Improved Controlled Release and Brain Penetration of the Small Molecule S14 Using PLGA Nanoparticles †
Abstract
:1. Introduction
2. Results and Discussion
2.1. Nanoparticles Preparation and Optimization Process
2.2. Encapsulation Efficiency (EE) and Drug-Loading Capacity (LC)
2.3. Size, Polydispersity Index and Zeta Potential
2.4. In Vitro Viability Studies of Nanoparticles Formulations
2.5. In Vivo Controlled Release
2.6. Scale-Up Procedure of Nanoparticles
3. Materials and Methods
3.1. Materials
3.2. S-14-Loaded PLGA Nanoparticles Preparation
3.2.1. Single Emulsion
3.2.2. Nanoprecipitation
3.3. Characterization of Nanoparticles
3.3.1. Scanning Electron Microscopy (SEM)
3.3.2. Dynamic Light Scattering (DLS) and Zeta Potential
3.4. Encapsulation Efficiency (EE) and Drug-Loading Capacity (LC) Estimations
3.5. Cell Culture and Cell Viability
3.6. Pharmacokinetic Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian cyclic nucleotide phosphodiesterases: Molecular mechanisms and physiological functions. Physiol. Rev. 2011, 91, 651–690. [Google Scholar] [CrossRef] [Green Version]
- Martinez, A.; Gil, C. cAMP-specific phosphodiesterase inhibitors: Promising drugs for inflammatory and neurological diseases. Expert Opin. Ther. Pat. 2014, 24, 1311–1321. [Google Scholar] [CrossRef]
- García, A.M.; Brea, J.; Morales-García, J.A.; Perez, D.I.; González, A.; Alonso-Gil, S.; Gracia-Rubio, I.; Ros-Simó, C.; Conde, S.; Cadavid, M.I.; et al. Modulation of cAMP-specific PDE without emetogenic activity: New sulfide-like PDE7 inhibitors. J. Med. Chem. 2014, 57, 8590–8607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bales, K.R.; Menniti, F.S. Promoting synaptic resilience in Alzheimer’s disease patients through phosphodiesterases inhibition. In Emerging Drugs and Targets for Alzheimer’s Disease: Volume 2: Neuronal Plasticity; Martinez, A., Ed.; Royal Society of Chemistry: London, UK, 2010; Volume 2, pp. 21–42. [Google Scholar]
- Martinez, A.; Gil, C. Phosphodiesterase inhibitors as new therapeutic approach for the treatment of Parkinson’s disease. In Emerging Drugs and Targets for Parkinson’s Disease; Martinez, A., Gil, C., Eds.; Royal Society of Chemistry: London, UK, 2013; pp. 294–307. [Google Scholar]
- Morales-Garcia, J.A.; Alonso-Gil, S.; Santos, A.; Perez-Castillo, A. Phosphodiesterase 7 regulation in cellular and rodent models of Parkinson’s disease. Mol. Neurobiol. 2020, 57, 806–822. [Google Scholar] [CrossRef] [PubMed]
- Morales-Garcia, J.A.; Aguilar-Morante, D.; Hernandez-Encinas, E.; Alonso-Gil, S.; Gil, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Silencing phosphodiesterase 7B gene by lentiviral-shRNA interference attenuates neurodegeneration and motor deficits in hemiparkinsonian mice. Neurobiol. Aging 2015, 36, 1160–1173. [Google Scholar] [CrossRef] [Green Version]
- Jankowska, A.; Swierczek, A.; Chlon-Rzepa, G.; Pawlowski, M.; Wyska, E. PDE7-Selective and dual inhibitors: Advances in chemical and biological research. Curr. Med. Chem. 2017, 24, 673–700. [Google Scholar] [CrossRef] [PubMed]
- Castano, T.; Wang, H.; Campillo, N.E.; Ballester, S.; Gonzalez-Garcia, C.; Hernandez, J.; Perez, C.; Cuenca, J.; Perez-Castillo, A.; Martinez, A.; et al. Synthesis, structural analysis, and biological evaluation of thioxoquinazoline derivatives as phosphodiesterase 7 inhibitors. ChemMedChem 2009, 4, 866–876. [Google Scholar] [CrossRef] [Green Version]
- Morales-Garcia, J.A.; Redondo, M.; Alonso-Gil, S.; Gil, C.; Perez, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Phosphodiesterase 7 inhibition preserves dopaminergic neurons in cellular and rodent models of Parkinson disease. PLoS ONE 2011, 6, e17240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Garcia, J.A.; Echeverry-Alzate, V.; Alonso-Gil, S.; Sanz-SanCristobal, M.; Lopez-Moreno, J.A.; Gil, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Phosphodiesterase7 inhibition activates adult neurogenesis in hippocampus and subventricular zone in vitro and in vivo. Stem Cells 2017, 35, 458–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morales-Garcia, J.A.; Alonso-Gil, S.; Gil, C.; Martinez, A.; Santos, A.; Perez-Castillo, A. Phosphodiesterase 7 inhibition induces dopaminergic neurogenesis in hemiparkinsonian rats. Stem Cells Transl. Med. 2015, 4, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.D.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef] [Green Version]
- Joshi, S.A.; Chavhan, S.S.; Sawant, K.K. Rivastigmine-loaded PLGA and PBCA nanoparticles: Preparation, optimization, characterization, in vitro and pharmacodynamic studies. Eur. J. Pharm. Biopharm. 2010, 76, 189–199. [Google Scholar] [CrossRef]
- Mansour, H.M.; Sohn, M.; Al-Ghananeem, A.; Deluca, P.P. Materials for pharmaceutical dosage forms: Molecular pharmaceutics and controlled release drug delivery aspects. Int. J. Mol. Sci. 2010, 11, 3298–3322. [Google Scholar] [CrossRef] [Green Version]
- Makadia, H.K.; Siegel, S.J. Poly Lactic-co-Glycolic Acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 2011, 3, 1377–1397. [Google Scholar] [CrossRef]
- Crucho, C.I.C.; Barros, M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017, 80, 771–784. [Google Scholar] [CrossRef]
- Wischke, C.; Schwendeman, S.P. Principles of encapsulating hydrophobic drugs in PLA/PLGA microparticles. Int. J. Pharm. 2008, 364, 298–327. [Google Scholar] [CrossRef]
- Caldas Dos Santos, T.; Rescignano, N.; Boff, L.; Reginatto, F.H.; Simões, C.M.O.; de Campos, A.M.; Mijangos, C. In vitro antiherpes effect of C-glycosyl flavonoid enriched fraction of Cecropia glaziovii encapsulated in PLGA nanoparticles. Mater. Sci. Eng. C 2017, 75, 1214–1220. [Google Scholar] [CrossRef]
- Yan, F.; Zhang, C.; Zheng, Y.; Mei, L.; Tang, L.; Song, C.; Sun, H.; Huang, L. The effect of poloxamer 188 on nanoparticle morphology, size, cancer cell uptake, and cytotoxicity. Nanomedicine 2010, 6, 170–178. [Google Scholar] [CrossRef]
- Halib, N.; Perrone, F.; Cemazar, M.; Dapas, B.; Farra, R.; Abrami, M.; Chiarappa, G.; Forte, G.; Zanconati, F.; Pozzato, G.; et al. Potential applications of nanocellulose-containing materials in the biomedical field. Materials 2017, 10, 977. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, S.K.; Panyam, J.; Prabha, S.; Labhasetwar, V. Residual polyvinyl alcohol associated with poly (D,L-lactide-co-glycolide) nanoparticles affects their physical properties and cellular uptake. J. Control. Release 2002, 82, 105–114. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, Z.L. Scanning Microscopy for Nanotechnology; Springer: New York, NY, USA, 2007. [Google Scholar]
- Fessi, H.; Puisieux, F.; Devissaguet, J.P.; Ammoury, N.; Benita, S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int. J. Pharm. 1989, 55, R1–R4. [Google Scholar] [CrossRef]
- Rojas-Prats, E.; Tosat-Bitrian, C.; Martinez-Gonzalez, L.; Nozal, V.; Perez, D.I.; Martinez, A. Increasing brain permeability of PHA-767491, a cell division cycle 7 kinase inhibitor, with biodegradable polymeric nanoparticles. Pharmaceutics 2021, 13, 180. [Google Scholar] [CrossRef]
- Shen, S.; Wu, Y.; Liu, Y.; Wu, D. High drug-loading nanomedicines: Progress, current status, and prospects. Int. J. Nanomed. 2017, 12, 4085–4109. [Google Scholar] [CrossRef] [Green Version]
- Amini, Y.; Amel Jamehdar, S.; Sadri, K.; Zare, S.; Musavi, D.; Tafaghodi, M. Different methods to determine the encapsulation efficiency of protein in PLGA nanoparticles. Biomed. Mater. Eng. 2017, 28, 613–620. [Google Scholar] [CrossRef]
- Danhier, F.; Ansorena, E.; Silva, J.M.; Coco, R.; Le Breton, A.; Préat, V. PLGA-based nanoparticles: An overview of biomedical applications. J. Control. Release 2012, 161, 505–522. [Google Scholar] [CrossRef]
- Carvalho, P.M.; Felício, M.R.; Santos, N.C.; Gonçalves, S.; Domingues, M.M. Application of light scattering techniques to nanoparticle characterization and development. Front. Chem. 2018, 6, 237. [Google Scholar] [CrossRef]
- Kreuter, J. Drug delivery to the central nervous system by polymeric nanoparticles: What do we know? Adv. Drug Deliv. Rev. 2014, 71, 2–14. [Google Scholar] [CrossRef]
- Rescignano, N.; Fortunati, E.; Armentano, I.; Hernandez, R.; Mijangos, C.; Pasquino, R.; Kenny, J.M. Use of alginate, chitosan and cellulose nanocrystals as emulsion stabilizers in the synthesis of biodegradable polymeric nanoparticles. J. Colloid Interface Sci. 2015, 445, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Pahuja, R.; Seth, K.; Shukla, A.; Shukla, R.K.; Bhatnagar, P.; Chauhan, L.K.; Saxena, P.N.; Arun, J.; Chaudhari, B.P.; Patel, D.K.; et al. Trans-blood brain barrier delivery of dopamine-loaded nanoparticles reverses functional deficits in parkinsonian rats. ACS Nano 2015, 9, 4850–4871. [Google Scholar] [CrossRef]
- Martinez, A.; Gil, C.; Lopez-Ribas, D.; Cunchillos, E.; Domenech, J.; Sarasa, M. Targeting PDE7 by the small molecule S14: A potential disease-modifying Parkinson’s disease therapy ready to start clinical trials. In Movement Disorders; Wiley and Sons: Hoboken, NJ, USA, 2016; Volume 31, p. S606. [Google Scholar]
Formulations | Raw Materials | Final NPs (mg) | ||||
---|---|---|---|---|---|---|
S14 (mg) | Polymer Type | Polymer Concentration (% w/v) a | Surfactant Type b | Surfactant Concentration (% w/v) | ||
NP-1.1 | 10.3 | PLGA 50:50 | 1.25 | CNC | 0.5 | 10.0 |
NP-1.2 | 10.0 | PLGA 50:50 | 1.25 | P188 | 1 | n.o. * |
NP-1.3 | 10.2 | PLGA 50:50 | 1.25 | P188 | 2 | n.o. * |
NP-1.4 | 10.0 | PLGA 50:50 | 1.25 | P188 | 5 | n.o. * |
NP-1.5 | 10.4 | PLGA 50:50 | 1.25 | PVA | 2 | 11.0 |
NP-1.6 | 20.5 | PLGA 50:50 | 1.25 | PVA | 2 | 27.4 |
Formulations | Raw Materials | Final NPs (mg) | ||||
---|---|---|---|---|---|---|
S14 (mg) | Polymer Type | Polymer Concentration (% w/v) a | Surfactant Type b | Surfactant Concentration (% w/v) | ||
NP-2.1 | 10.3 | PLGA 50:50 | 0.5 | PVA | 2 | 36.3 |
NP-2.2 | 10.1 | PLGA 50:50 | 0.5 | PVA | 2 | 32.7 |
NP-2.3 | 20.0 | PLGA 50:50 | 0.5 | PVA | 2 | 55.0 |
NP-2.4 | 20.2 | PLGA 50:50 | 0.5 | PVA | 2 | 55.5 |
NP-2.5 | 30.0 | PLGA 50:50 | 0.5 | PVA | 2 | 53.6 |
NP-2.6 | 30.1 | PLGA 50:50 | 0.5 | PVA | 2 | 59.4 |
NP-2.7 | 40.0 | PLGA 50:50 | 0.5 | PVA | 2 | 74.3 |
NP-2.8 | 40.5 | PLGA 50:50 | 0.5 | PVA | 2 | 78.7 |
Formulations | Initial S14 (mg) | Final NPs (mg) | S14 Encapsulated (mg) | EE% | LC% |
---|---|---|---|---|---|
NP-2.1 | 10.3 | 36.3 | 7.3 | 71 | 20 |
NP-2.2 | 10.1 | 32.7 | 6.6 | 65 | 20 |
NP-2.3 | 20.0 | 55.0 | 15.7 | 78 | 28 |
NP-2.4 | 20.2 | 55.5 | 14.5 | 72 | 26 |
NP-2.5 | 30.0 | 53.6 | 21.6 | 72 | 40 |
NP-2.6 | 30.1 | 59.4 | 21.3 | 71 | 36 |
NP-2.7 | 40.0 | 74.3 | 35.2 | 88 | 47 |
NP-2.8 | 40.5 | 78.7 | 35.2 | 87 | 45 |
Formulations | Raw Materials | Final NPs (mg) | ||||
---|---|---|---|---|---|---|
S14 (mg) | Polymer Type | Polymer Concentration (% w/v) a | Surfactant Type b | Surfactant Concentration (% w/v) | ||
NP-3.1 | 200.3 | PLGA 50:50 | 0.5 | PVA | 2 | 239.0 |
NP-3.2 | 202.4 | PLGA 50:50 | 0.5 | PVA | 2 | 241.8 |
NP-3.3 | 200.3 | PLGA 50:50 | 0.5 | PVA | 2 | 224.0 |
NP-3.4 | 202.0 | PLGA 50:50 | 0.5 | PVA | 2 | 249.2 |
NP-3.5 | 203.5 | PLGA 50:50 | 0.5 | PVA | 2 | 231.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nozal, V.; Rojas-Prats, E.; Maestro, I.; Gil, C.; Perez, D.I.; Martinez, A. Improved Controlled Release and Brain Penetration of the Small Molecule S14 Using PLGA Nanoparticles. Int. J. Mol. Sci. 2021, 22, 3206. https://doi.org/10.3390/ijms22063206
Nozal V, Rojas-Prats E, Maestro I, Gil C, Perez DI, Martinez A. Improved Controlled Release and Brain Penetration of the Small Molecule S14 Using PLGA Nanoparticles. International Journal of Molecular Sciences. 2021; 22(6):3206. https://doi.org/10.3390/ijms22063206
Chicago/Turabian StyleNozal, Vanesa, Elisa Rojas-Prats, Inés Maestro, Carmen Gil, Daniel I. Perez, and Ana Martinez. 2021. "Improved Controlled Release and Brain Penetration of the Small Molecule S14 Using PLGA Nanoparticles" International Journal of Molecular Sciences 22, no. 6: 3206. https://doi.org/10.3390/ijms22063206
APA StyleNozal, V., Rojas-Prats, E., Maestro, I., Gil, C., Perez, D. I., & Martinez, A. (2021). Improved Controlled Release and Brain Penetration of the Small Molecule S14 Using PLGA Nanoparticles. International Journal of Molecular Sciences, 22(6), 3206. https://doi.org/10.3390/ijms22063206