Development of Injectable Polydactyly-Derived Chondrocyte Sheets
Abstract
:1. Introduction
2. Results
2.1. Comparison of Sheet Characteristics of Polydactyly-Derived Chondrocyte (PD) Sheets and PD Sheets-Mini
2.1.1. Cell Count and Viability
2.1.2. Flow Cytometric Analysis
2.1.3. Measurement of the Amounts of Humoral Factors
2.1.4. Gene Expression Analysis
2.1.5. Histological Analysis
2.2. Effects of Injection of PD Sheets-Mini on Cell Viability
3. Discussion
4. Materials and Methods
4.1. Collection of Polydactyly-Derived Chondrocytes
4.2. Fabrication of PD Sheets and PD Sheets-Mini
4.3. Comparison of Sheet Characteristics between PD Sheets and PD Sheets-Mini
4.3.1. Cell Count and Viability
4.3.2. Flow Cytometric Analysis
4.3.3. Measurement of Humoral Factors
4.3.4. Gene Expression Analysis
4.3.5. Histological Analysis
4.4. Analysis of the Effect of Injection of PD Sheets-Mini on Cell Viability
4.5. Statistical Analysis
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buckwalter, J.A.; Mankin, H.J. Articular Cartilage: Tissue Design and Chondrocyte-Matrix Interactions. Instr. Course Lect. 1998, 47, 477–486. [Google Scholar]
- Pearle, A.D.; Warren, R.F.; Rodeo, S.A. Basic Science of Articular Cartilage and Osteoarthritis. Clin. Sports Med. 2005, 24, 1–12. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization (WHO). The World Health Report 2002–Reducing Risks, Promoting Healthy Life, Annex Table 3 Burden of disease in DALYs by Cause, Sex and Mortality Stratum in WHO Regions, Estimates for 2001, 196–197. 2002. Available online: https://www.who.int/whr/2002/en/ (accessed on 24 January 2021).
- Yoshimura, N.; Muraki, S.; Oka, H.; Mabuchi, A.; En-Yo, Y.; Yoshida, M.; Saika, A.; Yoshida, H.; Suzuki, T.; Yamamoto, S.; et al. Prevalence of Knee Osteoarthritis, Lumbar Spondylosis, and Osteoporosis in Japanese Men and Women: The Research on Osteoarthritis/Osteoporosis against Disability Study. J. Bone Min. Metab. 2009, 27, 620–628. [Google Scholar] [CrossRef] [PubMed]
- Felson, D.T.; Naimark, A.; Anderson, J.; Kazis, L.; Castelli, W.; Meenan, R.F. The Prevalence of Knee Osteoarthritis in the Elderly. The Framingham Osteoarthritis Study. Arthritis Rheum. 1987, 30, 914–918. [Google Scholar] [CrossRef]
- Lawrence, R.C.; Felson, D.T.; Helmick, C.G.; Arnold, L.M.; Choi, H.; Deyo, R.A.; Gabriel, S.; Hirsch, R.; Hochberg, M.C.; Hunder, G.G.; et al. Estimates of the Prevalence of Arthritis and Other Rheumatic Conditions in the United States: Part II. Arthritis Rheum. 2008, 58, 26–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAlindon, T.E.; Bannuru, R.R.; Sullivan, M.C.; Arden, N.K.; Berenbaum, F.; Bierma-Zeinstra, S.M.; Hawker, G.A.; Henrotin, Y.; Hunter, D.J.; Kawaguchi, H.; et al. OARSI Guidelines for the Non-Surgical Management of Knee Osteoarthritis. Osteoarthr. Cartil. 2014, 22, 363–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Moskowitz, R.W.; Nuki, G.; Abramson, S.; Altman, R.D.; Arden, N.; Bierma-Zeinstra, S.; Brandt, K.D.; Croft, P.; Doherty, M.; et al. OARSI Recommendations for the Management of Hip and Knee Osteoarthritis, Part II: OARSI Evidence-Based, Expert Consensus Guidelines. Osteoarthr. Cartil. 2008, 16, 137–162. [Google Scholar] [CrossRef] [Green Version]
- Harris, J.D.; Siston, R.A.; Pan, X.; Flanigan, D.C. Autologous Chondrocyte Implantation: A Systematic Review. J. Bone Jt. Surg. Am. Vol. 2010, 92, 2220–2233. [Google Scholar] [CrossRef]
- Nam, J.; Perera, P.; Liu, J.; Rath, B.; Deschner, J.; Gassner, R.; Butterfield, T.A.; Agarwal, S. Sequential Alterations in Catabolic and Anabolic Gene Expression Parallel Pathological Changes during Progression of Monoiodoacetate-Induced Arthritis. PLoS ONE 2011, 6, e24320. [Google Scholar] [CrossRef]
- Maldonado, M.; Nam, J. The Role of Changes in Extracellular Matrix of Cartilage in the Presence of Inflammation on the Pathology of Osteoarthritis. Biomed. Res. Int. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamato, M.; Okano, T. Cell Sheet Engineering. Mater. Today 2004, 7, 42–47. [Google Scholar] [CrossRef]
- Nishida, K.; Yamato, M.; Hayashida, Y.; Watanabe, K.; Yamamoto, K.; Adachi, E.; Nagai, S.; Kikuchi, A.; Maeda, N.; Watanabe, H.; et al. Corneal Reconstruction with Tissue-Engineered Cell Sheets Composed of Autologous Oral Mucosal Epithelium. N. Engl. J. Med. 2004, 351, 1187–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohki, T.; Yamato, M.; Murakami, D.; Takagi, R.; Yang, J.; Namiki, H.; Okano, T.; Takasaki, K. Treatment of Oesophageal Ulcerations Using Endoscopic Transplantation of Tissue-Engineered Autologous Oral Mucosal Epithelial Cell Sheets in a Canine Model. Gut 2006, 55, 1704–1710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawa, Y.; Miyagawa, S.; Sakaguchi, T.; Fujita, T.; Matsuyama, A.; Saito, A.; Shimizu, T.; Okano, T. Tissue Engineered Myoblast Sheets Improved Cardiac Function Sufficiently to Discontinue LVAS in a Patient with DCM: Report of a Case. Surg. Today 2012, 42, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Iwata, T.; Yamato, M.; Tsuchioka, H.; Takagi, R.; Mukobata, S.; Washio, K.; Okano, T.; Ishikawa, I. Periodontal Regeneration with Multi-Layered Periodontal Ligament-Derived Cell Sheets in a Canine Model. Biomaterials 2009, 30, 2716–2723. [Google Scholar] [CrossRef]
- Maehara, M.; Sato, M.; Toyoda, E.; Takahashi, T.; Okada, E.; Kotoku, T.; Watanabe, M. Characterization of Polydactyly-Derived Chondrocyte Sheets versus Adult Chondrocyte Sheets for Articular Cartilage Repair. Inflamm. Regen. 2017, 37, 22. [Google Scholar] [CrossRef]
- Abe, S.; Nochi, H.; Ito, H. Alloreactivity and Immunosuppressive Properties of Articular Chondrocytes from Osteoarthritic Cartilage. J. Orthop. Surg. (Hong Kong) 2016, 24, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Arthroscopic de Novo NT® Juvenile Allograft Cartilage Implantation in the Talus: A Case Presentation Elsevier Enhanced Reader. Available online: https://reader.elsevier.com/reader/sd/pii/S1067251611005928?token=622A192DC76E2E202E1C689C6650F8F36EDC0DBE5020429169FCA045999F9E590932C7478071DE98C741DD881B327855 (accessed on 16 March 2021).
- Sato, M.; Yamato, M.; Mitani, G.; Takagaki, T.; Hamahashi, K.; Nakamura, Y.; Ishihara, M.; Matoba, R.; Kobayashi, H.; Okano, T.; et al. Combined Surgery and Chondrocyte Cell-Sheet Transplantation Improves Clinical and Structural Outcomes in Knee Osteoarthritis. NPJ Regen. Med. 2019, 4, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.-C.; Chen, C.-H.; Lin, W.-W.; Hwang, S.-M.; Hsieh, P.C.H.; Lai, P.-H.; Yeh, Y.-C.; Chang, Y.; Sung, H.-W. Direct Intramyocardial Injection of Mesenchymal Stem Cell Sheet Fragments Improves Cardiac Functions after Infarction. Cardiovasc. Res. 2008, 77, 515–524. [Google Scholar] [CrossRef] [PubMed]
- Ebihara, G.; Sato, M.; Yamato, M.; Mitani, G.; Kutsuna, T.; Nagai, T.; Ito, S.; Ukai, T.; Kobayashi, M.; Kokubo, M.; et al. Cartilage Repair in Transplanted Scaffold-Free Chondrocyte Sheets Using a Minipig Model. Biomaterials 2012, 33, 3846–3851. [Google Scholar] [CrossRef]
- Takahashi, T.; Sato, M.; Toyoda, E.; Maehara, M.; Takizawa, D.; Maruki, H.; Tominaga, A.; Okada, E.; Okazaki, K.; Watanabe, M. Rabbit Xenogeneic Transplantation Model for Evaluating Human Chondrocyte Sheets Used in Articular Cartilage Repair. J Tissue Eng. Regen. Med. 2018. [Google Scholar] [CrossRef]
- Takatori, N.; Sato, M.; Toyoda, E.; Takahashi, T.; Okada, E.; Maehara, M.; Watanabe, M. Cartilage Repair and Inhibition of the Progression of Cartilage Degeneration after Transplantation of Allogeneic Chondrocyte Sheets in a Nontraumatic Early Arthritis Model. Regen. Ther. 2018, 9, 24–31. [Google Scholar] [CrossRef]
- Takizawa, D.; Sato, M.; Okada, E.; Takahashi, T.; Maehara, M.; Tominaga, A.; Sogo, Y.; Toyoda, E.; Watanabe, M. Regenerative Effects of Human Chondrocyte Sheets in a Xenogeneic Transplantation Model Using Immune-deficient Rats. J. Tissue Eng. Regen. Med. 2020. [Google Scholar] [CrossRef]
- Schubert, T.; Schlegel, J.; Schmid, R.; Opolka, A.; Grässel, S.; Humphries, M.; Bosserhoff, A.-K. Modulation of Cartilage Differentiation by Melanoma Inhibiting Activity/Cartilage-Derived Retinoic Acid-Sensitive Protein (MIA/CD-RAP). Exp. Mol. Med. 2010, 42, 166. [Google Scholar] [CrossRef] [PubMed]
- Blaney Davidson, E.N.; van der Kraan, P.M.; van den Berg, W.B. TGF-β and Osteoarthritis. Osteoarthr. Cartil. 2007, 15, 597–604. [Google Scholar] [CrossRef] [Green Version]
- Hamahashi, K.; Sato, M.; Yamato, M.; Kokubo, M.; Mitani, G.; Ito, S.; Nagai, T.; Ebihara, G.; Kutsuna, T.; Okano, T.; et al. Studies of the Humoral Factors Produced by Layered Chondrocyte Sheets: Humoral Factors Produced by Layered Chondrocyte Sheets. J. Tissue Eng. Regen. Med. 2015, 9, 24–30. [Google Scholar] [CrossRef] [PubMed]
- Toyoda, E.; Sato, M.; Takahashi, T.; Maehara, M.; Okada, E.; Wasai, S.; Iijima, H.; Nonaka, K.; Kawaguchi, Y.; Watanabe, M. Transcriptomic and Proteomic Analyses Reveal the Potential Mode of Action of Chondrocyte Sheets in Hyaline Cartilage Regeneration. IJMS 2019, 21, 149. [Google Scholar] [CrossRef] [Green Version]
- Jablonski, C.L.; Leonard, C.; Salo, P.; Krawetz, R.J. CCL2 But Not CCR2 Is Required for Spontaneous Articular Cartilage Regeneration Post-Injury. J. Orthop. Res. 2019, 37, 2561–2574. [Google Scholar] [CrossRef] [PubMed]
- Goldring, M.B. Osteoarthritis and Cartilage: The Role of Cytokines. Curr. Rheumatol. Rep. 2000, 2, 459–465. [Google Scholar] [CrossRef] [PubMed]
- Rigoglou, S.; Papavassiliou, A.G. The NF-ΚB Signalling Pathway in Osteoarthritis. Int. J. Biochem. Cell Biol. 2013, 45, 2580–2584. [Google Scholar] [CrossRef]
- Walker, P.A.; Jimenez, F.; Gerber, M.H.; Aroom, K.R.; Shah, S.K.; Harting, M.T.; Gill, B.S.; Savitz, S.I.; Cox, C.S. Effect of Needle Diameter and Flow Rate on Rat and Human Mesenchymal Stromal Cell Characterization and Viability. Tissue Eng. Part C Methods 2010, 16, 989–997. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvican, E.R.; Cree, S.; Bull, L.; Smith, R.K.; Dudhia, J. Viability of Equine Mesenchymal Stem Cells during Transport and Implantation. Stem Cell Res. Ther. 2014, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genes | Forward Primer Sequence | Reverse Primer Sequence |
---|---|---|
ACAN | AGGAGACAGAGGGACACGTC | TCCACTGGTAGTCTTGGGCAT |
COL1A1 | GTCGAGGGCCAAGACGAAG | CAGATCACGTCATCGCACAAC |
COL2A1 | GTGGAGCAGCAAGAGCAA | TGTTGGGAGCCAGATTGT |
COL10A1 | ATGCTGCCACAAATACCCTTT | GGTAGTGGGCCTTTTATGCCT |
GAPDH | AGAAGGCTGGGGCTCATTTG | AGGGGCCATCCACAGTCTTC |
MMP3 | ATGATGAACAATGGACAAAGGA | GAGTGAAAGAGACCCAGGGA |
RUNX2 | ACCATGGTGGAGATCATCG | CGCCATGACAGTAACCACAG |
SOX9 | AACGCCGAGCTCAGCAAGA | CCGCGGCTGGTACTTGTAATC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wasai, S.; Toyoda, E.; Takahashi, T.; Maehara, M.; Okada, E.; Uchiyama, R.; Akamatsu, T.; Watanabe, M.; Sato, M. Development of Injectable Polydactyly-Derived Chondrocyte Sheets. Int. J. Mol. Sci. 2021, 22, 3198. https://doi.org/10.3390/ijms22063198
Wasai S, Toyoda E, Takahashi T, Maehara M, Okada E, Uchiyama R, Akamatsu T, Watanabe M, Sato M. Development of Injectable Polydactyly-Derived Chondrocyte Sheets. International Journal of Molecular Sciences. 2021; 22(6):3198. https://doi.org/10.3390/ijms22063198
Chicago/Turabian StyleWasai, Shiho, Eriko Toyoda, Takumi Takahashi, Miki Maehara, Eri Okada, Ryoka Uchiyama, Tadashi Akamatsu, Masahiko Watanabe, and Masato Sato. 2021. "Development of Injectable Polydactyly-Derived Chondrocyte Sheets" International Journal of Molecular Sciences 22, no. 6: 3198. https://doi.org/10.3390/ijms22063198
APA StyleWasai, S., Toyoda, E., Takahashi, T., Maehara, M., Okada, E., Uchiyama, R., Akamatsu, T., Watanabe, M., & Sato, M. (2021). Development of Injectable Polydactyly-Derived Chondrocyte Sheets. International Journal of Molecular Sciences, 22(6), 3198. https://doi.org/10.3390/ijms22063198