New Insights into the Mammalian Egg Zona Pellucida
Abstract
:1. Introduction
2. ZP Composition Is Explained by Molecular Evolution
2.1. Origin of Vertebrate ZP Genes
2.2. Mammalian ZP Genes
3. In Most Mammals There Are Four Proteins, but for What?
4. Biosynthesis of Zona Pellucida: Cellular Trafficking and Processing of ZP Proteins
5. Are ZP Proteins the Only Proteins That Could Interact with the Sperm?
5.1. Changes in Carbohydrate Composition
5.2. Changes in Protein Composition
5.2.1. Osteopontin
5.2.2. Lactoferrin
5.2.3. Oviductin
5.2.4. Lipocalin-Type Prostaglandin D Synthase
6. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Modliński, J.A. The role of the zona pellucida in the development of mouse eggs in vivo. J. Embryol. Exp. Morphol. 1970, 23, 539–547. [Google Scholar]
- Bleil, J.D.; Wassarman, P.M. Mammalian sperm-egg interaction: Identification of a glycoprotein in mouse egg zonae pellucidae possessing receptor activity for sperm. Cell 1980, 20, 873–882. [Google Scholar] [CrossRef]
- Fahrenkamp, E.; Algarra, B.; Jovine, L. Mammalian egg coat modifications and the block to polyspermy. Mol. Reprod. Dev. 2020, 87, 326–340. [Google Scholar] [CrossRef]
- Florman, H.M.; Storey, B.T. Mouse gamete interactions: The zona pellucida is the site of the acrosome reaction leading to fertilization in vitro. Dev. Biol. 1982, 91, 121–130. [Google Scholar] [CrossRef]
- Berger, T.; Turner, K.O.; Meizel, S.; Hedrick, J.L. Zona pellucida-induced acrosome reaction in boar sperm. Biol. Reprod. 1989, 40, 525–530. [Google Scholar] [CrossRef] [Green Version]
- Benoff, S. Carbohydrates and fertilization: An overview. Mol. Hum. Reprod. 1997, 3, 599–637. [Google Scholar] [CrossRef] [PubMed]
- Fazeli, A.; Hage, W.J.; Cheng, F.P.; Voorhout, W.F.; Marks, A.; Bevers, M.M.; Colenbrander, B. Acrosome-intact boar spermatozoa initiate binding to the homologous zona pellucida in vitro. Biol. Reprod. 1997, 56, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Bhandari, B. Acrosome reaction: Relevance of zona pellucida glycoproteins. Asian J. Androl. 2011, 13, 97–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Bhandari, B.; Shrestha, A.; Biswal, B.K.; Palaniappan, C.; Malhotra, S.S.; Gupta, N. Mammalian zona pellucida glycoproteins: Structure and function during fertilization. Cell Tissue Res. 2012, 349, 665–678. [Google Scholar] [CrossRef]
- Tanihara, F.; Nakai, M.; Kaneko, H.; Noguchi, J.; Otoi, T.; Kikuchi, K. Evaluation of zona pellucida function for sperm penetration during in vitro fertilization in pigs. J. Reprod. Dev. 2013, 59, 385–392. [Google Scholar] [CrossRef] [Green Version]
- Evans, J.P. Preventing polyspermy in mammalian eggs—Contributions of the membrane block and other mechanisms. Mol. Reprod. Dev. 2020, 87, 341–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedford, J.M. What marsupial gametes disclose about gamete function in eutherian mammals. Reprod. Fertil. Dev. 1996, 8, 569–580. [Google Scholar] [CrossRef]
- Hughes, R.; Carrick, F. Reproduction in female monotremes. Aust. Zool. 1978, 20, 233–254. [Google Scholar]
- Burkman, L.J.; Coddington, C.C.; Franken, D.R.; Kruger, T.F.; Rosenwaks, Z.; Hodgen, G.D. The hemizona assay (HZA): Development of a diagnostic test for the binding of human spermatozoa to the human hemizona pellucida to predict fertilization potential. Fertil. Steril. 1988, 49, 688–697. [Google Scholar] [CrossRef]
- Phillips, D.M.; Shalgi, R.M. Surface properties of the zona pellucida. J. Exp. Zool. 1980, 213, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, C.; Keefe, D.L.; Trimarchi, J.R. Noninvasive polarized light microscopy quantitatively distinguishes the multilaminar structure of the zona pellucida of living human eggs and embryos. Fertil. Steril. 2004, 81, 850–856. [Google Scholar] [CrossRef]
- Familiari, G.; Nottola, S.A.; Macchiarelli, G.; Micara, G.; Aragona, C.; Motta, P.M. Human zona pellucida during in vitro fertilization: An ultrastructural study using saponin, ruthenium red, and osmium-thiocarbohydrazide. Mol. Reprod. Dev. 1992, 32, 51–61. [Google Scholar] [CrossRef]
- Jovine, L.; Darie, C.C.; Litscher, E.S.; Wassarman, P.M. Zona pellucida domain proteins. Annu. Rev. Biochem. 2005, 74, 83–114. [Google Scholar] [CrossRef] [Green Version]
- Monné, M.; Jovine, L. A Structural View of Egg Coat Architecture and Function in Fertilization1. Biol. Reprod. 2011, 85, 661–669. [Google Scholar] [CrossRef] [Green Version]
- Keefe, D.; Tran, P.; Pellegrini, C.; Oldenbourg, R. Polarized light microscopy and digital image processing identify a multilaminar structure of the hamster zona pellucida. Hum. Reprod. 1997, 12, 1250–1252. [Google Scholar] [CrossRef] [Green Version]
- El-Mestrah, M.; Castle, P.E.; Borossa, G.; Kan, F.W.K. Subcellular distribution of ZP1, ZP2, and ZP3 glycoproteins during folliculogenesis and demonstration of their topographical disposition within the zona matrix of mouse ovarian oocytes. Biol. Reprod. 2002, 66, 866–876. [Google Scholar] [CrossRef] [Green Version]
- Litscher, E.S.; Wassarman, P.M. Zona pellucida genes and proteins and human fertility. Trends Dev. Biol. 2020, 13, 21–33. [Google Scholar]
- Yurewicz, E.C.; Pack, B.A.; Sacco, A.G. Isolation, composition, and biological activity of sugar chains of porcine oocyte zona pellucida 55K glycoproteins. Mol. Reprod. Dev. 1991, 30, 126–134. [Google Scholar] [CrossRef] [PubMed]
- Shalgi, R.; Raz, T. The role of carbohydrate residues in mammalian fertilization. Histol Histopathol. 1997, 12, 813–822. [Google Scholar] [PubMed]
- Tulsiani, D.R.P.; Yoshida-Komiya, H.; Araki, Y. Mammalian fertilization: A carbohydrate-mediated event. Biol. Reprod. 1997, 57, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velásquez, J.G.; Canovas, S.; Barajas, P.; Marcos, J.; Jiménez-Movilla, M.; Gallego, R.G.; Ballesta, J.; Avilés, M.; Coy, P. Role of sialic acid in bovine sperm-zona pellucida binding. Mol. Reprod. Dev. 2007, 74, 617–628. [Google Scholar] [CrossRef]
- Avilés, M.; Martínez-Menárguez, J.A.; Castells, M.T.; Madrid, J.F.; Ballesta, J. Cytochemical characterization of oligosaccharide side chains of the glycoproteins of rat zona pellucida: An ultrastructural study. Anat. Rec. 1994, 239, 137–149. [Google Scholar] [CrossRef] [PubMed]
- Avilés, M.; Okinaga, T.; Shur, B.; Ballesta, J. Differential expression of glycoside residues in the mammalian zona pellucida. Mol. Reprod. Dev. 2000, 57, 296–308. [Google Scholar] [CrossRef]
- Bleil, J.D.; Wassarman, P.M. Structure and function of the zona pellucida: Identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev. Biol. 1980, 76, 185–202. [Google Scholar] [CrossRef]
- Lefièvre, L.; Conner, S.J.; Salpekar, A.; Olufowobi, O.; Ashton, P.; Pavlovic, B.; Lenton, W.; Afnan, M.; Brewis, I.A.; Monk, M.; et al. Four zona pellucida glycoproteins are expressed in the human. Hum. Reprod. 2004, 19, 1580–1586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evsikov, A.V.; Graber, J.H.; Brockman, J.M.; Hampl, A.; Holbrook, A.E.; Singh, P.; Eppig, J.J.; Solter, D.; Knowles, B.B. Cracking the egg: Molecular dynamics and evolutionary aspects of the transition from the fully grown oocyte to embryo. Genes Dev. 2006, 20, 2713–2727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goudet, G.; Mugnier, S.; Callebaut, I.; Monget, P. Phylogenetic analysis and identification of pseudogenes reveal a progressive loss of zona pellucida genes during evolution of vertebrates. Biol. Reprod. 2008, 78, 796–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spargo, S.C.; Hope, R.M. Evolution and nomenclature of the zona pellucida gene family. Biol. Reprod. 2003, 68, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Moros-Nicolás, C.; Chevret, P.; Izquierdo-Rico, M.J.; Holt, W.V.; Esteban-Díaz, D.; López-Béjar, M.; Martínez-Nevado, E.; Nilsson, M.A.; Ballesta, J.; Avilés, M. Composition of marsupial zona pellucida: A molecular and phylogenetic approach. Reprod. Fertil. Dev. 2018, 30, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.M.; Tian, H.F.; Hu, Q.M.; Meng, Y.; Xiao, H.B. Evolution and multiple origins of zona pellucida genes in vertebrates. Biol. Open 2018, 7, 36137. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Rico, M.J.; Jimenez-Movilla, M.; Llop, E.; Perez-Oliva, B.; Ballesta, J.; Gutierrez-Gallego, R.; Jimenez-Cervantes, C.; Aviles, M. Hamster zona pellucida is formed by four glycoproteins: ZP1, ZP2, ZP3, and ZP4. J. Proteome Res. 2009, 8, 926–941. [Google Scholar] [CrossRef]
- Stetson, I.; Izquierdo-Rico, M.J.; Moros, C.; Chevret, P.; Lorenzo, P.L.; Ballesta, J.; Rebollar, P.G.; Gutiérrez-Gallego, R.; Avilés, M. Rabbit zona pellucida composition: A molecular, proteomic and phylogenetic approach. J. Proteomics 2012, 75, 5920–5935. [Google Scholar] [CrossRef]
- Stetson, I.; Avilés, M.; Moros, C.; García-Vázquez, F.A.; Gimeno, L.; Torrecillas, A.; Aliaga, C.; Bernardo-Pisa, M.V.; Ballesta, J.; Izquierdo-Rico, M.J. Four glycoproteins are expressed in the cat zona pellucida. Theriogenology 2015, 83, 1162–1173. [Google Scholar] [CrossRef]
- Frankenberg, S.; Renfree, M.B. Conceptus Coats of Marsupials and Monotremes. Curr. Top. Dev. Biol. 2018, 130, 357–377. [Google Scholar] [CrossRef]
- Moros-Nicolás, C.; Leza, A.; Chevret, P.; Guillén-Martínez, A.; González-Brusi, L.; Boué, F.; Lopez-Bejar, M.; Ballesta, J.; Avilés, M.; Izquierdo-Rico, M.J. Analysis of ZP1 gene reveals differences in zona pellucida composition in carnivores. Reprod. Fertil. Dev. 2018, 30, 272–285. [Google Scholar] [CrossRef] [Green Version]
- Izquierdo-Rico, M.J.; Moros-Nicolás, C.; Pérez-Crespo, M.; Laguna-Barraza, R.; Gutiérrez-Adán, A.; Veyrunes, F.; Ballesta, J.; Laudet, V.; Chevret, P.; Avilés, M. ZP4 Is Present in Murine Zona Pellucida and Is Not Responsible for the Specific Gamete Interaction. Front. Cell Dev. Biol. 2021, 8, 626679. [Google Scholar] [CrossRef]
- Rankin, T.; Talbot, P.; Lee, E.; Dean, J. Abnormal zonae pellucidae in mice lacking ZP1 result in early embryonic loss. Development 1999, 126, 3847–3855. [Google Scholar]
- Liu, C.; Litscher, E.S.; Mortillo, S.; Sakai, Y.; Kinloch, R.A.; Stewart, C.L.; Wassarman, P.M. Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proc. Natl. Acad. Sci. USA 1996, 93, 5431–5436. [Google Scholar] [CrossRef] [Green Version]
- Rankin, T.; Familari, M.; Lee, E.; Ginsberg, A.; Dwyer, N.; Blanchette-Mackie, J.; Drago, J.; Westphal, H.; Dean, J. Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development 1996, 122, 2903–2910. [Google Scholar] [PubMed]
- Rankin, T.L.; O’Brien, M.; Lee, E.; Wigglesworth, K.; Eppig, J.; Dean, J. Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development. Development 2001, 128, 1119–1126. [Google Scholar]
- Dean, J. Reassessing the molecular biology of sperm-egg recognition with mouse genetics. Bioessays 2004, 26, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Lamas-Toranzo, I.; Fonseca Balvís, N.; Querejeta-Fernández, A.; Izquierdo-Rico, M.J.; González-Brusi, L.; Lorenzo, P.L.; García-Rebollar, P.; Avilés, M.; Bermejo-Álvarez, P. ZP4 confers structural properties to the zona pellucida essential for embryo development. eLife 2019, 8, e48904. [Google Scholar] [CrossRef] [PubMed]
- Wassarman, P.M. Profile of a mammalian sperm receptor. Development 1990, 108, 1–17. [Google Scholar]
- Bleil, J.D.; Greve, J.M.; Wassarman, P.M. Identification of a secondary sperm receptor in the mouse egg zona pellucida: Role in maintenance of binding of acrosome-reacted sperm to eggs. Dev. Biol. 1988, 128, 376–385. [Google Scholar] [CrossRef]
- Burkart, A.D.; Xiong, B.; Baibakov, B.; Jiménez-Movilla, M.; Dean, J. Ovastacin, a cortical granule protease, cleaves ZP2 in the zona pellucida to prevent polyspermy. J. Cell Biol. 2012, 197, 37–44. [Google Scholar] [CrossRef] [Green Version]
- Yauger, B.; Boggs, N.A.; Dean, J. Human ZP4 is not sufficient for taxon-specific sperm recognition of the zona pellucida in transgenic mice. Reproduction 2011, 141, 313–319. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baibakov, B.; Boggs, N.A.; Yauger, B.; Baibakov, G.; Dean, J. Human sperm bind to the N-terminal domain of ZP2 in humanized zonae pellucidae in transgenic mice. J. Cell Biol. 2012, 197, 897–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Duin, M.; Polman, J.E.M.; De Breet, I.T.M.; Van Ginneken, K.; Bunschoten, H.; Grootenhuis, A.; Brindle, J.; Aitken, R.J.; Organon, N.V. Recombinant human zona pellucida protein ZP3 produced by Chinese hamster ovary cells induces the human sperm acrosome reaction and promotes sperm-egg fusion. Biol. Reprod. 1994, 51, 607–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguly, A.; Bansal, P.; Gupta, T.; Gupta, S.K. “ZP domain” of human zona pellucida glycoprotein-1 binds to human spermatozoa and induces acrosomal exocytosis. Reprod. Biol. Endocrinol. 2010, 8, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- José, O.; Hernández-Hernández, O.; Chirinos, M.; González-González, M.E.; Larrea, F.; Almanza, A.; Felix, R.; Darszon, A.; Treviño, C.L. Recombinant human ZP3-induced sperm acrosome reaction: Evidence for the involvement of T- and L-type voltage-gated calcium channels. Biochem. Biophys. Res. Commun. 2010, 395, 530–534. [Google Scholar] [CrossRef]
- Dong, K.W.; Chi, T.F.; Juan, Y.W.; Chen, C.W.; Lin, Z.; Xiang, X.Q.; Mahony, M.; Gibbons, W.E.; Oehninger, S. Characterization of the biologic activities of a recombinant human zona pellucida protein 3 expressed in human ovarian teratocarcinoma (PA-1) cells. Am. J. Obstet. Gynecol. 2001, 184, 835–844. [Google Scholar] [CrossRef] [PubMed]
- Bray, C.; Son, J.H.; Kumar, P.; Harris, J.D.; Meizel, S. A role for the human sperm glycine receptor/Cl- channel in the acrosome reaction initiated by recombinant ZP3. Biol. Reprod. 2002, 66, 91–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakravarty, S.; Suraj, K.; Gupta, S.K. Baculovirus-expressed recombinant human zona pellucida glycoprotein-B induces acrosomal exocytosis in capacitated spermatozoa in addition to zona pellucida glycoprotein-C. Mol. Hum. Reprod. 2005, 11, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Chakravarty, S.; Kadunganattil, S.; Bansal, P.; Sharma, R.K.; Gupta, S.K. Relevance of glycosylation of human zona pellucida glycoproteins for their binding to capacitated human spermatozoa and subsequent induction of acrosomal exocytosis. Mol. Reprod. Dev. 2008, 75, 75–88. [Google Scholar] [CrossRef]
- Caballero-Campo, P.; Chirinos, M.; Fan, X.J.; González-González, M.E.; Galicia-Chavarría, M.; Larrea, F.; Gerton, G.L. Biological effects of recombinant human zona pellucida proteins on sperm function. Biol. Reprod. 2006, 74, 760–768. [Google Scholar] [CrossRef] [Green Version]
- Chiu, P.C.N.; Wong, B.S.T.; Lee, C.L.; Pang, R.T.K.; Lee, K.F.; Sumitro, S.B.; Gupta, S.K.; Yeung, W.S.B. Native human zona pellucida glycoproteins: Purification and binding properties. Hum. Reprod. 2008, 23, 1385–1393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, P.C.N.; Wong, B.S.T.; Chung, M.-K.; Lam, K.K.W.; Pang, R.T.K.; Lee, K.-F.; Sumitro, S.B.; Gupta, S.K.; Yeung, W.S.B. Effects of native human zona pellucida glycoproteins 3 and 4 on acrosome reaction and zona pellucida binding of human spermatozoa. Biol. Reprod. 2008, 79, 869–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganguly, A.; Bukovsky, A.; Sharma, R.K.; Bansal, P.; Bhandari, B.; Gupta, S.K. In humans, zona pellucida glycoprotein-1 binds to spermatozoa and induces acrosomal exocytosis. Hum. Reprod. 2010, 25, 1643–1656. [Google Scholar] [CrossRef] [Green Version]
- Dai, C.; Chen, Y.; Hu, L.; Du, J.; Gong, F.; Dai, J.; Zhang, S.; Wang, M.; Chen, J.; Guo, J.; et al. ZP1 mutations are associated with empty follicle syndrome: Evidence for the existence of an intact oocyte and a zona pellucida in follicles up to the early antral stage. A case report. Hum. Reprod. 2019, 34, 2201–2207. [Google Scholar] [CrossRef]
- Sun, L.; Fang, X.; Chen, Z.; Zhang, H.; Zhang, Z.; Zhou, P.; Xue, T.; Peng, X.; Zhu, Q.; Yin, M.; et al. Compound heterozygous ZP1 mutations cause empty follicle syndrome in infertile sisters. Hum. Mutat. 2019, 40, 2001–2006. [Google Scholar] [CrossRef] [PubMed]
- Yuan, P.; Li, R.; Li, D.; Zheng, L.; Ou, S.; Zhao, H.; Zhang, Q.; Wang, W. Novel mutation in the ZP1 gene and clinical implications. J. Assist. Reprod. Genet. 2019, 36, 741–747. [Google Scholar] [CrossRef]
- Liu, M.; Shen, Y.; Zhang, X.; Wang, X.; Li, D.; Wang, Y. Novel biallelic loss-of-function variants in ZP1 identified in an infertile female with empty follicle syndrome. J. Assist. Reprod. Genet. 2020, 37, 2151–2157. [Google Scholar] [CrossRef]
- Luo, G.; Zhu, L.; Liu, Z.; Yang, X.; Xi, Q.; Li, Z.; Duan, J.; Jin, L.; Zhang, X. Novel mutations in ZP1 and ZP2 cause primary infertility due to empty follicle syndrome and abnormal zona pellucida. J. Assist. Reprod. Genet. 2020, 37, 2853–2860. [Google Scholar] [CrossRef]
- Wu, L.; Li, M.; Yin, M.; Ou, Y.; Yan, Z.; Kuang, Y.; Yan, Z.; Li, B. Novel mutations in ZP1: Expanding the mutational spectrum associated with empty follicle syndrome in infertile women. Clin. Genet. 2021, 99, 583–587. [Google Scholar] [CrossRef]
- Huang, H.-L.; Lv, C.; Zhao, Y.-C.; Li, W.; He, X.-M.; Li, P.; Sha, A.-G.; Tian, X.; Papasian, C.J.; Deng, H.-W.; et al. Mutant ZP1 in familial infertility. N. Engl. J. Med. 2014, 370, 1220–1226. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Shangguan, T.; Li, Y.; He, W. Infertility due to lack of zona pellucida caused by a compound heterozygous mutation in ZP1 gene. Reprod Dev Med. 2018, 2, 183–186. [Google Scholar]
- Zhou, Z.; Ni, C.; Wu, L.; Chen, B.; Xu, Y.; Zhang, Z.; Mu, J.; Li, B.; Yan, Z.; Fu, J.; et al. Novel mutations in ZP1, ZP2, and ZP3 cause female infertility due to abnormal zona pellucida formation. Hum. Genet. 2019, 138, 327–337. [Google Scholar] [CrossRef]
- Cao, Q.; Zhao, C.; Zhang, X.; Zhang, H.; Lu, Q.; Wang, C.; Hu, Y.; Ling, X.; Zhang, J.; Huo, R. Heterozygous mutations in ZP1 and ZP3 cause formation disorder of ZP and female infertility in human. J. Cell. Mol. Med. 2020, 24, 8557–8566. [Google Scholar] [CrossRef]
- Nishimura, K.; Dioguardi, E.; Nishio, S.; Villa, A.; Han, L.; Matsuda, T.; Jovine, L. Molecular basis of egg coat cross-linking sheds light on ZP1-associated female infertility. Nat. Commun. 2019, 10, 3086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, C.; Hu, L.; Gong, F.; Tan, Y.; Cai, S.; Zhang, S.; Dai, J.; Lu, C.; Chen, J.; Chen, Y.; et al. ZP2 pathogenic variants cause in vitro fertilization failure and female infertility. Genet. Med. 2019, 21, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Bian, Y.; Liu, X.; Zhao, S.; Wu, K.; Yan, L.; Li, M.; Yang, Z.; Liu, H.; Zhao, H.; et al. A Recurrent Missense Mutation in ZP3 Causes Empty Follicle Syndrome and Female Infertility. Am. J. Hum. Genet. 2017, 101, 459–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.; Li, Y.; Liu, Q.; Liu, W.; Yan, X.; Zhu, X.; Zhou, D.; Tian, Y.; Zhang, F.; Li, N.; et al. Mutations in ZP4 are associated with abnormal zona pellucida and female infertility. J. Clin. Pathol. 2021. [Google Scholar] [CrossRef]
- Wassarman, P.M.; Litscher, E.S. Biogenesis of the Mouse Egg’s Extracellular Coat, the Zona Pellucida. Curr. Top. Dev. Biol. 2013, 102, 243–266. [Google Scholar]
- Bleil, J.D.; Wassarman, P.M. Synthesis of zona pellucida proteins by denuded and follicle-enclosed mouse oocytes during culture in vitro. Proc. Natl. Acad. Sci. USA 1980, 77, 1029–1033. [Google Scholar] [CrossRef] [Green Version]
- Skinner, S.M.; Dunbar, B.S. Localization of a carbohydrate antigen associated with growing oocytes and ovarian surface epithelium. J. Histochem. Cytochem. 1992, 40, 1031–1036. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epifano, O.; Liang, L.; Familari, M.; Moos, M.; Dean, J. Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development 1995, 121, 1947–1956. [Google Scholar] [PubMed]
- Sinowatz, F.; Kölle, S.; Töpfer-Petersen, E. Biosynthesis and expression of zona pellucida glycoproteins in mammals. Cells Tissues Organs 2001, 168, 24–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scobie, G.A.; Kerr, L.E.; MacDuff, P.; Aitken, R.J. Cloning, sequencing and site of origin of the rat sperm receptor protein, ZP3. Zygote 1999, 7, 27–35. [Google Scholar] [CrossRef]
- Izquierdo-Rico, M.J.; Gimeno, L.; Jiménez-Cervantes, C.; Ballesta, J.; Avilés, M. Biosynthesis of hamster zona pellucida is restricted to the oocyte. Theriogenology 2011, 75, 463–472. [Google Scholar] [CrossRef]
- Bogner, K.; Hinsch, K.D.; Nayudu, P.; Konrad, L.; Cassara, C.; Hinsch, E. Localization and synthesis of zona pellucida proteins in the marmoset monkey (Callithrix jacchus) ovary. Mol. Hum. Reprod. 2004, 10, 481–488. [Google Scholar] [CrossRef] [Green Version]
- Kölle, S.; Sinowatz, F.; Boie, G.; Totzauer, I.; Amselgruber, W.; Plendl, J. Localization of the mRNA encoding the zona protein ZP3α in the porcine ovary, oocyte and embryo by non-radioactive in situ hybridization. Histochem. J. 1996, 28, 441–447. [Google Scholar] [CrossRef]
- Lee, V.H.; Dunbar, B.S. Developmental expression of the rabbit 55-kDa zona pellucida protein and messenger RNA in ovarian follicles. Dev. Biol. 1993, 155, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Kölle, S.; Sinowatz, F.; Boie, G.; Palma, G. Differential expression of ZPC in the bovine ovary, oocyte, and embryo. Mol. Reprod. Dev. 1998, 49, 435–443. [Google Scholar] [CrossRef]
- Eberspaecher, U.; Becker, A.; Bringmann, P.; Van der Merwe, L.; Donner, P. Immunohistochemical localization of zona pellucida proteins ZPA, ZPB and ZPC in human, cynomolgus monkey and mouse ovaries. Cell Tissue Res. 2001, 303, 277–287. [Google Scholar] [CrossRef]
- Carino, C.; Prasad, S.; Skinner, S.; Larrea, F.; Dunbar, B. Antibodies specific to recombinant human ZP proteins localize ZP antigens to the oocyte and granulosa cells of mammalian ovaries. Biol. Reprod. 1999, 60, 229–230. [Google Scholar]
- Gook, D.A.; Edgar, D.H.; Borg, J.; Martic, M. Detection of zona pellucida proteins during human folliculogenesis. Hum. Reprod. 2008, 23, 394–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grootenhuis, A.; Philipsen, H.; de Breet-Grijsbach, J.; van Duin, M. Immunocytochemical localization of ZP3 in primordial follicles of rabbit, marmoset, rhesus monkey and human ovaries using antibodies against human ZP3. J Reprod Fertil Suppl. 1996, 50, 43–54. [Google Scholar] [PubMed]
- Zhang, Y.; Yan, Z.; Qin, Q.; Nisenblat, V.; Chang, H.M.; Yu, Y.; Wang, T.; Lu, C.; Yang, M.; Yang, S.; et al. Transcriptome Landscape of Human Folliculogenesis Reveals Oocyte and Granulosa Cell Interactions. Mol. Cell 2018, 72, 1021–1034.e4. [Google Scholar] [CrossRef] [Green Version]
- Plaza, S.; Chanut-Delalande, H.; Fernandes, I.; Wassarman, P.M.; Payre, F. From A to Z: Apical structures and zona pellucida-domain proteins. Trends Cell Biol. 2010, 20, 524–532. [Google Scholar] [CrossRef]
- Boja, E.S.; Hoodbhoy, T.; Fales, H.M.; Dean, J. Structural characterization of native mouse zona pellucida proteins using mass spectrometry. J. Biol. Chem. 2003, 278, 34189–34202. [Google Scholar] [CrossRef] [Green Version]
- Jovine, L.; Qi, H.; Williams, Z.; Litscher, E.S.; Wassarman, P.M. A duplicated motif controls assembly of zona pellucida domain proteins. Proc. Natl. Acad. Sci. USA 2004, 101, 5922–5927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jimenez-Movilla, M.; Dean, J. ZP2 and ZP3 cytoplasmic tails prevent premature interactions and ensure incorporation into the zona pellucida. J. Cell Sci. 2011, 124, 940–950. [Google Scholar] [CrossRef] [Green Version]
- Hoodbhoy, T.; Avilés, M.; Baibakov, B.; Epifano, O.; Jiménez-Movilla, M.; Gauthier, L.; Dean, J. ZP2 and ZP3 Traffic Independently within Oocytes prior to Assembly into the Extracellular Zona Pellucida. Mol. Cell. Biol. 2006, 26, 7991–7998. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, K.; Okada, A.; Shirakawa, H.; Nakanishi, S.; Mikoshiba, K.; Miyazaki, S. Developmental changes in the distribution of the endoplasmic reticulum and inositol 1,4,5-trisphosphate receptors and the spatial pattern of Ca2+ release during maturation of hamster oocytes. Dev. Biol. 1995, 170, 594–606. [Google Scholar] [CrossRef]
- Jiménez-Movilla, M.; Avilés, M.; Castells, M.; Ballesta, J. Ultraestructural analysis of the endoplasmic reticulum in the mice oocytes during the folliculogenesis. Histol. Tissue Eng. 2005, 7, 102. [Google Scholar]
- Sathananthan, A.H.; Selvaraj, K.; Lakshmi Girijashankar, M.; Ganesh, V.; Selvaraj, P.; Trounson, A.O. From oogonia to mature oocytes: Inactivation of the maternal centrosome in humans. Microsc. Res. Tech. 2006, 69, 396–407. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, K.; Tanaka, Y.; Nakajima, Y.; Hirano, K.; Itoh, H.; Miyata, H.; Hayakawa, T.; Kinosita, K. Spatiotemporal relationships among early events of fertilization in sea urchin eggs revealed by multiview microscopy. Biophys. J. 1995, 68, 739–748. [Google Scholar] [CrossRef] [Green Version]
- Kang, Y.H. Development of the zona pellucida in the rat oocyte. Am. J. Anat. 1974, 139, 535–565. [Google Scholar] [CrossRef] [PubMed]
- Weakley, B. Comparison of cytoplasmic lamellae and membranous elements in oocytes of 5 mammalian species. Zeitschrift Fur Zellforsch. Und Mikroskopische Anat. 1968, 85, 109. [Google Scholar] [CrossRef] [PubMed]
- Jovine, L.; Qi, H.; Williams, Z.; Litscher, E.; Wassarman, P.M. The ZP domain is a conserved module for polymerization of extracelluar proteins. Nat. Cell Biol. 2002, 4, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Qi, H.; Williams, Z.; Wassarman, P.M. Secretion and assembly of zona pellucida glycoproteins by growing mouse oocytes microinjected with epitope-tagged cDNAs for mZP2 and mZP3. Mol. Biol. Cell 2002, 13, 530–541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, M.; Gold, L.; Dorward, H.; Liang, L.; Hoodbhoy, T.; Boja, E.; Fales, H.M.; Dean, J. Mutation of a Conserved Hydrophobic Patch Prevents Incorporation of ZP3 into the Zona Pellucida Surrounding Mouse Eggs. Mol. Cell. Biol. 2003, 23, 8982–8991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mehlmann, L.M.; Terasaki, M.; Jaffe, L.A.; Kline, A.D. Reorganization of the endoplasmic reticulum during meiotic maturation of the mouse oocyte. Dev. Biol. 1995, 170, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Kloc, M.; Jaglarz, M.; Dougherty, M.; Stewart, M.D.; Nel-Themaat, L.; Bilinski, S. Mouse early oocytes are transiently polar: Three-dimensional and ultrastructural analysis. Exp. Cell Res. 2008, 314, 3245–3254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloc, M.; Ghobrial, R.M.; Borsuk, E.; Kubiak, J.Z. Polarity and asymmetry during mouse oogenesis and oocyte maturation. Results Probl. Cell Differ. 2012, 55, 23–44. [Google Scholar] [PubMed]
- Motosugi, N.; Dietrich, J.E.; Polanski, Z.; Solter, D.; Hiiragi, T. Space asymmetry directs preferential sperm entry in the absence of polarity in the mouse oocyte. PLoS Biol. 2006, 4, 799–804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, R.H.F.; Fléchon, B.; Fléchon, J.E. Distribution, morphology and epithelial interactions of bovine spermatozoa in the oviduct before and after ovulation: A scanning electron microscope study. Tissue Cell 1991, 23, 641–656. [Google Scholar] [CrossRef]
- Yániz, J.L.; Lopez-Gatius, F.; Santolaria, P.; Mullins, K.J. Study of the functional anatomy of bovine oviductal mucosa. Anat. Rec. 2000, 260, 268–278. [Google Scholar] [CrossRef]
- Hunter, R.H. Have the Fallopian tubes a vital rôle in promoting fertility? Acta Obstet. Gynecol. Scand. 1998, 77, 475–486. [Google Scholar]
- González-Brusi, L.; Algarra, B.; Moros-Nicolás, C.; Izquierdo-Rico, M.J.; Avilés, M.; Jiménez-Movilla, M. A comparative view on the oviductal environment during the periconception period. Biomolecules 2020, 10, 1690. [Google Scholar] [CrossRef]
- Fazeli, A.; Affara, N.A.; Hubank, M.; Holt, W. V Sperm-induced modification of the oviductal gene expression profile after natural insemination in mice. Biol. Reprod. 2004, 71, 60–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almiñana, C.; Caballero, I.; Heath, P.R.; Maleki-Dizaji, S.; Parrilla, I.; Cuello, C.; Gil, M.A.; Vazquez, J.L.; Vazquez, J.M.; Roca, J.; et al. The battle of the sexes starts in the oviduct: Modulation of oviductal transcriptome by X and Y-bearing spermatozoa. BMC Genom. 2014, 15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillo, V.; Gaora, P.Ó.; Forde, N.; Besenfelder, U.; Havlicek, V.; Burns, G.W.; Spencer, T.E.; Gutierrez-Adan, A.; Lonergan, P.; Rizos, D. Oviduct-Embryo Interactions in Cattle: Two-Way Traffic or a One-Way Street? Biol. Reprod. 2015, 92, 144. [Google Scholar] [CrossRef]
- Maillo, V.; De Frutos, C.; O’Gaora, P.; Forde, N.; Burns, G.W.; Spencer, T.E.; Gutierrez-Adan, A.; Lonergan, P.; Rizos, D. Spatial differences in gene expression in the bovine oviduct. Reproduction 2016, 152, 37–46. [Google Scholar] [CrossRef] [Green Version]
- Smits, K.; De Coninck, D.I.M.; Van Nieuwerburgh, F.; Govaere, J.; Van Poucke, M.; Peelman, L.; Deforce, D.; Van Soom, A. The Equine Embryo Influences Immune-Related Gene Expression in the Oviduct. Biol. Reprod. 2016, 94, 36. [Google Scholar] [CrossRef] [Green Version]
- Martyniak, M.; Zglejc-Waszak, K.; Franczak, A.; Kotwica, G. Transcriptomic analysis of the oviduct of pigs during the peri-conceptional period. Anim. Reprod. Sci. 2018, 197, 278–289. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, G.; St-Jacques, S.; Potier, M.; Bleau, G. Characterization of an oviductal glycoprotein associated with the ovulated hamster oocyte. Biol. Reprod. 1988, 38, 687–694. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Yanagimachi, R. Differences between mature ovarian and oviductal oocytes: A study using the golden hamster. Hum. Reprod. 1989, 4, 63–71. [Google Scholar] [CrossRef]
- Boatman, D.E.; Felson, S.E.; Kimura, J. Changes in morphology, sperm penetration and fertilization of ovulated hamster eggs induced by oviductal exposure. Hum. Reprod. 1994, 9, 519–526. [Google Scholar] [CrossRef] [PubMed]
- Kito, S.; Bavister, B.D. Kinetics of sperm penetration and fertilization in vitro in hamster follicular and oviductal ova. J. Exp. Zool. 1996, 274, 373–383. [Google Scholar] [CrossRef]
- Kim, N.H.; Funahashi, H.; Abeydeera, L.R.; Moon, S.J.; Prather, R.S.; Day, B.N. Effects of oviductal fluid on sperm penetration and cortical granule exocytosis during fertilization of pig oocytes in vitro. J. Reprod. Fertil. 1996, 107, 79–86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodriguez-Martinez, H.; Tienthai, P.; Suzuki, K.; Funahashi, H.; Ekwall, H.; Johannisson, A. Involvement of oviduct in sperm capacitation and oocyte development in pigs. Reprod. Suppl. 2001, 58, 129–145. [Google Scholar] [PubMed]
- Kolbe, T.; Holtz, W. Differences in proteinase digestibility of the zona pellucida of in vivo and in vitro derived porcine oocytes and embryos. Theriogenology 2005, 63, 1695–1705. [Google Scholar] [CrossRef] [PubMed]
- Way, A.L.; Schuler, A.M.; Killian, G.J. Influence of bovine ampullary and isthmic oviductal fluid on sperm-egg binding and fertilization in vitro. J. Reprod. Fertil. 1997, 109, 95–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyng, R.; Shur, B.D. Mouse oviduct-specific glycoprotein is an egg-associated ZP3-independent sperm-adhesion ligand. J. Cell Sci. 2009, 122, 3894–3906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondéjar, I.; Acuña, O.; Izquierdo-Rico, M.; Coy, P.; Avilés, M. The Oviduct: Functional Genomic and Proteomic Approach. Reprod. Domest. Anim. 2012, 47, 22–29. [Google Scholar] [CrossRef]
- Abeydeera, L.R.; Day, B.N. In vitro penetration of pig oocytes in a modified Tris-buffered medium: Effect of BSA, caffeine and calcium. Theriogenology 1997, 48, 537–544. [Google Scholar] [CrossRef]
- Funahashi, H.; Day, B.N. Advances in in vitro production of pig embryos. J. Reprod. Fertil. Suppl. 1997, 52, 271–283. [Google Scholar] [CrossRef] [PubMed]
- Day, B.N. Reproductive biotechnologies: Current status in porcine reproduction. Anim. Reprod. Sci. 2000, 60–61, 161–172. [Google Scholar] [CrossRef]
- Nagai, T.; Funahashi, H.; Yoshioka, K.; Kikuchi, K. Up date of in vitro production of porcine embryos. Front. Biosci. 2006, 11, 2565–2573. [Google Scholar] [CrossRef] [Green Version]
- Palmer, E.; Bézard, J.; Magistrini, M.; Duchamp, G. In vitro fertilization in the horse. A retrospective study. J. Reprod. Fertil. Suppl. 1991, 44, 375–384. [Google Scholar] [PubMed]
- Dell’Aquila, M.E.; Fusco, S.; Lacalandra, G.M.; Maritato, F. In vitro maturation and fertilization of equine oocytes recovered during the breeding season. Theriogenology 1996, 45, 547–560. [Google Scholar] [CrossRef]
- Alm, H.; Torner, H.; Blottner, S.; Nürnberg, G.; Kanitz, W. Effect of sperm cryopreservation and treatment with calcium ionophore or heparin on in vitro fertilization of horse oocytes. Theriogenology 2001, 56, 817–829. [Google Scholar] [CrossRef]
- Hinrichs, K.; Love, C.C.; Brinsko, S.P.; Choi, Y.H.; Varner, D.D. In vitro fertilization of in vitro-matured equine oocytes: Effect of maturation medium, duration of maturation, and sperm calcium ionophore treatment, and comparison with rates of fertilization in vivo after oviductal transfer. Biol. Reprod. 2002, 67, 256–262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moros-Nicolás, C.; Douet, C.; Reigner, F.; Goudet, G. Effect of cumulus cell removal and sperm pre-incubation with progesterone on in vitro fertilization of equine gametes in the presence of oviductal fluid or cells. Reprod. Domest. Anim. 2019, 54, 1095–1103. [Google Scholar] [CrossRef]
- Kano, K.; Miyano, T.; Kato, S. Effect of oviductal epithelial cells on fertilization of pig oocytes in vitro. Theriogenology 1994, 42, 1061–1068. [Google Scholar] [CrossRef]
- Romar, R.; Coy, P.; Campos, I.; Gadea, J.; Matás, C.; Ruiz, S. Effect of co-culture of porcine sperm and oocytes with porcine oviductal epithelial cells on in vitro fertilization. Anim. Reprod. Sci. 2001, 68, 85–98. [Google Scholar] [CrossRef]
- Alcântara-Neto, A.S.; Fernandez-Rufete, M.; Corbin, E.; Tsikis, G.; Uzbekov, R.; Garanina, A.S.; Coy, P.; Almiñana, C.; Mermillod, P. Oviduct fluid extracellular vesicles regulate polyspermy during porcine in vitro fertilisation. Reprod. Fertil. Dev. 2019, 32. [Google Scholar] [CrossRef] [PubMed]
- Mugnier, S.; Kervella, M.; Douet, C.; Canepa, S.; Pascal, G.; Deleuze, S.; Duchamp, G.; Monget, P.; Goudet, G. The secretions of oviduct epithelial cells increase the equine in vitro fertilization rate: Are osteopontin, atrial natriuretic peptide A and oviductin involved? Reprod. Biol. Endocrinol. 2009, 7, 129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ambruosi, B.; Accogli, G.; Douet, C.; Canepa, S.; Pascal, G.; Monget, P.; Moros Nicolás, C.; Holmskov, U.; Mollenhauer, J.; Robbe-Masselot, C.; et al. Deleted in malignant brain tumor 1 is secreted in the oviduct and involved in the mechanism of fertilization in equine and porcine species. Reproduction 2013, 146, 119–133. [Google Scholar] [CrossRef] [PubMed]
- Martus, N.S.; Verhage, H.G.; Mavrogianis, P.A.; Thibodeaux, J.K. Enhancement of bovine oocyte fertilization in vitro with a bovine oviductal specific glycoprotein. J. Reprod. Fertil. 1998, 113, 323–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tesařik, J. Developmental control of human preimplantation embryos: A comparative approach. J. Vitr. Fertil. Embryo Transf. 1988, 5, 347–362. [Google Scholar] [CrossRef] [PubMed]
- Oehninger, S.; Kruger, T.F.; Veeck, L.; Acosta, A.A.; Franken, D.; Hodgen, G.D. Human preovulatory oocytes have a higher sperm-binding ability than immature oocytes under hemizona assay conditions: Evidence supporting the concept of “zona maturation. ” Fertil. Steril. 1991, 55, 1165–1170. [Google Scholar] [CrossRef]
- Avilés, M.; Castells, M.T.; Abascal, I.; Martínez-Menárguez, J.A.; Dráber, P.; Kan, F.W.K.; Ballesta, J. Cytochemical localization of GalNAc and GalNAcβ1,4Galβ1,4 disaccharide in mouse zona pellucida. Cell Tissue Res. 1999, 295, 269–277. [Google Scholar] [CrossRef]
- Avilés, M.; El-Mestrgah, M.; Jaber, L.; Castells, M.T.; Ballesta, J.; Kan, F.W.K. Cytochemical demonstration of modification of carbohydrates in the mouse zona pellucida during folliculogenesis. Histochem. Cell Biol. 2000, 113, 207–219. [Google Scholar] [CrossRef] [PubMed]
- Oikawa, T.; Sendai, Y.; Kurata, S.-I.; Yanagimachi, R. A glycoprotein of oviductal origin alters biochemical properties of the zona pellucida of hamster egg. Gamete Res. 1988, 19, 113–122. [Google Scholar] [CrossRef]
- Sakai, Y.; Araki, Y.; Yamashita, T.; Kurata, S.; Oikawa, T.; Hiroi, M.; Sendo, F. Inhibition of in vitro fertilization by a monoclonal antibody reacting with the zona pellucida of the oviductal egg but not with that of the ovarian egg of the golden hamster. J. Reprod. Immunol. 1988, 14, 177–189. [Google Scholar] [CrossRef]
- Boatman, D.E.; Magnoni, G.E. Identification of a sperm penetration factor in the oviduct of the golden hamster. Biol. Reprod. 1995, 52, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Yanagimachi, R.; Nicolson, G.L. Lectin-binding properties of hamster egg zona pellucida and plasma membrane during maturation and preimplantation development. Exp. Cell Res. 1976, 100, 249–257. [Google Scholar] [CrossRef]
- El-Mestrah, M.; Kan, F.W.K. Distribution of lectin-binding glycosidic residues in the hamster follicular oocytes and their modifications in the zona pellucida after ovulation. Mol. Reprod. Dev. 2001, 60, 517–534. [Google Scholar] [CrossRef] [PubMed]
- Carrasco, L.C.; Coy, P.; Avilés, M.; Gadea, J.; Romar, R. Glycosidase determination in bovine oviducal fluid at the follicular and luteal phases of the oestrous cycle. Reprod. Fertil. Dev. 2008, 20, 808–817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carrasco, L.C.; Romar, R.; Avilés, M.; Gadea, J.; Coy, P. Determination of glycosidase activity in porcine oviductal fluid at the different phases of the estrous cycle. Reproduction 2008, 136, 833–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shalgi, R.; Maymon, R.; Bar-Shira (Maymon), B.; Amihai, D.; Skutelsky, E. Distribution of lectin receptors sites in the zona pellucida of follicular and ovulated rat oocytes. Mol. Reprod. Dev. 1991, 29, 365–372. [Google Scholar] [CrossRef]
- Funahashi, H.; Ekwall, H.; Kikuchi, K.; Rodriguez-Martinez, H. Transmission electron microscopy studies of the zona reaction in pig oocytes fertilized in vivo and in vitro. Reproduction 2001, 122, 443–452. [Google Scholar] [CrossRef]
- O’Day-Bowman, M.B.; Mavrogianis, P.A.; Reuter, L.M.; Johnson, D.E.; Fazleabas, A.T.; Verhage, H.G. Association of oviduct-specific glycoproteins with human and baboon (Papio anubis) ovarian oocytes and enhancement of human sperm binding to human hemizonae following in vitro incubation. Biol. Reprod. 1996, 54, 60–69. [Google Scholar] [CrossRef]
- McCauley, T.C.; Buhi, W.C.; Wu, G.M.; Mao, J.; Caamaño, J.N.; Didion, B.A.; Day, B.N. Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biol. Reprod. 2003, 69, 828–834. [Google Scholar] [CrossRef] [Green Version]
- Franzen, A.; Heinegard, D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem. J. 1985, 232, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Mazzali, M.; Kipari, T.; Ophascharoensuk, V.; Wesson, J.A.; Johnson, R.; Hughes, J. Osteopontin-A molecule for all seasons. QJM Mon. J. Assoc. Physicians 2002, 95, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Shou, P.; Zhang, L.; Xu, C.; Zheng, C.; Han, Y.; Li, W.; Huang, Y.; Zhang, X.; Shao, C.; et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 2014, 32, 327–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Q.; Xie, Q.Z.; Zhou, Y.; Yang, J. Osteopontin is expressed in the oviduct and promotes fertilization and preimplantation embryo development of mouse. Zygote 2014, 760, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Liaw, L.; Birk, D.E.; Ballas, C.B.; Whitsitt, J.S.; Davidson, J.M.; Hogan, B.L. Altered wound healing in mice lacking a functional osteopontin gene (spp1). J. Clin. Investig. 1998, 101, 1468–1478. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabler, C.; Chapman, D.; Killian, G. Expression and presence of osteopontin and integrins in the bovine oviduct during the oestrous cycle. Reproduction 2003, 126, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, R.F.; Staros, A.L.; Killian, G.J. Oviductal fluid proteins associated with the bovine zona pellucida and the effect on in vitro sperm-egg binding, fertilization and embryo development. Reprod. Domest. Anim. 2008, 43, 720–729. [Google Scholar] [CrossRef]
- Monaco, E.; Gasparrini, B.; Boccia, L.; De Rosa, A.; Attanasio, L.; Zicarelli, L.; Killian, G. Effect of osteopontin (OPN) on in vitro embryo development in cattle. Theriogenology 2009, 71, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Mathialagan, N.; Walters, E.; Mao, J.; Lai, L.; Becker, D.; Li, W.; Critser, J.; Prather, R.S. Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes. Biol. Reprod. 2006, 75, 726–733. [Google Scholar] [CrossRef] [Green Version]
- Masson, P.L.; Heremans, J.F. Molecular size of γA-immunoglobulin from bronchial secretions. BBA Biophys. Incl. Photosynth. 1966, 120, 172–173. [Google Scholar] [CrossRef]
- Hirai, Y.; Kawakata, N.; Satoh, K.; Ikeda, Y.; Hisayasu, S.; Orimo, H.; Yoshino, Y. Concentrations of Lactoferrin and Iron in Human Milk at Different Stages of Lactation. J. Nutr. Sci. Vitaminol. 1990, 36, 531–544. [Google Scholar] [CrossRef] [PubMed]
- Newbold, R.R.; Teng, C.T.; Beckman, W.C.; Jefferson, W.N.; Hanson, R.B.; Miller, J.V.; McLachlan, J.A. Fluctuations of lactoferrin protein and messenger ribonucleic acid in the reproductive tract of the mouse during the estrous cycle. Biol. Reprod. 1992, 47, 903–915. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levay, P.; Viljoen, M. Lactoferrin: A general review. Haematology 1995, 80, 252–267. [Google Scholar]
- Brock, J.H. The physiology of lactoferrin. Biochem. Cell Biol. 2002, 80, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.T.; Beard, C.; Gladwell, W. Differential expression and estrogen response of lactoferrin gene in the female reproductive tract of mouse, rat, and hamster. Biol. Reprod. 2002, 67, 1439–1449. [Google Scholar] [CrossRef]
- Zumoffen, C.M.; Gil, R.; Caille, A.M.; Morente, C.; Munuce, M.J.; Ghersevich, S.A. A protein isolated from human oviductal tissue in vitro secretion, identified as human lactoferrin, interacts with spermatozoa and oocytes and modulates gamete interaction. Hum. Reprod. 2013, 28, 1297–1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, F.W.K.; St-Jacques, S.; Bleau, G. Immunocytochemical evidence for the transfer of an oviductal antigen to the zona pellucida of hamster ova after ovulation. Biol. Reprod. 1989, 40, 585–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warren, W.C.; Hillier, L.D.W.; Marshall Graves, J.A.; Birney, E.; Ponting, C.P.; Grützner, F.; Belov, K.; Miller, W.; Clarke, L.; Chinwalla, A.T.; et al. Genome analysis of the platypus reveals unique signatures of evolution. Nature 2008, 453, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Mikkelsen, T.S.; Wakefield, M.J.; Aken, B.; Amemiya, C.T.; Chang, J.L.; Duke, S.; Garber, M.; Gentles, A.J.; Goodstadt, L.; Heger, A.; et al. Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 2007, 447, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Coy, P.; Canovas, S.; Mondejar, I.; Saavedra, M.D.; Romar, R.; Grullon, L.; Matas, C.; Aviles, M. Oviduct-specific glycoprotein and heparin modulate sperm-zona pellucida interaction during fertilization and contribute to the control of polyspermy. Proc. Natl. Acad. Sci. USA 2008, 105, 15809–15814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Araki, Y.; Nohara, M.; Yoshida-Komiya, H.; Kuramochi, T.; Ito, M.; Hoshi, H.; Shinkai, Y.; Sendai, Y. Effect of a null mutation of the oviduct-specific glycoprotein gene on mouse fertilization. Biochem. J. 2003, 374, 551–557. [Google Scholar] [CrossRef]
- Tian, X.; Pascal, G.; Fouchécourt, S.; Pontarotti, P.; Monget, P. Gene birth, death, and divergence: The different scenarios of reproduction-related gene evolution. Biol. Reprod. 2009, 80, 616–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moros-Nicolás, C.; Fouchécourt, S.; Goudet, G.; Monget, P. Genes Encoding Mammalian Oviductal Proteins Involved in Fertilization are Subjected to Gene Death and Positive Selection. J. Mol. Evol. 2018, 86, 655–667. [Google Scholar] [CrossRef] [PubMed]
- Gerena, R.L.; Irikura, D.; Urade, Y.; Eguchi, N.; Chapman, D.A.; Killian, G.J. Identification of a fertility-associated protein in bull seminal plasma as lipocalin-type prostaglandin D synthase. Biol. Reprod. 1998, 58, 826–833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avella, M.A.; Baibakov, B.A.; Jimenez-Movilla, M.; Sadusky, A.B.; Dean, J. ZP2 peptide beads select human sperm in vitro, decoy mouse sperm in vivo, and provide reversible contraception. Sci. Transl. Med. 2016, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, S.K.; Srinivasan, V.A.; Suman, P.; Rajan, S.; Nagendrakumar, S.B.; Gupta, N.; Shrestha, A.; Joshi, P.; Panda, A.K. Contraceptive Vaccines Based on the Zona Pellucida Glycoproteins for Dogs and Other Wildlife Population Management. Am. J. Reprod. Immunol. 2011, 66, 51–62. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moros-Nicolás, C.; Chevret, P.; Jiménez-Movilla, M.; Algarra, B.; Cots-Rodríguez, P.; González-Brusi, L.; Avilés, M.; Izquierdo-Rico, M.J. New Insights into the Mammalian Egg Zona Pellucida. Int. J. Mol. Sci. 2021, 22, 3276. https://doi.org/10.3390/ijms22063276
Moros-Nicolás C, Chevret P, Jiménez-Movilla M, Algarra B, Cots-Rodríguez P, González-Brusi L, Avilés M, Izquierdo-Rico MJ. New Insights into the Mammalian Egg Zona Pellucida. International Journal of Molecular Sciences. 2021; 22(6):3276. https://doi.org/10.3390/ijms22063276
Chicago/Turabian StyleMoros-Nicolás, Carla, Pascale Chevret, María Jiménez-Movilla, Blanca Algarra, Paula Cots-Rodríguez, Leopoldo González-Brusi, Manuel Avilés, and Mª José Izquierdo-Rico. 2021. "New Insights into the Mammalian Egg Zona Pellucida" International Journal of Molecular Sciences 22, no. 6: 3276. https://doi.org/10.3390/ijms22063276
APA StyleMoros-Nicolás, C., Chevret, P., Jiménez-Movilla, M., Algarra, B., Cots-Rodríguez, P., González-Brusi, L., Avilés, M., & Izquierdo-Rico, M. J. (2021). New Insights into the Mammalian Egg Zona Pellucida. International Journal of Molecular Sciences, 22(6), 3276. https://doi.org/10.3390/ijms22063276