Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana
Abstract
:1. Introduction
2. Results
2.1. Sublethal Doses of Glyphosate, Imazethapyr and 2,4-D Weaken TGS
2.2. The Response of Chromatin Mutants to the Herbicide Treatments
2.3. Massive Transcriptional Changes Upon Imazethapyr Treatment
2.4. Gene Ontology (GO) Analysis Identifies Enrichment of Secondary Metabolism and Flavonoid Biosynthesis Genes
(GO) Analysis of DEGs—Genes Putatively Involved with NTSR
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. Herbicide Treatments
4.3. Global DNA Methylation Analysis by Isocratic Cation-Exchange High-Pressure Liquid Chromatography (HPLC)
4.4. High-Throughput mRNA Sequencing (RNA-Seq)
4.5. Gene Ontology (GO) Analysis of DEGs
4.6. Transcript Abundance Analysis by RT-qPCR
4.7. Accession Numbers
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oerke, E.C. Crop losses to pests. J. Agric. Sci. 2006, 144, 31–43. [Google Scholar] [CrossRef]
- Busi, R.; Vila-Aiub, M.M.; Beckie, H.J.; Gaines, T.A.; Goggin, D.E.; Kaundun, S.S.; Lacoste, M.; Neve, P.; Nissen, S.J.; Norsworthy, J.K.; et al. Herbicide-resistant weeds: From research and knowledge to future needs. Evol. Appl. 2013, 6, 1218–1221. [Google Scholar] [CrossRef]
- Heap, I. The International Survey of Herbicide Resistant Weeds. Available online: www.weedscience.org (accessed on 17 January 2021).
- Evans, J.A.; Tranel, P.J.; Hager, A.G.; Schutte, B.; Wu, C.X.; Chatham, L.A.; Davis, A.S. Managing the evolution of herbicide resistance. Pest Manag. Sci. 2016, 72, 74–80. [Google Scholar] [CrossRef]
- Baucom, R.S.; Busi, R. Evolutionary epidemiology in the field: A proactive approach for identifying herbicide resistance in problematic crop weeds. New Phytol. 2019, 223, 1056–1058. [Google Scholar] [CrossRef]
- Comont, D.; Hicks, H.; Crook, L.; Hull, R.; Cocciantelli, E.; Hadfield, J.; Childs, D.; Freckleton, R.; Neve, P. Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. New Phytol. 2019, 223, 1584–1594. [Google Scholar] [CrossRef] [PubMed]
- Penner, D. Turf weeds and their control. In Herbicide Action and Metabolism, 2nd ed.; Turgeon, A.J., Ed.; American Society of Agronomy: Madison, WI, USA, 1994; pp. 37–70. [Google Scholar]
- Powles, S.B.; Yu, Q. Evolution in action: Plants resistant to herbicides. Annu. Rev. Plant Biol. 2010, 61, 317–347. [Google Scholar] [CrossRef]
- Patzoldt, W.L.; Hager, A.G.; McCormick, J.S.; Tranel, P.J. A codon deletion confers resistance to herbicides inhibiting protoporphyrinogen oxidase. Proc. Natl. Acad. Sci. USA 2006, 103, 12329–12334. [Google Scholar] [CrossRef]
- Gaines, T.A.; Zhang, W.L.; Wang, D.F.; Bukun, B.; Chisholm, S.T.; Shaner, D.L.; Nissen, S.J.; Patzoldt, W.L.; Tranel, P.J.; Culpepper, A.S.; et al. Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc. Natl. Acad. Sci. USA 2010, 107, 1029–1034. [Google Scholar] [CrossRef] [PubMed]
- Varanasi, V.K.; Godar, A.S.; Peterson, D.E.; Shoup, D.; Jugulam, M. A target-site point mutation in henbit (Lamium amplexicaule) confers high-level resistance to ALS-inhibitors. Weed Sci. 2016, 64, 231–239. [Google Scholar] [CrossRef]
- Iwakami, S.; Endo, M.; Saika, H.; Okuno, J.; Nakamura, N.; Yokoyama, M.; Watanabe, H.; Toki, S.; Uchino, A.; Inamura, T. Cytochrome P450 CYP81A12 and CYP81A21 are associated with resistance to two acetolactate synthase inhibitors in Echinochloa phyllopogon. Plant Physiol. 2014, 165, 618–629. [Google Scholar] [CrossRef] [PubMed]
- Gaines, T.A.; Lorentz, L.; Figge, A.; Herrmann, J.; Maiwald, F.; Ott, M.C.; Han, H.P.; Busi, R.; Yu, Q.; Powles, S.B.; et al. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. Plant J. 2014, 78, 865–876. [Google Scholar] [CrossRef]
- Ghanizadeh, H.; Harrington, K.C. Non-target Site Mechanisms of Resistance to Herbicides. Crit. Rev. Plant Sci. 2017, 36, 24–34. [Google Scholar] [CrossRef]
- Pan, L.; Yu, Q.; Han, H.P.; Mao, L.F.; Nyporko, A.; Fan, L.J.; Bai, L.Y.; Powles, S. Aldo-keto reductase metabolizes glyphosate and confers glyphosate resistance in Echinochloa colona. Plant Physiol. 2019, 181, 1519–1534. [Google Scholar] [CrossRef]
- Délye, C. Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: A major challenge for weed science in the forthcoming decade. Pest Manag. Sci. 2013, 69, 176–187. [Google Scholar] [CrossRef]
- Gressel, J. Evolving understanding of the evolution of herbicide resistance. Pest Manag. Sci. 2009, 65, 1164–1173. [Google Scholar] [CrossRef]
- Kim, G.; Clarke, C.R.; Larose, H.; Tran, H.T.; Haak, D.C.; Zhang, L.Q.; Askew, S.; Barney, J.; Westwood, J.H. Herbicide injury induces DNA methylome alterations in Arabidopsis. PeerJ 2017, 5, e3560. [Google Scholar] [CrossRef]
- Markus, C.; Pecinka, A.; Karan, R.; Barney, J.N.; Merotto, A. Epigenetic regulation-contribution to herbicide resistance in weeds? Pest Manag. Sci. 2018, 74, 275–281. [Google Scholar] [CrossRef]
- Hauser, M.T.; Aufsatz, W.; Jonak, C.; Luschnig, C. Transgenerational epigenetic inheritance in plants. Biochim. Biophys. Acta Gene Regul. Mech. 2011, 1809, 459–468. [Google Scholar] [CrossRef]
- Pecinka, A.; Chevalier, C.; Colas, I.; Kalantidis, K.; Varotto, S.; Krugman, T.; Michailidis, C.; Valles, M.P.; Munoz, A.; Pradillo, M. Chromatin dynamics during interphase and cell division: Similarities and differences between model and crop plants. J. Exp. Bot. 2020, 71, 5205–5222. [Google Scholar] [CrossRef]
- Cortijo, S.; Wardenaar, R.; Colome-Tatche, M.; Gilly, A.; Etcheverry, M.; Labadie, K.; Caillieux, E.; Hospital, F.; Aury, J.M.; Wincker, P.; et al. Mapping the epigenetic basis of complex traits. Science 2014, 343, 1145–1148. [Google Scholar] [CrossRef]
- Mozgova, I.; Hennig, L. The polycomb group protein regulatory network. Annu. Rev. Plant Biol. 2015, 66, 269–296. [Google Scholar] [CrossRef]
- Matzke, M.A.; Mosher, R.A. RNA-directed DNA methylation: An epigenetic pathway of increasing complexity. Nat. Rev. Genet. 2014, 15, 394–408. [Google Scholar] [CrossRef]
- Pecinka, A.; Dinh, H.Q.; Baubec, T.; Rosa, M.; Lettner, N.; Scheid, O.M. Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 2010, 22, 3118–3129. [Google Scholar] [CrossRef]
- Lu, Y.C.; Feng, S.J.; Zhang, J.J.; Luo, F.; Zhang, S.; Yang, H. Genome-wide identification of DNA methylation provides insights into the association of gene expression in rice exposed to pesticide atrazine. Sci. Rep. 2016, 6, 1–15. [Google Scholar] [CrossRef]
- Nardemir, G.; Agar, G.; Arslan, E.; Erturk, F.A. Determination of genetic and epigenetic effects of glyphosate on Triticum aestivum with RAPD and CRED-RA techniques. Theor. Exp. Plant Physiol. 2015, 27, 131–139. [Google Scholar] [CrossRef]
- Margaritopoulou, T.; Tani, E.; Chachalis, D.; Travlos, I. Involvement of epigenetic mechanisms in herbicide resistance: The case of Conyza canadensis. Agriculture 2018, 8, 17. [Google Scholar] [CrossRef]
- Tyczewska, A.; Gracz-Bernaciak, J.; Szymkowiak, J.; Twardowski, T. Herbicide stress-induced DNA methylation changes in two Zea mays inbred lines differing in Roundup (R) resistance. J. Appl. Genet. 2021, 1–14. [Google Scholar] [CrossRef]
- Busi, R.; Goggin, D.E.; Heap, I.M.; Horak, M.J.; Jugulam, M.; Masters, R.A.; Napier, R.M.; Riar, D.S.; Satchivi, N.M.; Torra, J.; et al. Weed resistance to synthetic auxin herbicides. Pest Manag. Sci. 2018, 74, 2265–2276. [Google Scholar] [CrossRef]
- Pikaard, C.S.; Scheid, O.M. Epigenetic regulation in plants. Cold Spring Harb. Perspect. Biol. 2014, 6, a019315. [Google Scholar] [CrossRef]
- Morel, J.B.; Mourrain, P.; Beclin, C.; Vaucheret, H. DNA methylation and chromatin structure affect transcriptional and post-transcriptional transgene silencing in Arabidopsis. Curr. Biol. 2000, 10, 1591–1594. [Google Scholar] [CrossRef]
- Elmayan, T.; Proux, F.; Vaucheret, H. Arabidopsis RPA2: A genetic link among transcriptional gene silencing, DNA repair, and DNA replication. Curr. Biol. 2005, 15, 1919–1925. [Google Scholar] [CrossRef] [PubMed]
- Baubec, T.; Finke, A.; Scheid, O.M.; Pecinka, A. Meristem-specific expression of epigenetic regulators safeguards transposon silencing in Arabidopsis. EMBO Rep. 2014, 15, 446–452. [Google Scholar] [CrossRef]
- Gong, Z.H.; Morales-Ruiz, T.; Ariza, R.R.; Roldan-Arjona, T.; David, L.; Zhu, J.K. ROS1, a repressor of transcriptional gene silencing in Arabidopsis, encodes a DNA glycosylase/lyase. Cell 2002, 111, 803–814. [Google Scholar] [CrossRef]
- Stroud, H.; Greenberg, M.V.C.; Feng, S.H.; Bernatavichute, Y.V.; Jacobsen, S.E. Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 2013, 152, 352–364. [Google Scholar] [CrossRef]
- Calarco, J.P.; Borges, F.; Donoghue, M.T.A.; Van Ex, F.; Jullien, P.E.; Lopes, T.; Gardner, R.; Berger, F.; Feijo, J.A.; Becker, J.D.; et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 2012, 151, 194–205. [Google Scholar] [CrossRef]
- Habermann, K.; Dedhia, N.; Parnell, L.; Preston, R.; Hillier, L.; Chen, E.; Marra, M.; Martienssen, R.; McCombie, W.R.; Mayer, K.; et al. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 2000, 408, 796–815. [Google Scholar]
- Caverzan, A.; Piasecki, C.; Chavarria, G.; Stewart, C.N.; Vargas, L. Defenses against ROS in crops and weeds: The effects of interference and herbicides. Int. J. Mol. Sci. 2019, 20, 1086. [Google Scholar] [CrossRef]
- Neve, P.; Powles, S. Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum. Theor. Appl. Genet. 2005, 110, 1154–1166. [Google Scholar] [CrossRef]
- Nowicka, A.; Tokarz, B.; Zwyrtkova, J.; Tomastikova, E.D.; Prochazkova, K.; Ercan, U.; Finke, A.; Rozhon, W.; Poppenberger, B.; Otmar, M.; et al. Comparative analysis of epigenetic inhibitors reveals different degrees of interference with transcriptional gene silencing and induction of DNA damage. Plant J. 2020, 102, 68–84. [Google Scholar] [CrossRef]
- Sales, M.A.; Shivrain, V.K.; Burgos, N.R.; Kuk, Y.I. Amino acid substitutions in the acetolactate synthase gene of red rice (Oryza sativa) confer resistance to imazethapyr. Weed Sci. 2008, 56, 485–489. [Google Scholar] [CrossRef]
- Dill, G.M. Glyphosate-resistant crops: History, status and future. Pest Manag. Sci. 2005, 61, 219–224. [Google Scholar] [CrossRef]
- Mithila, J.; Hall, J.C.; Johnson, W.G.; Kelley, K.B.; Riechers, D.E. Evolution of resistance to auxinic herbicides: Historical perspectives, mechanisms of resistance, and implications for broadleaf weed management in agronomic crops. Weed Sci. 2011, 59, 445–457. [Google Scholar] [CrossRef]
- Zhu, J.H.; Kapoor, A.; Sridhar, V.V.; Agius, F.; Zhu, J.K. The DNA glycosylase/lyase ROS1 functions in pruning DNA methylation patterns in Arabidopsis. Curr. Biol. 2007, 17, 54–59. [Google Scholar] [CrossRef] [PubMed]
- Bharti, P.; Mahajan, M.; Vishwakarma, A.K.; Bhardwaj, J.; Yadav, S.K. AtROS1 overexpression provides evidence for epigenetic regulation of genes encoding enzymes of flavonoid biosynthesis and antioxidant pathways during salt stress in transgenic tobacco. J. Exp. Bot. 2015, 66, 5959–5969. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.Q.; Miki, D.; Zhang, H.; Liu, Y.H.; Zhang, X.; Tang, K.; Kan, Y.C.; La, H.G.; Li, X.J.; Li, S.F.; et al. A histone acetyltransferase regulates active DNA demethylation in Arabidopsis. Science 2012, 336, 1445–1448. [Google Scholar] [CrossRef]
- Sun, C.C.; Chen, S.; Jin, Y.J.; Song, H.; Ruan, S.L.; Fu, Z.W.; Asad, M.A.U.; Qian, H.F. Effects of the herbicide imazethapyr on photosynthesis in PGR5-and NDH-deficient Arabidopsis thaliana at the biochemical, transcriptomic, and proteomic levels. J. Agric. Food Chem. 2016, 64, 4497–4504. [Google Scholar] [CrossRef]
- Sales-Perez, R.A.; Saski, C.A.; Noorai, R.E.; Srivastava, S.K.; Lawton-Rauh, A.L.; Nichols, R.L.; Roma-Burgos, N. RNA-Seq transcriptome analysis of Amaranthus palmeri with differential tolerance to glufosinate herbicide. PLoS ONE 2018, 13, e0195488. [Google Scholar] [CrossRef]
- Cobb, A.H.; Reade, P.H.R. Herbicides and Plant Physiology, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2010; 286p. [Google Scholar]
- Delye, C.; Duhoux, A.; Gardin, J.A.C.; Gouzy, J.; Carrere, S. High conservation of the transcriptional response to acetolactate-synthase-inhibiting herbicides across plant species. Weed Res. 2018, 58, 2–7. [Google Scholar] [CrossRef]
- Dixon, R.A.; Paiva, N.P. Stress-induced phenylpropanoid metabolism. Plant Cell 1995, 7, 1085–1097. [Google Scholar] [CrossRef]
- Cummins, I.; Bryant, D.N.; Edwards, R. Safener responsiveness and multiple herbicide resistance in the weed black-grass (Alopecurus myosuroides). Plant Biotechnol. J. 2009, 7, 807–820. [Google Scholar] [CrossRef]
- Cummins, I.; Wortley, D.J.; Sabbadin, F.; He, Z.S.; Coxon, C.R.; Straker, H.E.; Sellars, J.D.; Knight, K.; Edwards, L.; Hughes, D.; et al. Key role for a glutathione transferase in multiple-herbicide resistance in grass weeds. Proc. Natl. Acad. Sci. USA 2013, 110, 5812–5817. [Google Scholar] [CrossRef]
- Burbulis, I.E.; Iacobucci, M.; Shirley, B.W. A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 1996, 8, 1013–1025. [Google Scholar] [PubMed]
- Xuan, L.J.; Zhang, C.C.; Yan, T.; Wu, D.Z.; Hussain, N.; Li, Z.L.; Chen, M.X.; Pan, J.W.; Jiang, L.X. TRANSPARENT TESTA 4-mediated flavonoids negatively affect embryonic fatty acid biosynthesis in Arabidopsis. Plant Cell Environ. 2018, 41, 2773–2790. [Google Scholar] [CrossRef]
- Yuan, J.S.; Tranel, P.J.; Stewart, C.N. Non-target-site herbicide resistance: A family business. Trends Plant Sci. 2007, 12, 6–13. [Google Scholar] [CrossRef]
- Hatzios, K.K.; Burgos, N. Metabolism-based herbicide resistance: Regulation by safeners. Weed Sci. 2004, 52, 454–467. [Google Scholar] [CrossRef]
- Duhoux, A.; Pernin, F.; Desserre, D.; Délye, C. Herbicide safeners decrease sensitivity to herbicides inhibiting acetolactate-synthase and likely activate non-target-site-based resistance pathways in the major grass weed Lolium sp. (Rye-Grass). Front. Plant Sci. 2017, 8, 1310. [Google Scholar] [CrossRef]
- Streibig, J.C. Herbicide bioassay. Weed Res. 1988, 28, 479–484. [Google Scholar] [CrossRef]
- Vongs, A.; Kakutani, T.; Martienssen, R.A.; Richards, E.J. Arabidopsis thaliana DNA methylation mutants. Science 1993, 260, 1926–1928. [Google Scholar] [CrossRef]
- Rozhon, W.; Baubec, T.; Mayerhofer, J.; Scheid, O.M.; Jonak, C. Rapid quantification of global DNA methylation by isocratic cation exchange high-performance liquid chromatography. Anal. Biochem. 2008, 375, 354–360. [Google Scholar] [CrossRef]
- Garcia-Alcalde, F.; Okonechnikov, K.; Carbonell, J.; Cruz, L.M.; Gotz, S.; Tarazona, S.; Dopazo, J.; Meyer, T.F.; Conesa, A. Qualimap: Evaluating next-generation sequencing alignment data. Bioinformatics 2012, 28, 2678–2679. [Google Scholar] [CrossRef]
- Trapnell, C.; Roberts, A.; Goff, L.; Pertea, G.; Kim, D.; Kelley, D.R.; Pimentel, H.; Salzberg, S.L.; Rinn, J.L.; Pachter, L. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 2012, 7, 562–578. [Google Scholar] [CrossRef]
- Lamesch, P.; Berardini, T.Z.; Li, D.H.; Swarbreck, D.; Wilks, C.; Sasidharan, R.; Muller, R.; Dreher, K.; Alexander, D.L.; Garcia-Hernandez, M.; et al. The Arabidopsis Information Resource (TAIR): Improved gene annotation and new tools. Nucleic Acids Res. 2012, 40, 1202–1210. [Google Scholar] [CrossRef]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 2013, 14, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mi, H.; Muruganujan, A.; Huang, X.; Ebert, D.; Mills, C.; Guo, X.; Paul, D.; Thomas, P.D. Protocol Update for large-scale genome and gene function analysis with the PANTHER classification system (v.14.0). Nat. Protoc. 2019, 14, 703–721. [Google Scholar] [CrossRef]
- Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L.; et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 2009, 55, 611–622. [Google Scholar] [CrossRef]
- Larionov, A.; Krause, A.; Miller, W. A standard curve-based method for relative real time PCR data processing. BMC Bioinform. 2005, 6, 1–16. [Google Scholar] [CrossRef]
Upstream Region/Presence of: | |||||
---|---|---|---|---|---|
Putative Herbicide Resistance Genes | TE † | 5mdC ‡ | rdd Change § | ||
Cytochromes P450 | |||||
1 | AT4G19230 | CYTOCHROME P450, FAMILY 707, SUBFAMILY A, POLYPEPTIDE 1 (CYP707A1); | yes | no | no |
2 | AT1G19630 | CYTOCHROME P450, FAMILY 722, SUBFAMILY A, POLYPEPTIDE 1 (CYP722A1); | no | no | no |
3 | AT5G07990 | TRANSPARENT TESTA 7 (TT7); OR CYTOCHROME P450 75B1 | no | yes | yes |
GST | |||||
4 | AT2G29490 | GLUTATHIONE S-TRANSFERASE TAU 1 (GSTU1); | no | no | no |
5 | AT5G17220 | GLUTATHIONE S-TRANSFERASE PHI 12 (GSTF12); | no | no | no |
6 | AT1G17170 | GLUTATHIONE S-TRANSFERASE TAU 24 (GSTU24); | no | yes | no |
Transporters | |||||
7 | AT2G04070 | MATE EFFLUX FAMILY PROTEIN; | no | no | no |
8 | AT1G51090 | HEAVY METAL TRANSPORT/DETOXIFICATION SUPERFAMILY PROTEIN; | no | yes | yes |
9 | AT1G43890 | RAB GTPASE HOMOLOG B18 (RAB18); | no | yes | yes |
10 | AT4G21910 | MATE EFFLUX FAMILY PROTEIN; | yes | no | no |
11 | AT4G35060 | HEAVY METAL TRANSPORT/DETOXIFICATION SUPERFAMILY PROTEIN; | no | no | no |
12 | AT1G70300 | K+ UPTAKE PERMEASE 6 (KUP6); | yes | no | no |
13 | AT5G47560 | TONOPLAST DICARBOXYLATE TRANSPORTER (TDT); | no | no | no |
14 | AT1G09180 | SECRETION-ASSOCIATED RAS SUPER FAMILY 1 (SARA1A); | no | no | no |
15 | AT1G03550 | SECRETORY CARRIER MEMBRANE PROTEIN (SCAMP) FAMILY PROTEIN; | yes | yes | yes |
16 | AT1G31820 | AMINO ACID PERMEASE FAMILY PROTEIN; | no | no | no |
17 | AT1G04570 | MAJOR FACILITATOR SUPERFAMILY PROTEIN; | yes | yes | yes |
18 | AT2G41190 | TRANSMEMBRANE AMINO ACID TRANSPORTER FAMILY PROTEIN; | no | no | no |
19 | AT3G46450 | SEC14 CYTOSOLIC FACTOR FAMILY PROTEIN/ PHOSPHOGLYCERIDE TRANSFER FAMILY PROTEIN; | no | no | no |
Oxidases | |||||
20 | AT4G20860 | FAD-BINDING BERBERINE FAMILY PROTEIN; | no | no | no |
Glycosyl-transferase | |||||
21 | AT2G43820 | UDP-GLUCOSYLTRANSFERASE 74F2 (UGT74F2); | no | no | no |
22 | AT5G54060 | UDP-GLUCOSE: FLAVONOID 3-O-GLUCOSYLTRANSFERASE (UF3GT); | no | no | no |
23 | AT1G24070 | CELLULOSE SYNTHASE-LIKE A10 (CSLA10); | no | no | no |
24 | AT1G56600 | GALACTINOL SYNTHASE 2 (GOLS2); | no | no | no |
25 | AT1G05675 | UDP-GLYCOSYLTRANSFERASE SUPERFAMILY PROTEIN; | no | no | no |
Esterases/hydrolase | |||||
26 | AT4G10050 | ESTERASE/LIPASE/THIOESTERASE FAMILY PROTEIN; | no | yes | yes |
27 | AT1G54020 | GDSL-LIKE LIPASE/ACYLHYDROLASE SUPERFAMILY PROTEIN; | no | no | no |
28 | AT1G47510 | INOSITOL POLYPHOSPHATE 5-PHOSPHATASE 11 (5PTASE11); | yes | no | no |
29 | AT3G43580 | BETA-GALACTOSIDASE RELATED PROTEIN; | no | yes | yes |
30 | AT2G14620 | XYLOGLUCAN ENDOTRANSGLUCOSYLASE/ HYDROLASE 10 (XTH10); | yes | no | yes |
31 | AT5G50400 | PURPLE ACID PHOSPHATASE 27 (PAP27); | yes | yes | yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markus, C.; Pecinka, A.; Merotto, A., Jr. Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 3314. https://doi.org/10.3390/ijms22073314
Markus C, Pecinka A, Merotto A Jr. Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana. International Journal of Molecular Sciences. 2021; 22(7):3314. https://doi.org/10.3390/ijms22073314
Chicago/Turabian StyleMarkus, Catarine, Ales Pecinka, and Aldo Merotto, Jr. 2021. "Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana" International Journal of Molecular Sciences 22, no. 7: 3314. https://doi.org/10.3390/ijms22073314
APA StyleMarkus, C., Pecinka, A., & Merotto, A., Jr. (2021). Insights into the Role of Transcriptional Gene Silencing in Response to Herbicide-Treatments in Arabidopsis thaliana. International Journal of Molecular Sciences, 22(7), 3314. https://doi.org/10.3390/ijms22073314