Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review
Abstract
:1. Introduction
2. Bioactive Compounds: Properties and Applications
2.1. Melatonin
2.2. Gallic Acid
2.3. Tannic Acid
2.4. Resveratrol
2.5. Hydroxytyrosol and Oleuropein
2.6. Tocopherol
2.7. Ascorbic Acid
2.8. Curcumin
3. Graphene Functionalization Approaches
4. Graphene-Based Sensors for Bioactive Compounds
4.1. Melatonin
4.2. Gallic Acid
4.3. Tannic Acid
4.4. Resveratrol
4.5. Oleuropein and Hydroxytyrosol
4.6. Tocopherol
4.7. Ascorbic Acid
4.8. Curcumin
Bioactive Compound | Carbon Nanomaterial | Processing Method | Detection Method | Linear Range | LOD | Properties | Ref. |
---|---|---|---|---|---|---|---|
Melatonin (MLT) | GO@SiO2 nanocomposite | Modified Hummers´ + Sol-gel with PTEOS and TMOS | dsPE + HPLC with DAD | - | <0.1 µg/mL | Cost-effective, simple, selective and sensitive. | [159] |
G-CSPE | G Sonication + Drop-casting | CV and FPA | - | 0.87 µM | Good sensitivity, reversibility, Ic/Ia ≈ 1. | [160] | |
CVD G-CSPE | G Suspension + Drop-casting | DPV | - | 15 µg/L | Good sensitivity, reproducibility, versatility, better results than the electrode without G | [161] | |
GON-CSPE GRN-CSPE | Longitudinal unzipping + hydrazine reduction + ultrasonication + drop-casting | CV and DPV | - | 1.1 µM | Good reproducibility and response time, recovery of 94%–103%. | [162] | |
rGO/MIP | Modified Hummers´ + hydrazine reduction + rGO Suspension + Drop-casting + electropolymerization. | CV and SWV | 0.05–100 µM | 6 nM | Stable and highly sensible. | [163] | |
rGO/Fe3O4 | Modified Hummers´ + hydrazine reduction + hydrothermal growth | SWV | 0.02–5.80 µM | 8.4 nM | Good selectivity, repeatability, reproducibility, and biocompatibility. | [164] | |
rGO/SnO2-Co3O4 nanocomposite | Modified Hummers´ + SnO2 reduction + hydrothermal growth | CV and SWV | 0.02–6.00 µM | 4.1 nM | Good sensitivity, selectivity, stability, and repeatability; cost-effective and simple fabrication. | [165] | |
N-rGO/CuCo2O4 nanocomposite | Modified Hummers´ + hydrazine reduction + solvothermal method | DPV and SWV | 0.01–3.0 µM | 4.9 nM | Enhanced selectivity, sensitivity, and biocompatibility. | [166] | |
CVD G/CuO-PLL nanocomposite | CVD growth + electrochemical deposition | CV and SWV | 0.016–110 μM | 12 nM | Good sensitivity and biocompatibility. | [167] | |
rGO | Modified Hummers´ + MLT reduction | CV | - | - | Simple, reproducible and biocompatible. | [168] | |
Gallic acid (GA) | NPGA | hydrothermal reduction of GO with PPD + freeze-drying | DPV and SWV | 2.5–1000 μM | 67 nM | Large specific surface area and excellent electrical conductivity. | [170] |
G/ZrO2 | Hydrothermal growth + physical mixing | DPV and SWV | 1µM–1 mM | 124 nM | High surface area, good biocompatibility, and electrical conductivity. | [171] | |
rGO/ZrO2/Co3O4 | Modified Hummers´ + hydrazine reduction + ultrasonication + drop casting | CV and DPV | 6.2–478 nM | 1.56 nM | Good sensitivity, selectivity, reproducibility, and stability vs. interferences. | [172] | |
MWCNT/rGO nanocomposite | Drop-casting + UV reduction | CV and EIS | 29–329 pM | 2.57 pM | Excellent sensibility, reproducibility, and long-term stability. | [173] | |
CS/Fe2O3/ERGO nanocomposite | Solvothermal synthesis of Fe2O3 + ultrasonicaction + drop casting electrochemical reduction | DPV and EIS | 1–100 µM | 0.15 µM | Large surface area, excellent electronic conductivity, and high stability. | [174] | |
PANI–rGO–TiO2 | Solvothermal synthesis of TiO2 + aniline polymerization + mixing + ultrasonication | CV and PC | 4.17–250 µM | 1.72 µM | Rapid response, high sensitivity, and excellent selectivity. | [175] | |
GQDs | Pyrolysis of citric acid | LLE + Fluorescence | 5–40 mg/L | 1.08 mg/L | Simple, sensitive, and reproducible. Fast response. | [176] | |
Tannic acid (TA) | GQDs | Pyrolysis of Citric Acid | UV-Vis and Fluorescence | 0.1–1 µM | 0.26 nM | Good selectivity and applicability. | [179] |
Zn-G | Electrolysis of graphite rods | DPV | 2–60 ppb | 3.13 ppb | Sustainable and cost-effective. | [180] | |
Resveratrol (RSV or RES) | CX6@RGO | Ultrasonication + mixing+ freeze drying. | UV-Vis and Fluorescence | 2–40 µM | 0.47 µM | Fast, simple, sensitive and selective. | [185] |
Porous G | Laser-induced conversion of Kapton/PI tape into 3D porous G | DPV | 0.2–50 μM | 0.16 μM | Excellent repeatability, stability, reproducibility, and reliability. | [186] | |
rGO-GCE | Sonication + electrochemical deposition | CV and DPV | 0.8–32 μM | 0.2 μM | Long-term stability; low-cost, eco-friendly, and effective. | [187] | |
Oleuropein (OL) and Hydroxytyrosol (HT) | GOPGE | Sonication + drop casting | DPV | 0.10–37 μM | 30 nM | Good sensitivity and selectivity. | [193] |
TiOx-RGO@GCE | Hummer´s + reduction with AA + sol gel + drop casting | CV and SWV | 1–12 μM | 18.7 nM | Good sensitivity, simple and accurate. | [194] | |
TiO-rGO | Hummer´s + reduction with AA + sol gel + drop casting | CV and SWV | 5–30 μM | 0.57 nM | Good sensitivity and selectivity. | [195] | |
GONs | Ultrasonication + unzipping of MWCNTs + drop casting | CV, EIS, and DPV | - | - | Excellent performance and is fast. | [226] | |
Tocopherol (TOH) | NF/ERGO/GCE | ultrasonicaction + drop casting electrochemical reduction | DPV | 0.5–90 μM | 0.06 μM | Excellent selectivity, sensitivity, and reproducibility. Fast and cost-effective. | [199] |
ILs/MIP/GO/QDs | one-step polymerization | Fluorescence | 23–92 nM | 3.5 nM | Excellent photochemical stability and sensitivity. | [200] | |
Ascorbic acid (AA) | GLY-GQDs | pyrolysis with EG | Fluorescence | 0.03–17.0 μM | 25 nM | High sensitivity and selectivity. | [201] |
rGO | Dilution + drop casting | FIA with amperometric detection | 65–253 μM | 4.7 μM | Simple, sensitive and accurate, and precise. | [202] | |
NiO/G | Coprecipitation synthesis of NiO + ultrasonication + drop casting | CV and DPV+ chronoamperometry | - | 50 μM | Good selectivity and sensitivity, and cost-effective, easy to handle. | [203] | |
GQDs/IL-SPCE | Pyrolysis of Citric Acid + drop casting | CV and EIS | 25–400 μM | 6.64 μM | High sensitivity and conductivity, good biocompatibility, cost-effective. | [204] | |
rGO/AuNPs/SPE | G suspension + mixing electrochemical deposition | CV and DPV | 20–375 μM | 1.04 μM | High selectivity and sensitivity. | [205] | |
Graphene ink coated glass | Water immersion + electrochemical reaction | CV | 50–1000 μM | 17.8 μM | Simple and cost-effective. | [206] | |
rGO/PDA/AuNPs | GO reduction by PDA + mixing | CV + EIS | 4.93–9.60 mM | 1.64 mM | Good biocompatibility and conductivity. | [207] | |
MoS2-PANI/rGO | one-pot hydrothermal synthesis + drop casting | CV and DPV | 8 mM–50 μM | 22.2 μM | High selectivity, good reproducibility, and stability. | [208] | |
NFG/AgNPs/PANI | NFG coating on FTOE + electropolymerization of PANI | CV | 10–11460 µM | 8 µM | Good reproducibility and excellent selectivity. | [209] | |
GCE/Pd/rGO | Sonication + electrodeposition | CV, DPV, and EIS | 0.3–1.3 mM | 22 µM | Fast response, good selectivity. | [210] | |
GCE/GO/CdTeQDs | Hydrothermal synthesis + drop casting | CV + EIS | 32.3–500 µM | 6.1 µM | Inexpensive, reliable, and sensitive. | [211] | |
3D-HG/GCE | Wet-chemical etching + drop casting | DPV | 0.2 μM–3.2 mM | 15 nM | High sensitivity and selectivity, excellent electrocatalytic activity. | [212] | |
Curcumin | rGO/CPE | Pulverization + drop casting | CV and DPV | 10–6000 μM | 3.18 μM | Good replicability catalytic activity, and storage stability. | [216] |
ERGO/GCE | Electrochemical reduction + drop casting | CV | 0.2 μM–60 μM | 0.1 μM | Good replicability and catalytic activity. | [217] | |
G/GCE | Drop casting | CV, EIS | 0.05–3.0 μM | 0.03 μM | High selectivity and accuracy. | [218] | |
rGO/GCE | Drop casting | CV, DPV | 0.1 nM–10 nM | 0.9 pM | Exceptional sensibility. | [219] | |
NSrGO/Ru@ AuNPs | l-cysteine functionalization+ Ru@AuNPs grafting | SWV | 0.001–0.1 nM | 0.2 pM | Exceptional sensibility. | [220] |
5. Outlook and Future Prospects
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Soldano, C.; Mahmood, A.; Dujardin, E. Production, properties and potential of graphene. Carbon 2010, 48, 2127–2150. [Google Scholar] [CrossRef] [Green Version]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balandin, A.A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior Thermal Conductivity of Single-Layer Graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef]
- Mayorov, A.S.; Gorbachev, R.V.; Morozov, S.V.; Britnell, L.; Jalil, R.; Ponomarenko, L.A.; Blake, P.; Novoselov, K.S.; Watanabe, K.; Taniguchi, T.; et al. Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature. Nano Lett. 2011, 11, 2396–2399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Skachko, I.; Barker, A.; Andrei, E.Y. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 2008, 3, 491–495. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.-S.; Ren, W.; Gao, L.; Liu, B.; Jiang, C.; Cheng, H.-M. Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 2009, 47, 493–499. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Gómez-Fatou, M.A.; Ania, F.; Flores, A. Nanoindentation in polymer nanocomposites. Prog. Mater. Sci. 2015, 67, 1–94. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Yin, Z.; Wu, S.; Qi, X.; He, Q.; Zhang, Q.; Yan, Q.; Boey, F.; Zhang, H. Graphene-Based Materials: Synthesis, Characterization, Properties, and Applications. Small 2011, 7, 1876–1902. [Google Scholar] [CrossRef] [PubMed]
- Weiss, N.O.; Zhou, H.; Liao, L.; Liu, Y.; Jiang, S.; Huang, Y.; Duan, X. Graphene: An Emerging Electronic Material. Adv. Mater. 2012, 24, 5782–5825. [Google Scholar] [CrossRef]
- Huang, X.; Qi, X.; Boey, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2011, 41, 666–686. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Sánchez, J.A.L.; Capilla, R.P.; Díaz, P.G. Recent Developments in Graphene/Polymer Nanocomposites for Application in Polymer Solar Cells. Polymers 2018, 10, 217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Díez-Pascual, A.M.; Díez-Vicente, A.L. Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Appl. Mater. Interfaces 2016, 8, 17902–17914. [Google Scholar] [CrossRef]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charrier, A.; Coati, A.; Argunova, T.; Thibaudau, F.; Garreau, Y.; Pinchaux, R.; Forbeaux, I.; Debever, J.-M.; Sauvage-Simkin, M.; Themlin, J.-M. Solid-state decomposition of silicon carbide for growing ultra-thin heteroepitaxial graphite films. J. Appl. Phys. 2002, 92, 2479–2484. [Google Scholar] [CrossRef]
- Huang, N.M.; Lim, H.N.; Chia, C.H.; Yarmo, M.A.; Muhamad, M.R. Simple Room-Temperature Preparation of High-Yield Large-area Graphene Oxide. Int. J. Nanomed. 2011, 6, 3443–3448. [Google Scholar] [CrossRef] [Green Version]
- Dreyer, D.R.; Ruoff, R.S.; Bielawski, C.W. From Conception to Realization: An Historial Account of Graphene and Some Perspectives for Its Future. Angew. Chem. Int. Ed. 2010, 49, 9336–9344. [Google Scholar] [CrossRef] [PubMed]
- Baraton, L.; He, Z.; Lee, C.S.; Maurice, J.-L.; Cojocaru, C.S.; Gourgues-Lorenzon, A.-F.; Lee, Y.H.; Pribat, D. Synthesis of few-layered graphene by ion implantation of carbon in nickel thin films. Nanotechnology 2011, 22, 085601. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-Y.; Lu, A.-Y.; Xu, Y.; Chen, F.-R.; Khlobystov, A.N.; Li, L.-J. High-Quality Thin Graphene Films from Fast Electrochemical Exfoliation. ACS Nano 2011, 5, 2332–2339. [Google Scholar] [CrossRef]
- Abbasi, E.; Akbarzadeh, A.; Kouhi, M.; Milani, M. Graphene: Synthesis, bio-applications, and properties. Artif. Cells Nanomed. Biotechnol. 2014, 44, 1–7. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Sui, X.; Riaz, M.A.; Xu, M.; Wei, L.; Chen, Y. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019, 1, 173–199. [Google Scholar] [CrossRef] [Green Version]
- Mateos, R.; Vera, S.; Valiente, M.; Díez-Pascual, A.M.; Andrés, M.P.S. Comparison of Anionic, Cationic and Nonionic Surfactants as Dispersing Agents for Graphene Based on the Fluorescence of Riboflavin. Nanomaterials 2017, 7, 403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mateos, R.; García-Zafra, A.; Vera-López, S.; Andrés, M.P.S.; Díez-Pascual, A.M. Effect of Graphene Flakes Modified by Dispersion in Surfactant Solutions on the Fluorescence Behaviour of Pyridoxine. Materials 2018, 11, 888. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Zeng, T.H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R.; Kong, J.; Chen, Y. Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. ACS Nano 2011, 5, 6971–6980. [Google Scholar] [CrossRef] [PubMed]
- Zaaba, N.; Foo, K.; Hashim, U.; Tan, S.; Liu, W.-W.; Voon, C. Synthesis of Graphene Oxide using Modified Hummers Method: Solvent Influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; Urruela, C.S.; Vallés, C.; Vera-López, S.; Andrés, M.P.S. Tailorable Synthesis of Highly Oxidized Graphene Oxides via an Environmentally-Friendly Electrochemical Process. Nanomaterials 2020, 10, 239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sainz-Urruela, C.; Vera-López, S.; Andrés, M.P.S.; Díez-Pascual, A.M. Graphene Oxides Derivatives Prepared by an Electrochemical Approach: Correlation between Structure and Properties. Nanomaterials 2020, 10, 2532. [Google Scholar] [CrossRef]
- Luceño-Sánchez, J.A.; Maties, G.; Gonzalez-Arellano, C.; Diez-Pascual, A.M. Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyanate. Nanomaterials 2018, 8, 870. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Tang, S.; Zhang, J.; Yang, B. Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem. Commun. 2012, 48, 4527–4539. [Google Scholar] [CrossRef]
- Zheng, P.; Wu, N. Fluorescence and Sensing Applications of Graphene Oxide and Graphene Quantum Dots: A Review. Chem. Asian J. 2017, 12, 2343–2353. [Google Scholar] [CrossRef]
- Chen, F.; Gao, W.; Qiu, X.; Zhang, H.; Liu, L.; Liao, P.; Fu, W.; Luo, Y. Graphene quantum dots in biomedical applications: Recent advances and future challenges. Front. Lab. Med. 2017, 1, 192–199. [Google Scholar] [CrossRef]
- Wu, J.; Wang, P.; Wang, F.; Fang, Y. Investigation of the Microstructures of Graphene Quantum Dots (GQDs) by Surface-Enhanced Raman Spectroscopy. Nanomaterials 2018, 8, 864. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dua, V.; Surwade, S.P.; Ammu, S.; Agnihotra, S.R.; Jain, S.; Roberts, K.E.; Park, S.; Ruoff, R.S.; Manohar, S.K. All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide. Angew. Chem. Int. Ed. 2010, 49, 2154–2157. [Google Scholar] [CrossRef] [PubMed]
- Macnaughton, S.; Ammu, S.; Manohar, S.K.; Sonkusale, S. High-Throughput Heterogeneous Integration of Diverse Nanomaterials on a Single Chip for Sensing Applications. PLoS ONE 2014, 9, e111377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, L.; Neto, J.P.; Crespo, A.; Nunes, D.; Costa, N.; Fonseca, I.M.; Barquinha, P.; Pereira, L.; Silva, J.; Martins, R.; et al. WO3 Nanoparticle-Based Conformable pH Sensor. ACS Appl. Mater. Interfaces 2014, 6, 12226–12234. [Google Scholar] [CrossRef] [PubMed]
- Salavagione, H.J.; Díez-Pascual, A.M.; Lázaro, E.; Vera, S.; Gómez-Fatou, M.A. Chemical sensors based on polymer composites with carbon nanotubes and graphene: The role of the polymer. J. Mater. Chem. A 2014, 2, 14289–14328. [Google Scholar] [CrossRef]
- Guaadaoui, A.; Benaicha, S.; Elmajdoub, N.; Bellaoui, M.; Hamal, A. What is a Bioactive Compound? A Combined Definition for a Preliminary Consensus. Int. J. Nutr. Food Sci. 2014, 3, 174. [Google Scholar] [CrossRef]
- IFIS. Dictionary of Food Science and Technology; John Wiley & Sons Limited: Hoboken, NJ, USA, 2009; ISBN 0860141861. [Google Scholar]
- Hamann, M.T. Bioactive Compounds from Natural Sources: Isolation, Characterisation and Biological Properties. J. Nat. Prod. 2001, 64, 1382. [Google Scholar] [CrossRef]
- Cossy, J.; Arseniyadis, S. Modern Tools for the Synthesis of Complex Bioactive Molecules; John Wiley & Sons Limited: Hoboken, NJ, USA, 2012; ISBN 9780470616185. [Google Scholar]
- Justino, C.I.L.; Gomes, A.R.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A.P. Trends in Analytical Chemistry Graphene Based Sensors and Biosensors. Trends Anal. Chem. 2017, 17, 2161. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016, 11, 566–572. [Google Scholar] [CrossRef]
- Szunerits, S.; Boukherroub, R. Graphene-based biosensors. Interface Focus 2018, 8, 20160132. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Yi, Y.; Yao, T.; Song, Y.; Chen, Y.; Li, Q.; Xia, Z.; Wei, N.; Tian, Z.; Nie, B.; et al. All VN-graphene architecture derived self-powered wearable sensors for ultrasensitive health monitoring. Nano Res. 2019, 12, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Teodoro, A.J. Bioactive Compounds of Food: Their Role in the Prevention and Treatment of Diseases. Oxidative Med. Cell. Longev. 2019, 2019, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, D.; Rodriguez-Mateos, A.; Spencer, J.P.; Tognolini, M.; Borges, G.; Crozier, A. Dietary (Poly)phenolics in Human Health: Structures, Bioavailability, and Evidence of Protective Effects Against Chronic Diseases. Antiox. Redox Signal. 2013, 18, 1818–1892. [Google Scholar] [CrossRef] [Green Version]
- Hollman, P.C.H.; Cassidy, A.; Comte, B.; Heinonen, M.; Richelle, M.; Richling, E.; Serafini, M.; Scalbert, A.; Sies, H.; Vidry, S. The Biological Relevance of Direct Antioxidant Effects of Polyphenols for Cardiovascular Health in Humans is Not Established. J. Nutr. 2011, 141, 989S–1009S. [Google Scholar] [CrossRef] [Green Version]
- Sang, S.; Lapsley, K.; Jeong, W.S.; Lachance, P.A.; Ho, C.T.; Rosen, R.T. Antioxidative Phenolic Compounds Isolat-ed from Almond Skins (Prunus Amygdalus Batsch). J. Agric. Food Chem. 2002, 50, 2459–2463. [Google Scholar] [CrossRef] [PubMed]
- McClements, D.J.; Decker, E.A. Fennema’s Food Chemistry, 5th ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 9781315372914. [Google Scholar]
- Shahidi, F.; Naczk, M. Antioxidant Properties of Food Phenolics. In Phenolics Food Phenolics; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9780367395094. [Google Scholar]
- Pandi-Perumal, S.R.; Srinivasan, V.; Maestroni, G.J.M.; Cardinali, D.P.; Poeggeler, B.; Hardeland, R. Melatonin: Nature’s most versatile biological signal? FEBS J. 2006, 273, 2813–2838. [Google Scholar] [CrossRef] [PubMed]
- Domingos, A.L.G.; Hermsdorff, H.H.M.; Bressan, J. Melatonin intake and potential chronobiological effects on human health. Crit. Rev. Food Sci. Nutr. 2017, 59, 133–140. [Google Scholar] [CrossRef]
- Adamczyk-Sowa, M.; Pierzchala, K.; Sowa, P.; Mucha, S.; Sadowska-Bartosz, I.; Adamczyk, J.; Hartel, M. Melatonin Acts as Antioxidant and Improves Sleep in MS Patients. Neurochem. Res. 2014, 39, 1585–1593. [Google Scholar] [CrossRef] [Green Version]
- Anisimov, V.N.; Popovich, I.G.; Zabezhinski, M.A.; Anisimov, S.V.; Vesnushkin, G.M.; Vinogradova, I.A. Melatonin as antioxidant, geroprotector and anticarcinogen. Biochim. Biophys. Acta (BBA) Bioenerg. 2006, 1757, 573–589. [Google Scholar] [CrossRef] [Green Version]
- Kleszczyński, K.; Fischer, T.W. Melatonin and human skin aging. Dermato-Endocrinology 2012, 4, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Li, S.; Zhou, Y.; Meng, X.; Zhang, J.-J.; Xu, D.-P.; Li, H.-B. Melatonin for the prevention and treatment of cancer. Oncotarget 2017, 8, 39896–39921. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, F.H.A.; Salgado, H.R.N. Gallic Acid: Review of the Methods of Determination and Quantification. Crit. Rev. Anal. Chem. 2016, 46, 257–265. [Google Scholar] [CrossRef]
- Belmares, R.; Contreras-Esquivel, J.C.; Rodríguez-Herrera, R.; Coronel, A.R.; Aguilar, C.N. Microbial production of tannase: An enzyme with potential use in food industry. LWT 2004, 37, 857–864. [Google Scholar] [CrossRef]
- Dewick, P.M.; Haslam, E. Phenol biosynthesis in higher plants. Gallic acid. Biochem. J. 1969, 113, 537–542. [Google Scholar] [CrossRef] [Green Version]
- Kambourakis, S.; Draths, K.M.; Frost, J.W. Synthesis of Gallic Acid and Pyrogallol from Glucose: Replacing Natural Product Isolation with Microbial Catalysis. J. Am. Chem. Soc. 2000, 122, 9042–9043. [Google Scholar] [CrossRef]
- Lau, S.; Wahn, J.; Schulz, G.; Sommerfeld, C.; Wahn, U. Placebo-controlled study of the mite allergen-reducing effect of tannic acid plus benzyl benzoate on carpets in homes of children with house dust mite sensitization and asthma. Pediatr. Allergy Immunol. 2002, 13, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L. Naturally Occurring Food Toxicants: Phenolic Substances of Plant Origin Common in Foods. Adv. Food Res. 1981, 27, 149–242. [Google Scholar] [CrossRef] [PubMed]
- Funatogawa, K.; Hayashi, S.; Shimomura, H.; Yoshida, T.; Hatano, T.; Ito, H.; Hirai, Y. Antibacterial Activity of Hydrolyzable Tannins Derived from Medicinal Plants againstHelicobacter pylori. Microbiol. Immunol. 2004, 48, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.-Y.; Lai, H.-Y.; Rao, N.K.; Ng, S.-F. Treatment for diabetic ulcer wounds using a fern tannin optimized hydrogel formulation with antibacterial and antioxidative properties. J. Ethnopharmacol. 2016, 189, 277–289. [Google Scholar] [CrossRef]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Resveratrol: A molecule whose time has come? And gone? Clin. Biochem. 1997, 30, 91–113. [Google Scholar] [CrossRef]
- Sato, M.; Maulik, G.; Bagchi, D.; Das, D.K. Myocardial protection by Protykin, a novel extract oftrans-resveratrol and emodin. Free. Radic. Res. 2000, 32, 135–144. [Google Scholar] [CrossRef] [PubMed]
- Trela, B.C.; Waterhouse, A.L. Resveratrol: Isomeric molar absorptivities and stability. J. Agric. Food Chem. 1996, 44, 1253–1257. [Google Scholar] [CrossRef]
- Soleas, G.J.; Diamandis, E.P.; Goldberg, D.M. Wine as a Biological Fluid: History, Production, and Role in Disease Prevention. J. Clin. Lab. Anal. 1997, 11, 287–313. [Google Scholar] [CrossRef]
- Siemann, E.H.; Creasy, L.L. Concentration of the Phytoalexin Resveratrol in Wine. Am. J. Enol. Vitic. 1992, 43, 49–52. [Google Scholar]
- Athar, M.; Back, J.H.; Tang, X.; Kim, K.H.; Kopelovich, L.; Bickers, D.R.; Kim, A.L. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol. Appl. Pharmacol. 2007, 224, 274–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takaoka, M. The Phenolic Substances of White Hellebore (Veratrum Grandiflorum Hoes. Fil). IV. Nippon. Kagaku Kaishi 1940, 61, 96–98. [Google Scholar] [CrossRef]
- Paul, B.; Masih, I.; Deopujari, J.; Charpentier, C. Occurrence of resveratrol and pterostilbene in age-old darakchasava, an ayurvedic medicine from India. J. Ethnopharmacol. 1999, 68, 71–76. [Google Scholar] [CrossRef]
- Jeandet, P.; Douillet-Breuil, A.-C.; Bessis, R.; Debord, S.; Sbaghi, M.; Adrian, M. Phytoalexins from the Vitaceae: Biosynthesis, Phytoalexin Gene Expression in Transgenic Plants, Antifungal Activity, and Metabolism. J. Agric. Food Chem. 2002, 50, 2731–2741. [Google Scholar] [CrossRef]
- Nonomura, S.; Kanagawa, H.; Makimoto, A. Chemical Constituents of Polygonaceous Plants. I. Studies on the Components of ko-j o-kon. (Polygonum Cuspidatum sieb. Et zucc). Yakugaku Zasshi 1963, 83, 988–990. [Google Scholar] [CrossRef] [Green Version]
- Anjaneyulu, A.; Reddy, A.R.; Reddy, D.; Ward, R.; Adhikesavalu, D.; Cameron, T.S. Pacharin: A new dibenzo(2,3-6,7)oxepin derivative from bauhinia racemosa lamk. Tetrahedron 1984, 40, 4245–4252. [Google Scholar] [CrossRef]
- Hanawa, F.; Tahara, S.; Mizutani, J. Antifungal stress compounds from Veratrum grandiflorum leaves treated with cupric chloride. Phytochemistry 1992, 31, 3005–3007. [Google Scholar] [CrossRef]
- Chung, M.-I.; Teng, C.-M.; Cheng, K.-L.; Ko, F.-N.; Lin, C.-N. An Antiplatelet Principle ofVeratrum formosanum. Planta Med. 1992, 58, 274–276. [Google Scholar] [CrossRef]
- Kumar, R.; Jyostna, D.; Krupadanam, G.; Srimannarayana, G. Phenanthrene and stilbenes from Pterolobium hexapetallum. Phytochemistry 1988, 27, 3625–3626. [Google Scholar] [CrossRef]
- Hillis, W.; Hart, J.; Yazaki, Y. Polyphenols of Eucalyptus sideroxylon wood. Phytochemistry 1974, 13, 1591–1595. [Google Scholar] [CrossRef]
- Hathway, D.E.; Seakins, J.W.T. Hydroxystilbenes of Eucalyptus wandoo. Biochem. J. 1959, 72, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Rolfs, C.-H.; Kindl, H. Stilbene Synthase and Chalcone Synthase: Two Different Constitutive Enzymes in Cultured Cells of Picea Excelsa. Plant Physiol. 1984, 75, 489–492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Langcake, P.; Pryce, R.J. A new class of phytoalexins from grapevines. Cell. Mol. Life Sci. 1977, 33, 151–152. [Google Scholar] [CrossRef] [PubMed]
- Adrian, M.; Jeandet, P.; Veneau, J.; Weston, L.A.; Bessis, R. Biological Activity of Resveratrol, a Stilbenic Compound from Grapevines, Against Botrytis cinerea, the Causal Agent for Gray Mold. J. Chem. Ecol. 1997, 23, 1689–1702. [Google Scholar] [CrossRef]
- Achmon, Y.; Fishman, A. The antioxidant hydroxytyrosol: Biotechnological production challenges and opportunities. Appl. Microbiol. Biotechnol. 2014, 99, 1119–1130. [Google Scholar] [CrossRef] [PubMed]
- Bernini, R.; Merendino, N.; Romani, A.; Velotti, F. Naturally Occurring Hydroxytyrosol: Synthesis and Anticancer Potential. Curr. Med. Chem. 2013, 20, 655–670. [Google Scholar] [CrossRef]
- Britton, J.; Davis, R.; O’Connor, K.E. Chemical, physical and biotechnological approaches to the production of the potent antioxidant hydroxytyrosol. Appl. Microbiol. Biotechnol. 2019, 103, 5957–5974. [Google Scholar] [CrossRef]
- Stoll, A.; Renz, J.; Brack, A. Antibacterial Materials. VI. Isolation and Constitution of Echinacoside, a Glycoside from the Roots of Echinacea Angustifolia. DC Helv. Chim. Acta 1950, 33, 1877–1893. [Google Scholar] [CrossRef]
- Sun, Y.; Zhou, D.; Shahidi, F. Antioxidant properties of tyrosol and hydroxytyrosol saturated fatty acid esters. Food Chem. 2018, 245, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, R.; Illesca, P.; Echeverría, F.; Espinosa, A.; Rincón-Cervera, M.Á.; Ortiz, M.; Hernandez-Rodas, M.C.; Valenzuela, A.; Videla, L.A. Molecular adaptations underlying the beneficial effects of hydroxytyrosol in the pathogenic alterations induced by a high-fat diet in mouse liver: PPAR-α and Nrf2 activation, and NF-κB down-regulation. Food Funct. 2017, 8, 1526–1537. [Google Scholar] [CrossRef] [PubMed]
- Echeverría, F.; Ortiz, M.; Valenzuela, R.; Videla, L.A. Hydroxytyrosol and Cytoprotection: A Projection for Clinical Interventions. Int. J. Mol. Sci. 2017, 18, 930. [Google Scholar] [CrossRef] [PubMed]
- Hazas, M.-C.L.D.L.; Godinho-Pereira, J.; Macià, A.; Almeida, A.F.; Ventura, M.R.; Motilva, M.-J.; Santos, C.N. Brain uptake of hydroxytyrosol and its main circulating metabolites: Protective potential in neuronal cells. J. Funct. Foods 2018, 46, 110–117. [Google Scholar] [CrossRef]
- Wu, L.-X.; Xu, Y.-Y.; Yang, Z.-J.; Feng, Q. Hydroxytyrosol and olive leaf extract exert cardioprotective effects by inhibiting GRP78 and CHOP expression. J. Biomed. Res. 2018, 32, 371–379. [Google Scholar] [CrossRef]
- Fuccelli, R.; Fabiani, R.; Rosignoli, P. Hydroxytyrosol Exerts Anti-Inflammatory and Anti-Oxidant Activities in a Mouse Model of Systemic Inflammation. Molecules 2018, 23, 3212. [Google Scholar] [CrossRef] [Green Version]
- Yamada, K.; Ogawa, H.; Hara, A.; Yoshida, Y.; Yonezawa, Y.; Karibe, K.; Nghia, V.B.; Yoshimura, H.; Yamamoto, Y.; Yamada, M.; et al. Mechanism of the antiviral effect of hydroxytyrosol on influenza virus appears to involve morphological change of the virus. Antivir. Res. 2009, 83, 35–44. [Google Scholar] [CrossRef]
- Kwan, H.Y.; Chao, X.; Su, T.; Fu, X.; Tse, A.K.W.; Fong, W.F.; Yu, Z.-L. The anticancer and antiobesity effects of Mediterranean diet. Crit. Rev. Food Sci. Nutr. 2015, 57, 82–94. [Google Scholar] [CrossRef]
- Tuck, K.L.; Hayball, P.J. Major phenolic compounds in olive oil: Metabolism and health effects. J. Nutr. Biochem. 2002, 13, 636–644. [Google Scholar] [CrossRef]
- Cicerale, S.; Lucas, L.J.; Keast, R.S.J. Antimicrobial, antioxidant and anti-inflammatory phenolic activities in extra virgin olive oil. Curr. Opin. Biotechnol. 2012, 23, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Fabiani, R.; Rosignoli, P.; De Bartolomeo, A.; Fuccelli, R.; Servili, M.; Montedoro, G.F.; Morozzi, G. Oxidative DNA Damage Is Prevented by Extracts of Olive Oil, Hydroxytyrosol, and Other Olive Phenolic Compounds in Human Blood Mononuclear Cells and HL60 Cells. J. Nutr. 2008, 138, 1411–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luo, C.; Li, Y.; Wang, H.; Cui, Y.; Feng, Z.; Li, H.; Li, Y.; Wang, Y.; Wurtz, K.; Weber, P.; et al. Hydroxytyrosol promotes superoxide production and defects in autophagy leading to anti-proliferation and apoptosis on human prostate cancer cells. Curr. Cancer Drug Targets 2013, 13, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Schöpf, C.; Göttmann, G.; Meisel, E.-M.; Neuroth†, L. Über β-(3,4-Dioxyphenyl)-äthylalkohol. Eur. J. Org. Chem. 1949, 563, 86–93. [Google Scholar] [CrossRef]
- Servili, M.; Baldioli, M.; Selvaggini, R.; Macchioni, A.; Montedoro, G. Phenolic Compounds of Olive Fruit: One- and Two-Dimensional Nuclear Magnetic Resonance Characterization of Nüzhenide and Its Distribution in the Constitutive Parts of Fruit. J. Agric. Food Chem. 1998, 47, 12–18. [Google Scholar] [CrossRef]
- Hertog, M.G.L.; Feskens, E.J.M.; Kromhout, D.; Hertog, M.G.L.; Hollman, P.C.H.; Hertog, M.G.L.; Katan, M.B. Dietary Antioxidant Flavonoids and Risk of Coronary Heart Disease: The Zutphen Elderly Study. Lancet 1993, 342, 1007–1011. [Google Scholar] [CrossRef]
- Wiseman, H. The Bioavailability of Non-Nutrient Plant Factors: Dietary Flavonoids and Phyto-Oestrogens. Proc. Nutr. Soc. 1999, 58, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Hertog, M.G.L.; Hollman, P.C.H.; Katan, M.B.; Kromhout, D. Intake of potentially anticarcinogenic flavonoids and their determinants in adults in the Netherlands. Nutr. Cancer 1993, 20, 21–29. [Google Scholar] [CrossRef]
- Hertog, M.G.; Sweetnam, P.M.; Fehily, A.M.; Elwood, P.C.; Kromhout, D. Antioxidant flavonols and ischemic heart disease in a Welsh population of men: The Caerphilly Study. Am. J. Clin. Nutr. 1997, 65, 1489–1494. [Google Scholar] [CrossRef]
- Martin-Moreno, J.M.; Willett, W.C.; Gorgojo, L.; Banegas, J.R.; Rodriguez-Artalejo, F.; Fernandez-Rodriguez, J.C.; Maisonneuve, P.; Boyle, P. Dietary fat, olive oil intake and breast cancer risk. Int. J. Cancer 1994, 58, 774–780. [Google Scholar] [CrossRef]
- Keli, S.O.; Hertog, M.G.L.; Feskens, E.J.M.; Kromhout, D. Dietary Flavonoids, Antioxidant Vitamins, and Incidence of Stroke: The Zutphen Study. Arch. Intern. Med. 1996, 156, 637–642. [Google Scholar] [CrossRef]
- Lipworth, L.; Martínez, M.E.; Angell, J.; Hsieh, C.-C.; Trichopoulos, D. Olive Oil and Human Cancer: An Assessment of the Evidence. Prev. Med. 1997, 26, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Wagner, K.-H.; Kamal-Eldin, A.; Elmadfa, I. Gamma-Tocopherol—An Underestimated Vitamin? Ann. Nutr. Metab. 2004, 48, 169–188. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. γ-Tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 2001, 74, 714–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigotti, A. Absorption, transport, and tissue delivery of vitamin E. Mol. Asp. Med. 2007, 28, 423–436. [Google Scholar] [CrossRef] [PubMed]
- David, R.; Lide, E. CRC Handbook of Chemistry and Physics, Internet Version 2007, 87th ed.; Lord & Taylor: Boca Raton, FL, USA, 2007; Volume 129, p. 724. [Google Scholar] [CrossRef]
- Podszun, M.; Frank, J. Vitamin E–drug interactions: Molecular basis and clinical relevance. Nutr. Res. Rev. 2014, 27, 215–231. [Google Scholar] [CrossRef]
- Mène-Saffrané, L. Vitamin E Biosynthesis and Its Regulation in Plants. Antioxidants 2017, 7, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Padayatty, S.J.; Katz, A.; Wang, Y.; Eck, P.; Kwon, O.; Lee, J.-H.; Chen, S.; Corpe, C.; Dutta, A.; Dutta, S.K.; et al. Vitamin C as an Antioxidant: Evaluation of Its Role in Disease Prevention. J. Am. Coll. Nutr. 2003, 22, 18–35. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Panel on Dietary Antioxidants and Related Compounds. Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press (US): Washington, DC, USA, 2000. [CrossRef]
- Waugh, W.A.; King, C.G. Isolation and Identification of Vitamin C. Nutr. Rev. 2009, 34, 81–83. [Google Scholar] [CrossRef]
- Gallie, D.R. L-Ascorbic Acid: A Multifunctional Molecule Supporting Plant Growth and Development. Scientifica 2013, 2013, 795964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siendones, E.; González-Reyes, J.A.; Santos-Ocaña, C.; Navas, P.; Córdoba, F. Biosynthesis of Ascorbic Acid in Kidney Bean.l-Galactono-γ-Lactone Dehydrogenase Is an Intrinsic Protein Located at the Mitochondrial Inner Membrane. Plant Physiol. 1999, 120, 907–912. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, G.L.; Jones, M.A.; Smirnoff, N. The biosynthetic pathway of vitamin C in higher plants. Nat. Cell Biol. 1998, 393, 365–369. [Google Scholar] [CrossRef]
- Priyadarsini, K.I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091–20112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aggarwal, B.B.; Kumar, A.; Bharti, A.C. Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer. Res. 2003, 23, 363–398. [Google Scholar] [PubMed]
- Majeed, S. The State of the Curcumin Market. Available online: https://www.grandviewresearch.com/industry-analysis/turmeric-extract-curcumin-market (accessed on 22 March 2021).
- Vera-Ramirez, L.; Pérez-Lopez, P.; Varela-Lopez, A.; Ramirez-Tortosa, M.; Battino, M.; Quiles, J.L. Curcumin and liver disease. BioFactors 2013, 39, 88–100. [Google Scholar] [CrossRef]
- Wright, L.; Frye, J.; Gorti, B.; Timmermann, B.; Funk, J. Bioactivity of Turmeric-derived Curcuminoids and Related Metabolites in Breast Cancer. Curr. Pharm. Des. 2013, 19, 6218–6225. [Google Scholar] [CrossRef] [Green Version]
- Lestari, M.L.; Indrayanto, G. Curcumin. In Profiles of Drug Substances, Excipients and Related Methodology; Elservier: Amsterdam, The Netherlands, 2014; Volume 39, pp. 113–204. [Google Scholar] [CrossRef]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and Health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A Review of Its Effects on Human Health. Foods 2017, 6, 92. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The Essential Medicinal Chemistry of Curcumin: Miniperspective. J. Med. Chem. 2017, 60, 1620–1637. [Google Scholar] [CrossRef]
- Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. Curcumin May (Not) Defy Science. ACS Med. Chem. Lett. 2017, 8, 467–470. [Google Scholar] [CrossRef] [Green Version]
- Schiborr, C.; Kocher, A.; Behnam, D.; Jandasek, J.; Toelstede, S.; Frank, J. The oral bioavailability of curcumin from micronized powder and liquid micelles is significantly increased in healthy humans and differs between sexes. Mol. Nutr. Food Res. 2014, 58, 516–527. [Google Scholar] [CrossRef]
- Araiza-Calahorra, A.; Akhtar, M.; Sarkar, A. Recent advances in emulsion-based delivery approaches for curcumin: From encapsulation to bioaccessibility. Trends Food Sci. Technol. 2018, 71, 155–169. [Google Scholar] [CrossRef]
- Sanidad, K.Z.; Sukamtoh, E.; Xiao, H.; McClements, D.J.; Zhang, G. Curcumin: Recent Advances in the Development of Strategies to Improve Oral Bioavailability. Annu. Rev. Food Sci. Technol. 2019, 10, 597–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kita, T.; Imai, S.; Sawada, H.; Kumagai, H.; Seto, H. The Biosynthetic Pathway of Curcuminoid in Turmeric (Curcuma longa) as Revealed by13C-Labeled Precursors. Biosci. Biotechnol. Biochem. 2008, 72, 1789–1798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, K.-T.; Wong, T.Y.; Wei, C.-I.; Huang, Y.-W.; Lin, Y. Tannins and Human Health: A Review. Crit. Rev. Food Sci. Nutr. 1998, 38, 421–464. [Google Scholar] [CrossRef] [PubMed]
- Gambini, J.; López-Grueso, R.; Olaso-González, G.; Inglés, M.; Abdelazid, K.; El Alami, M.; Bonet-Costa, V.; Borrás, C.; Viña, J. Resveratrol: Distribución, propiedades y perspectivas. Rev. Española Geriatr. Gerontol. 2013, 48, 79–88. [Google Scholar] [CrossRef]
- Alsemeh, A.E.; Samak, M.A.; El-Fatah, S.S.A. Therapeutic prospects of hydroxytyrosol on experimentally induced diabetic testicular damage: Potential interplay with AMPK expression. Cell Tissue Res. 2019, 380, 173–189. [Google Scholar] [CrossRef]
- Reiter, E.; Jiang, Q.; Christen, S. Anti-inflammatory properties of α- and γ-tocopherol. Mol. Asp. Med. 2007, 28, 668–691. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Q.; Xu, J.; Wu, S.; Xiao, T.; Hao, J.; Yu, P.; Mao, L. Rational Design of Bioelectrochemically Multifunctional Film with Oxidase, Ferrocene, and Graphene Oxide for Development of in Vivo Electrochemical Biosensors. Anal. Chem. 2016, 88, 5885–5891. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, A.; Akhavan, O.; Hashemi, E.; Shamsara, M. Ugi Four-Component Assembly Process: An Efficient Approach for One-Pot Multifunctionalization of Nanographene Oxide in Water and Its Application in Lipase Immobilization. Chem. Mater. 2016, 28, 3004–3016. [Google Scholar] [CrossRef]
- Nulakani, N.V.R.; Subramanian, V. A Theoretical Study on the Design, Structure, and Electronic Properties of Novel Forms of Graphynes. J. Phys. Chem. C 2016, 120, 15153–15161. [Google Scholar] [CrossRef]
- Bai, H.; Li, C.; Shi, G. Functional Composite Materials Based on Chemically Converted Graphene. Adv. Mater. 2011, 23, 1089–1115. [Google Scholar] [CrossRef]
- Strom, T.A.; Dillon, E.P.; Hamilton, C.E.; Barron, A.R. Nitrene addition to exfoliated graphene: A one-step route to highly functionalized graphene. Chem. Commun. 2010, 46, 4097–4099. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Liu, Z.; Zhang, X.; Wang, Y.; Tian, J.; Huang, Y.; Ma, Y.; Zhang, X.; Chen, Y. A Graphene Hybrid Material Covalently Functionalized with Porphyrin: Synthesis and Optical Limiting Property. Adv. Mater. 2009, 21, 1275–1279. [Google Scholar] [CrossRef]
- Eskandari, P.; Abousalman-Rezvani, Z.; Roghani-Mamaqani, H.; Salami-Kalajahi, M.; Mardani, H. Polymer grafting on graphene layers by controlled radical polymerization. Adv. Colloid Interface Sci. 2019, 273, 102021. [Google Scholar] [CrossRef]
- Díez-Pascual, A.M.; García-García, D.; Andrés, M.P.S.; Vera, S. Determination of riboflavin based on fluorescence quenching by graphene dispersions in polyethylene glycol. RSC Adv. 2016, 6, 19686–19699. [Google Scholar] [CrossRef]
- Krishnan, S.K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H.S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019, 9, 8778–8881. [Google Scholar] [CrossRef]
- Zhou, M.; Zhai, Y.; Dong, S. Electrochemical Sensing and Biosensing Platform Based on Chemically Reduced Graphene Oxide. Anal. Chem. 2009, 81, 5603–5613. [Google Scholar] [CrossRef]
- Coroş, M.; Pruneanu, S.; Staden, R.-I.S.-V. Review—Recent Progress in the Graphene-Based Electrochemical Sensors and Biosensors. J. Electrochem. Soc. 2020, 167, 037528. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Zhang, W.; Yu, X.; Wang, Z.; Su, Z.; Wei, G. When biomolecules meet graphene: From molecular level interactions to material design and applications. Nanoscale 2016, 8, 19491–19509. [Google Scholar] [CrossRef]
- Domi, B.; Rumbo, C.; García-Tojal, J.; Elena Sima, L.; Negroiu, G.; Tamayo-Ramos, J.A. Interaction Analysis of Commercial Graphene Oxide Nanoparticles with Unicellular Systems and Biomolecules. Int. J. Mol. Sci. 2019, 21, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carbone, M.; Gorton, L.; Antiochia, R. An Overview of the Latest Graphene-Based Sensors for Glucose Detection: The Effects of Graphene Defects. Electroanalysis 2015, 27, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Bitounis, D.; Ali-Boucetta, H.; Hong, B.H.; Min, D.-H.; Kostarelos, K. Prospects and Challenges of Graphene in Biomedical Applications. Adv. Mater. 2013, 25, 2258–2268. [Google Scholar] [CrossRef]
- Karunanithi, D.; Radhakrishna, A.; Sivaraman, K.P.; Biju, V.M.N. Quantitative determination of melatonin in milk by LC-MS/MS. J. Food Sci. Technol. 2014, 51, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Vitale, A.A.; Ferrari, C.C.; Aldana, H.; Affanni, J.M. Highly sensitive method for the determination of melatonin by normal-phase high-performance liquid chromatography with fluorometric detection. J. Chromatogr. B Biomed. Sci. Appl. 1996, 681, 381–384. [Google Scholar] [CrossRef]
- Simonin, G.; Bru, L.; Lelièvre, E.; Jeanniot, J.-P.; Bromet, N.; Walther, B.; Boursier-Neyret, C. Determination of melatonin in biological fluids in the presence of the melatonin agonist S 20098: Comparison of immunological techniques and GC-MS methods. J. Pharm. Biomed. Anal. 1999, 21, 591–601. [Google Scholar] [CrossRef]
- Pucci, V.; Ferranti, A.; Mandrioli, R.; Raggi, M.A. Determination of melatonin in commercial preparations by micellar electrokinetic chromatography and spectrofluorimetry. Anal. Chim. Acta 2003, 488, 97–105. [Google Scholar] [CrossRef]
- Lu, J.; Lau, C.; Lee, M.K.; Kai, M. Simple and convenient chemiluminescence method for the determination of melatonin. Anal. Chim. Acta 2002, 455, 193–198. [Google Scholar] [CrossRef]
- Niu, J.; Zhang, X.; Qin, P.; Yang, Y.; Tian, S.; Yang, H.; Lu, M. Simultaneous Determination of Melatonin, l-Tryptophan, and two l-Tryptophan-Derived Esters in Food by HPLC with Graphene Oxide/SiO2 Nanocomposite as the Adsorbent. Food Anal. Methods 2018, 11, 2438–2446. [Google Scholar] [CrossRef]
- Apetrei, I.M.; Apetrei, C. Voltammetric determination of melatonin using a graphene-based sensor in pharmaceutical products. Int. J. Nanomed. 2016, 11, 1859–1866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miccoli, A.; Restani, P.; Floroian, L.; Taus, N.; Badea, M.; Cioca, G.; Bungau, S. Sensitive Electrochemical Detection Method of Melatonin in Food Supplements. Rev. Chim. 2018, 69, 854–859. [Google Scholar] [CrossRef]
- Gomez, F.J.V.; Martín, A.; Silva, M.F.; Escarpa, A. Screen-printed electrodes modified with carbon nanotubes or graphene for simultaneous determination of melatonin and serotonin. Microchim. Acta 2015, 182, 1925–1931. [Google Scholar] [CrossRef]
- Gupta, P.; Goyal, R.N. Graphene and Co-polymer composite based molecularly imprinted sensor for ultratrace determination of melatonin in human biological fluids. RSC Adv. 2015, 5, 40444–40454. [Google Scholar] [CrossRef]
- Bagheri, H.; Afkhami, A.; Hashemi, P.; Ghanei, M. Simultaneous and sensitive determination of melatonin and dopamine with Fe3O4 nanoparticle-decorated reduced graphene oxide modified electrode. RSC Adv. 2015, 5, 21659–21669. [Google Scholar] [CrossRef]
- Zeinali, H.; Bagheri, H.; Monsef-Khoshhesab, Z.; Khoshsafar, H.; Hajian, A. Nanomolar simultaneous determination of tryptophan and melatonin by a new ionic liquid carbon paste electrode modified with SnO2-Co3O4@rGO nanocomposite. Mater. Sci. Eng. C 2017, 71, 386–394. [Google Scholar] [CrossRef]
- Tadayon, F.; Sepehri, Z. A new electrochemical sensor based on a nitrogen-doped graphene/CuCo2O4 nanocomposite for simultaneous determination of dopamine, melatonin and tryptophan. RSC Adv. 2015, 5, 65560–65568. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Li, H.; Wang, G.; Long, Y.; Li, A.; Yang, B. In Situ Detection of Melatonin and Pyridoxine in Plants Using a CuO–Poly(l-lysine)/Graphene-Based Electrochemical Sensor. ACS Sustain. Chem. Eng. 2019, 7, 19537–19545. [Google Scholar] [CrossRef]
- Esfandiar, A.; Akhavan, O.; Irajizad, A. Melatonin as a powerful bio-antioxidant for reduction of graphene oxide. J. Mater. Chem. 2011, 21, 10907–10914. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Esfandiar, A. Wrapping Bacteria by Graphene Nanosheets for Isolation from Environment, Reactivation by Sonication, and Inactivation by Near-Infrared Irradiation. J. Phys. Chem. B 2011, 115, 6279–6288. [Google Scholar] [CrossRef] [PubMed]
- Al-Ansi, N.; Salah, A.; Bawa, M.; Adlat, S.; Yasmin, I.; Abdallah, A.; Qi, B. 3D nitrogen-doped porous graphene aerogel as high-performance electrocatalyst for determination of gallic acid. Microchem. J. 2020, 155, 104706. [Google Scholar] [CrossRef]
- Chikere, C.O.; Faisal, N.H.; Kong-Thoo-Lin, P.; Fernandez, C. Interaction between Amorphous Zirconia Nanoparticles and Graphite: Electrochemical Applications for Gallic Acid Sensing Using Carbon Paste Electrodes in Wine. Nanomaterials 2020, 10, 537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puangjan, A.; Chaiyasith, S. An efficient ZrO2/Co3O4/reduced graphene oxide nanocomposite electrochemical sensor for simultaneous determination of gallic acid, caffeic acid and protocatechuic acid natural antioxidants. Electrochim. Acta 2016, 211, 273–288. [Google Scholar] [CrossRef]
- Ganesh, H.V.S.; Patel, B.R.; Fini, H.; Chow, A.M.; Kerman, K. Electrochemical Detection of Gallic Acid-Capped Gold Nanoparticles Using a Multiwalled Carbon Nanotube-Reduced Graphene Oxide Nanocomposite Electrode. Anal. Chem. 2019, 91, 10116–10124. [Google Scholar] [CrossRef]
- Gao, F.; Zheng, D.; Tanaka, H.; Zhan, F.; Yuan, X.; Gao, F.; Wang, Q. An Electrochemical Sensor for Gallic Acid Based on Fe₂O₃/Electro-Reduced Graphene Oxide Composite: Estimation for the Antioxidant Capacity Index of Wines. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 57, 279–287. [Google Scholar] [CrossRef]
- Ma, W.; Han, D.; Gan, S.; Zhang, N.; Liu, S.; Wu, T.; Zhang, Q.; Dong, X.; Niu, L. Rapid and specific sensing of gallic acid with a photoelectrochemical platform based on polyaniline–reduced graphene oxide–TiO2. Chem. Commun. 2013, 49, 7842. [Google Scholar] [CrossRef] [PubMed]
- Benítez-Martínez, S.; Valcárcel, M. Graphene quantum dots as sensor for phenols in olive oil. Sens. Actuators B Chem. 2014, 197, 350–357. [Google Scholar] [CrossRef]
- Liu, G.; Yu, R.; Lan, T.; Liu, Z.; Zhang, P.; Liang, R. Gallic acid-functionalized graphene hydrogel as adsorbent for removal of chromium (iii) and organic dye pollutants from tannery wastewater. RSC Adv. 2019, 9, 27060–27068. [Google Scholar] [CrossRef] [Green Version]
- Croitoru, A.; Oprea, O.; Nicoara, A.; Trusca, R.; Radu, M.; Neacsu, I.; Ficai, D.; Ficai, A.; Andronescu, E. Multifunctional Platforms Based on Graphene Oxide and Natural Products. Medicines 2019, 55, 230. [Google Scholar] [CrossRef] [Green Version]
- Sinduja, B.; John, S.A. Sensitive determination of tannic acid using blue luminescent graphene quantum dots as fluorophore. RSC Adv. 2016, 6, 59900–59906. [Google Scholar] [CrossRef]
- Palisoc, S.T.; Cansino, E.J.F.; Dy, I.M.O.; Razal, C.F.A.; Reyes, K.C.N.; Racines, L.R.; Natividad, M.T. Electrochemical determination of tannic acid using graphite electrodes sourced from waste zinc-carbon batteries. Sens. BioSens. Res. 2020, 28, 100326. [Google Scholar] [CrossRef]
- Zhao, S.; Xie, S.; Zhao, Z.; Zhang, J.; Li, L.; Xin, Z. Green and High-Efficiency Production of Graphene by Tannic Acid-Assisted Exfoliation of Graphite in Water. ACS Sustain. Chem. Eng. 2018, 6, 7652–7661. [Google Scholar] [CrossRef]
- Luo, J.; Lai, J.; Zhang, N.; Liu, Y.; Liu, R.; Liu, X. Tannic Acid Induced Self-Assembly of Three-Dimensional Graphene with Good Adsorption and Antibacterial Properties. ACS Sustain. Chem. Eng. 2016, 4, 1404–1413. [Google Scholar] [CrossRef]
- Lim, M.-Y.; Shin, H.; Shin, D.M.; Lee, S.-S.; Lee, J.-C. Poly(vinyl alcohol) nanocomposites containing reduced graphene oxide coated with tannic acid for humidity sensor. Polymer 2016, 84, 89–98. [Google Scholar] [CrossRef]
- Yoo, S.; Li, X.; Wu, Y.; Liu, W.; Wang, X.; Yi, W. Ammonia Gas Detection by Tannic Acid Functionalized and Reduced Graphene Oxide at Room Temperature. J. Nanomater. 2014, 2014, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Li, C.-P.; Tan, S.; Ye, H.; Cao, J.; Zhao, H. A novel fluorescence assay for resveratrol determination in red wine based on competitive host-guest recognition. Food Chem. 2019, 283, 191–198. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ping, J.; Ying, Y. Evaluation of trans-resveratrol level in grape wine using laser-induced porous graphene-based electrochemical sensor. Sci. Total. Environ. 2020, 714, 136687. [Google Scholar] [CrossRef]
- Liu, L.; Zhou, Y.; Kang, Y.; Huang, H.; Li, C.; Xu, M.; Ye, B. Electrochemical Evaluation of Trans -Resveratrol Levels in Red Wine Based on the Interaction between Resveratrol and Graphene. J. Anal. Methods Chem. 2017, 2017, 5749025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurunathan, S.; Han, J.W.; Kim, E.S.; Park, J.H.; Kim, J.-H. Reduction of graphene oxide by resveratrol: A novel and simple biological method for the synthesis of an effective anticancer nanotherapeutic molecule. Int. J. Nanomed. 2015, 10, 2951–2969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas, E.C.; Sun, Z.; Lüttge, A.; Tour, J.M. Reduction of Graphene Oxide via Bacterial Respiration. ACS Nano 2010, 4, 4852–4856. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Akhavan, A. Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 2012, 33, 8017–8025. [Google Scholar] [CrossRef]
- Akhavan, O.; Ghaderi, E.; Emamy, H.; Akhavan, F. Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon 2013, 54, 419–431. [Google Scholar] [CrossRef]
- He, X.-P.; Deng, Q.; Cai, L.; Wang, C.-Z.; Zang, Y.; Li, J.; Chen, G.-R.; Tian, H. Fluorogenic Resveratrol-Confined Graphene Oxide for Economic and Rapid Detection of Alzheimer’s Disease. ACS Appl. Mater. Interfaces 2014, 6, 5379–5382. [Google Scholar] [CrossRef] [PubMed]
- Gomez, F.J.V.; Spisso, A.; Silva, M.F. Pencil graphite electrodes for improved electrochemical detection of oleuropein by the combination of Natural Deep Eutectic Solvents and graphene oxide. Electrophoresis 2017, 38, 2704–2711. [Google Scholar] [CrossRef]
- Kurtulbaş, E.; Yazar, S.; Ortaboy, S.; Atun, G.; Şahin, S. Evaluation of the phenolic antioxidants of olive (Olea europaea) leaf extract obtained by a green approach: Use of reduced graphene oxide for electrochemical analysis. Chem. Eng. Commun. 2019, 207, 920–932. [Google Scholar] [CrossRef]
- Yazar, S.; Kurtulbaş, E.; Ortaboy, S.; Atun, G.; Şahin, S. Screening of the antioxidant properties of olive (Olea europaea) leaf extract by titanium based reduced graphene oxide electrode. Korean J. Chem. Eng. 2019, 36, 1184–1192. [Google Scholar] [CrossRef]
- Şahin, S.; Ciğeroğlu, Z.; Özdemir, O.K.; Bilgin, M.; Elhussein, E.; Gülmez, Ö. Recovery of hydroxytyrosol onto graphene oxide nanosheets: Equilibrium and kinetic models. J. Mol. Liq. 2019, 285, 213–222. [Google Scholar] [CrossRef]
- Şahin, S.; Elhussein, E.A.A.; Salam, M.A.; Bayazit, Ş.S. Recovery of polyphenols from water using Zr-based metal-organic frameworks and their nanocomposites with graphene nanoplatelets. J. Ind. Eng. Chem. 2019, 78, 164–171. [Google Scholar] [CrossRef]
- Baioun, A.; Kellawi, H.; Falah, A. A Modified Electrode by a Facile Green Preparation of Reduced Graphene Oxide Utilizing Olive Leaves Extract. Carbon Lett. 2017, 24, 47–54. [Google Scholar] [CrossRef]
- Filik, H.; Avan, A.A.; Aydar, S.; Çakar, Ş. Determination of Tocopherol Using Reduced Graphene Oxide-Nafion Hybrid-Modified Electrode in Pharmaceutical Capsules and Vegetable Oil Samples. Food Anal. Methods 2016, 9, 1745–1753. [Google Scholar] [CrossRef]
- Liu, H.; Fang, G.; Zhu, H.; Li, C.; Liu, C.; Wang, S. A novel ionic liquid stabilized molecularly imprinted optosensing material based on quantum dots and graphene oxide for specific recognition of vitamin E. Biosens. Bioelectron. 2013, 47, 127–132. [Google Scholar] [CrossRef]
- Liu, R.; Yang, R.; Qu, C.; Mao, H.; Hu, Y.; Li, J.; Qu, L. Synthesis of glycine-functionalized graphene quantum dots as highly sensitive and selective fluorescent sensor of ascorbic acid in human serum. Sens. Actuators B Chem. 2017, 241, 644–651. [Google Scholar] [CrossRef]
- De Faria, L.V.; Lisboa, T.P.; De Farias, D.M.; Araujo, F.M.; Machado, M.M.; De Sousa, R.A.; Matos, M.A.C.; Muñoz, R.A.A.; Matos, R.C. Direct analysis of ascorbic acid in food beverage samples by flow injection analysis using reduced graphene oxide sensor. Food Chem. 2020, 319, 126509. [Google Scholar] [CrossRef]
- Swamy, K.; Gunnam, R.; Kesamsetty, V.; Manjunatha, H.; Janardan, S.; Chandra, K.; Naidu, K.C.B.; Ramesh, S.; Kothamas; Babu, S.; et al. Simultaneous Detection of Dopamine, Tyrosine and Ascorbic Acid Using NiO/Graphene Modified Graphite Electrode. Biointerface Res. Appl. Chem. 2020, 10. [Google Scholar] [CrossRef]
- Kunpatee, K.; Traipop, S.; Chailapakul, O.; Chuanuwatanakul, S. Simultaneous determination of ascorbic acid, dopamine, and uric acid using graphene quantum dots/ionic liquid modified screen-printed carbon electrode. Sens. Actuators B Chem. 2020, 314, 128059. [Google Scholar] [CrossRef]
- Ji, D.; Liu, Z.; Liu, L.; Low, S.S.; Lu, Y.; Yu, X.; Zhu, L.; Li, C.; Liu, Q. Smartphone-based integrated voltammetry system for simultaneous detection of ascorbic acid, dopamine, and uric acid with graphene and gold nanoparticles modified screen-printed electrodes. Biosens. Bioelectron. 2018, 119, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Fu, L.; Wang, A.; Lai, G.; Su, W.; Malherbe, F.; Yu, J.; Lin, C.-T.; Yu, A. Defects regulating of graphene ink for electrochemical determination of ascorbic acid, dopamine and uric acid. Talanta 2018, 180, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Wang, Z.; Chen, X.; Yang, G.; Liu, W. Reduced Graphene Oxide/Polydopamine/Gold Electrode as Elecrochemical Sensor for Simultaneous Determination of Ascorbic Acid, Dopamine, and Uric Acid. Int. J. Electrochem. Sci. 2019, 14, 8882–8891. [Google Scholar] [CrossRef]
- Li, S.; Ma, Y.; Liu, Y.; Xin, G.; Wang, M.; Zhang, Z.; Liu, Z. Electrochemical sensor based on a three dimensional nanostructured MoS2 nanosphere-PANI/reduced graphene oxide composite for simultaneous detection of ascorbic acid, dopamine, and uric acid. RSC Adv. 2019, 9, 2997–3003. [Google Scholar] [CrossRef] [Green Version]
- Salahandish, R.; Ghaffarinejad, A.; Naghib, S.M.; Niyazi, A.; Majidzadeh, K.; Janmaleki, M.; Sanati-Nezhad, A. Sandwich-structured nanoparticles-grafted functionalized graphene based 3D nanocomposites for high-performance biosensors to detect ascorbic acid biomolecule. Sci. Rep. 2019, 9, 1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Renjini, S.; Pinky, A.; Aparna, S.; Anitha, K.V. Graphene-Palladium Composite for the Simultaneous Electrochemical Determination of Epinephrine, Ascorbic acid and Uric Acid. J. Electrochem. Soc. 2019, 166, B1321–B1329. [Google Scholar] [CrossRef]
- Kucukkolbasi, S.; Erdogan, Z.O.; Baslak, C.; Sogut, D.; Kus, M. A Highly Sensitive Ascorbic Acid Sensor Based on Graphene Oxide/CdTe Quantum Dots-Modified Glassy Carbon Electrode. Russ. J. Electrochem. 2019, 55, 107–114. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Y.; Zhang, J.; Zhou, J. Electrochemical Sensing Platform Based on Three-Dimensional Holey Graphene for Highly Selective and Ultra-Sensitive Detection of Ascorbic Acid, Uric Acid, and Nitrite. J. Electrochem. Soc. 2019, 166, B787–B792. [Google Scholar] [CrossRef]
- Gao, J.; Liu, F.; Liu, Y.; Ma, N.; Wang, Z.; Zhang, X. Environment-Friendly Method To Produce Graphene That Employs Vitamin C and Amino Acid. Chem. Mater. 2010, 22, 2213–2218. [Google Scholar] [CrossRef]
- Fernández-Merino, M.J.; Guardia, L.; Paredes, J.I.; Villar-Rodil, S.; Solís-Fernández, P.; Martínez-Alonso, A.; Tascón, J.M.D. Vitamin C Is an Ideal Substitute for Hydrazine in the Reduction of Graphene Oxide Suspensions. J. Phys. Chem. C 2010, 114, 6426–6432. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Shen, G.; Cheng, P.; Zhang, J.; Guo, S. Reduction of graphene oxide vial-ascorbic acid. Chem. Commun. 2010, 46, 1112–1114. [Google Scholar] [CrossRef] [PubMed]
- Rahimnejad, M.; Zokhtareh, R.; Moghadamnia, A.A.; Asghary, M. An Electrochemical Sensor Based on Reduced Graphene Oxide Modified Carbon Paste Electrode for Curcumin Determination in Human Blood Serum. Port. Electrochim. Acta 2020, 38, 29–42. [Google Scholar] [CrossRef]
- Zhang, D.; Ouyang, X.; Ma, J.; Li, L.; Zhang, Y. Electrochemical Behavior and Voltammetric Determination of Curcumin at Electrochemically Reduced Graphene Oxide Modified Glassy Carbon Electrode. Electroanalysis 2016, 28, 749–756. [Google Scholar] [CrossRef]
- Li, K.; Li, Y.; Yang, L.; Wang, L.; Ye, B. The electrochemical characterization of curcumin and its selective detection in Curcuma using a graphene-modified electrode. Anal. Methods 2014, 6, 7801–7808. [Google Scholar] [CrossRef]
- Dey, N.; Devasena, T.; Sivalingam, T. A Comparative evaluation of Graphene oxide based materials for Electrochemical non-enzymatic sensing of Curcumin. Mater. Res. Express 2018, 5, 025406. [Google Scholar] [CrossRef]
- Kotan, G.; Kardaş, F.; Yokuş, Ö.A.; Akyıldırım, O.; Saral, H.; Eren, T.; Yola, M.L.; Atar, N. A novel determination of curcumin via Ru@Au nanoparticle decorated nitrogen and sulfur-functionalized reduced graphene oxide nanomaterials. Anal. Methods 2016, 8, 401–408. [Google Scholar] [CrossRef]
- Marković, Z.M.; Kepić, D.P.; Matijašević, D.M.; Pavlović, V.B.; Jovanović, S.P.; Stanković, N.K.; Milivojević, D.D.; Spitalsky, Z.; Holclajtner-Antunović, I.D.; Bajuk-Bogdanović, D.V.; et al. Ambient light induced antibacterial action of curcumin/graphene nanomesh hybrids. RSC Adv. 2017, 7, 36081–36092. [Google Scholar] [CrossRef] [Green Version]
- Bugli, F.; Cacaci, M.; Palmieri, V.; Di Santo, R.; Torelli, R.; Ciasca, G.; Di Vito, M.; Vitali, A.; Conti, C.; Sanguinetti, M.; et al. Curcumin-loaded graphene oxide flakes as an effective antibacterial system against methicillin-resistant Staphylococcus aureus. Interface Focus 2018, 8, 20170059. [Google Scholar] [CrossRef] [Green Version]
- Palmieri, V.; Bugli, F.; Cacaci, M.; Di Santo, R.; Vitali, A.; Torelli, R.; Di Vito, M.; Conti, C.; Sanguinetti, M.; De Spirito, M.; et al. Antibacterial Properties of Curcumin Loaded Graphene Oxide Flakes. Biophys. J. 2018, 114, 362. [Google Scholar] [CrossRef]
- Yang, X.X.; Li, C.M.; Li, Y.F.; Wang, J.; Huang, C.Z. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 2017, 9, 16086–16092. [Google Scholar] [CrossRef] [PubMed]
- Hatamie, S.; Akhavan, O.; Sadrnezhaad, S.K.; Ahadian, M.M.; Shirolkar, M.M.; Wang, H.Q. Curcumin-reduced graphene oxide sheets and their effects on human breast cancer cells. Mater. Sci. Eng. C 2015, 55, 482–489. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Guzman, M.; Martín, A.; del Marín, M.C.; Sierra, T.; Ansón-Casaos, A.; Martínez, M.T.; Escarpa, A. Electrochemical Behavior of Hybrid Carbon Nanomaterials: The Chemistry behind Electrochemistry. Electrochim. Acta 2016, 214, 286–294. [Google Scholar] [CrossRef] [Green Version]
Antioxidant | Biological Properties | Physical Properties | Nutrient Sources | Functions and Medical Uses | Ref. |
---|---|---|---|---|---|
Melatonin | Immunomodulatory Thermoregulatory Anti-aging Anticancer Photo-and radioprotective Cardioprotective Antiarrhythmic agent | Off-white powder Mw = 232.28 g/mol d25 °C = 1.175 g/cm3 Tm = 117 °C b.p. = 512.8 °C S20 °C = 2.0 g/L | Coffee, Tea Red wine, Beer Banana Tomatoes Rice, Wheat Corn, Oat | Control of hypertension, obesity, and metabolic syndrome Modulation of inflammatory markers Modulation of oxidative stress Sleep disorders/Insomnia treatment Parkinson and Alzheimer diseases | [52] |
Gallic Acid | Antimicrobial Anticancer Antifungal Antiviral Astringent Antiallergic Antiinflammatory Antimelanogenic Antiulcerogenic | Crystalline white powder Mw = 170.12 g/mol d25 °C = 1.694 g/cm3 Tm = 260 °C b.p. = 501 °C Td = 237.5 °C pKa = 4.40 S20 °C = 11.9 g/L | Blueberries Apples Flax seeds Tea, Coffee Walnuts Watercress Grapes, Wine Grenade | Control of periodontal disease Cell death in e human cancer cells Regulation of the genes involved in the cell cycle Prevention of degenerative diseases Prevention of cardiovascular diseases Inhibitor of diabetes dysfunction Inflammation suppressor | [57] |
Tannic Acid | Astringent Chemotherapy drug enhancer Antiallergic Anticarcinogenic, Antimutagenic Antiinflammatory | Light yellow amorphous powder Mw = 1701.19 g/mol d25 °C = 2.12 g/cm3 Tm = 218 °C Td = 199 °C pKa = 10 b.p. = 218 ° C S20 °C = 250 g/L | Red wine Coffee, Tea Guava Spinach Black raisins Oaks Nuts Persimmon | Inhibitor of NO2 production Clarifying agent in wine and beer Flavoring agent in foods Treatment of diarrhea Topical to dress skin burns Treatment of rectal disorders. | [135] |
Resveratrol | Anticancer Antiallergic Antiinflammatory Cardioprotective Inmunostimulatory Antimicrobial Antiplatelet agent Antifungal | White to yellow powder Mw = 228.25 g/mol d25 °C = 1.40 g/cm3 Tm = 263 °C Td = 222 °C b.p. = 449 ° C S20 °C = 0.03 g/L | Peanuts Pistachios Grapes, Wine Blueberries, Cranberries Cocoa Chocolate | Natural reducing agent Prevention of cardiovascular disease Parkinson and Alzheimer diseases Regulation of triglycerides Inhibitor of platelet aggregationInhibitor of DNA duplication in cancer cells | [21,25,136] |
Hydroxytyrosol | Immunostimulant Antimicrobial Antifungal Cardioprotective Anticancer Antiinflammatory Hepatoprotective Neuroprotective | White powder Mw = 154.16 g/mol d25 °C = 1.30 g/cm3 Tm = 55 °C Td = 361 °C b.p. = 355 ° C S20 °C = 50 g/L | Olive leaves Olive oil Wine | Prevention of sexual dysfunctions Prevention of atherosclerosis Inhibitor of platelet aggregation Inhibitor of human LDL oxidation Stabilizer and antioxidant in foods | [88,137] |
Tocopherol (Vitamin E) | Antiageing Anticancer Cardioprotective Antiinflammatory | Yellow- brown liquid Mw = 430.71 g/mol d25 °C = 0.95 g/cm3 Tm = 2 °C b.p. = 220 ° C S20 °C = 0 g/L | Nuts Avocado Salmon Mango Tomato Spinach Seed oils | Prevention of macular degeneration Prevention of Alzheimer’s disease Prevention of cardiovascular diseases Inhibitor of platelet aggregation Moisturizers/creams | [138] |
Ascorbic acid (Vitamin C) | Antiageing Wound healing Anticancer Immunostimulant Neuroprotective | white powder Mw = 176.12 g/mol d25 °C = 1.65 g/cm3 Tm = 190 °C b.p. = 553 °C S20 °C = 330 g/L) | Guava Pepper Citrus Broccoli Grape Cauliflower Strawberry Mango | Prevention of Hepatitis Promotion of collagen synthesis Prevention of Alzheimer’s disease Reparation and maintenance of skin, blood vessels, scars, tendons, ligaments, etc. Cofactor in many enzymes Natural reducing agent Cell division and growth regulation | [118] |
Curcumin | Anticancer Antiarthritis Antiinflammatory Neuroprotective | yellow crystalline solid (keto-) or liquid (enol-) Mw = 368.38 g/mol d25 °C = 1.3 g/cm3 Tm = 183 °C b.p. = 591 °C S20 °C = 0 g/L | Curcuma Curry Tea | Colitis and stomach ulcer protection Inhibitor of diabetes dysfunction Inflammation suppressor Treatment for viruses and pulmonary fibrosis Prevention of cancers Cosmetics ingredient Food flavoring and coloring | [128] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sainz-Urruela, C.; Vera-López, S.; San Andrés, M.P.; Díez-Pascual, A.M. Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review. Int. J. Mol. Sci. 2021, 22, 3316. https://doi.org/10.3390/ijms22073316
Sainz-Urruela C, Vera-López S, San Andrés MP, Díez-Pascual AM. Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review. International Journal of Molecular Sciences. 2021; 22(7):3316. https://doi.org/10.3390/ijms22073316
Chicago/Turabian StyleSainz-Urruela, Carlos, Soledad Vera-López, María Paz San Andrés, and Ana M. Díez-Pascual. 2021. "Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review" International Journal of Molecular Sciences 22, no. 7: 3316. https://doi.org/10.3390/ijms22073316
APA StyleSainz-Urruela, C., Vera-López, S., San Andrés, M. P., & Díez-Pascual, A. M. (2021). Graphene-Based Sensors for the Detection of Bioactive Compounds: A Review. International Journal of Molecular Sciences, 22(7), 3316. https://doi.org/10.3390/ijms22073316