) Fatty aldehydes | (SP06) Acidic glycosphingolipids |
(FA07) Fatty esters | (SP07) Basic glycosphingolipids |
(FA08) Fatty amides | (SP08) Amphoteric glycosphingolipids |
(FA09) Fatty nitriles | (SP09) Arsenosphingolipids |
(FA10) Fatty ethers | (SP00) Other Sphingolipids |
(FA11) Hydrocarbons | 05. Sterol Lipids (ST) |
(FA12) Oxygenated hydrocarbons | (ST01) Sterols |
(FA13) Fatty acyl glycosides | (ST02) Steroids |
(FA00) Other Fatty Acyls | (ST03) Secosteroids |
02. Glycerolipids (GL) | (ST04) Bile acids and derivatives |
(GL01) Monoradylglycerols | (ST05) Steroid conjugates |
(GL02) Diradylglycerols | (ST00) Other Sterol lipids |
(GL03) Triradylglycerols | 06. Prenol Lipids (PR) |
(GL04) Glycosylmonoradylglycerols | (PR01) Isoprenoids |
(GL05) Glycosyldiradylglycerols | (PR02) Quinones and hydroquinones |
(GL00) Other Glycerolipids | (PR03) Polyprenols |
03. Glycerophospholipids (GP) | (PR04) Hopanoids |
(GP01) Glycerophosphocholines | (PR00) Other Prenol lipids |
(GP02) Glycerophosphoethanolamines | 07. Saccharolipids (SL) |
(GP03) Glycerophosphoserines | (SL01) Acylaminosugars |
(GP04) Glycerophosphoglycerols | (SL02) Acylaminosugar glycans |
(GP05) Glycerophosphoglycerophosphates | (SL03) Acyltrehaloses |
(GP06) Glycerophosphoinositols | (SL04) Acyltrehalose glycans |
(GP07) Glycerophosphoinositol monophosphates | (SL05) Other acyl sugars |
(GP08) Glycerophosphoinositol bisphosphates | (SL00) Other Saccharolipids |
(GP09) Glycerophosphoinositol trisphosphates | 08. Polyketides (PK) |
(GP10) Glycerophosphates | (PK01) Linear polyketides |
(GP11) Glyceropyrophosphates | (PK02) Halogenated acetogenins |
(GP12) Glycerophosphoglycerophosphoglycerols | (PK03) Annonaceae acetogenins |
(GP13) CDP-Glycerols | (PK04) Macrolides and lactone polyketides |
(GP14) Glycosylglycerophospholipids | (PK05) Ansamycins and related polyketides |
(GP15) Glycerophosphoinositolglycans | (PK06) Polyenes |
(GP16) Glycerophosphonocholines | (PK07) Linear tetracyclines |
(GP17) Glycerophosphonoethanolamines | (PK08) Angucyclines |
(GP18) Di-glycerol tetraether phospholipids | (PK09) Polyether antibiotics |
(GP19) Glycerol-nonitol tetraether phospholipids | (PK10) Aflatoxins and related substances |
(GP20) Oxidized glycerophospholipids | (PK11) Cytochalasins |
(GP00) Other Glycerophospholipids | (PK12) Flavonoids |
(PK13) Aromatic polyketides | |
(PK14) Non-ribosomal peptide/polyketide hybrids | |
(PK15) Phenolic lipids | |
(PK00) Other Polyketides |
Ticlopidine | Clopidogrel | Prasugrel | Ticagrelor | |
---|---|---|---|---|
Chemical structure | Thienopyridine | Thienopyridine | Thienopyridine | Cyclopentyltri azolopyrimidine |
Receptor binding | Irreversible | Irreversible | Irreversible | Reversible |
Prodrug | Yes | Yes | Yes | No |
Onset of action | ~6 h | 2–8 h | 0.5–4 h | 0.5–4 h |
Half-life (active metabolite) | 12.6 h | 30 min | 7 h | 9 h |
Metabolism | Primarily CYP2B6 and CYP2C19 | Primarily CYP2C19 | Primarily hydrolysis by esterases | Primarily CYP3A4 |
Loading dose | 500 mg | 300 or 600 mg | 60 mg | 180 mg |
Maintenance dose | 2 × 250 mg | 75 mg | 10 mg | 2 × 90 mg |
Cessation before non-emergent surgery | At least fivedays | At least five days | At least seven days | At least three days |
Elimination | Urine 60% and feces 23% | Urine 50% and feces 46% | Urine 68% and feces 27% | Urine 26% and feces 58% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Đukanović, N.; Obradović, S.; Zdravković, M.; Đurašević, S.; Stojković, M.; Tosti, T.; Jasnić, N.; Đorđević, J.; Todorović, Z. Lipids and Antiplatelet Therapy: Important Considerations and Future Perspectives. Int. J. Mol. Sci. 2021, 22, 3180. https://doi.org/10.3390/ijms22063180
Đukanović N, Obradović S, Zdravković M, Đurašević S, Stojković M, Tosti T, Jasnić N, Đorđević J, Todorović Z. Lipids and Antiplatelet Therapy: Important Considerations and Future Perspectives. International Journal of Molecular Sciences. 2021; 22(6):3180. https://doi.org/10.3390/ijms22063180
Chicago/Turabian StyleĐukanović, Nina, Slobodan Obradović, Marija Zdravković, Siniša Đurašević, Maja Stojković, Tomislav Tosti, Nebojša Jasnić, Jelena Đorđević, and Zoran Todorović. 2021. "Lipids and Antiplatelet Therapy: Important Considerations and Future Perspectives" International Journal of Molecular Sciences 22, no. 6: 3180. https://doi.org/10.3390/ijms22063180
APA StyleĐukanović, N., Obradović, S., Zdravković, M., Đurašević, S., Stojković, M., Tosti, T., Jasnić, N., Đorđević, J., & Todorović, Z. (2021). Lipids and Antiplatelet Therapy: Important Considerations and Future Perspectives. International Journal of Molecular Sciences, 22(6), 3180. https://doi.org/10.3390/ijms22063180