Examining the Impact of Squaric Acid as a Crosslinking Agent on the Properties of Chitosan-Based Films
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fourier Transform Infrared Spectroscopy
2.2. Swelling
2.3. Changes in Surface Morphology Determined Using AFM Technique
2.4. Thermal Properties
2.5. Mechanical Properties
2.6. Differences in Color of Chitosan-Based Materials
3. Materials and Methods
3.1. Materials
3.2. Formation of Chitosan-Based Films
3.3. Methods of Analysis
3.3.1. Fourier Transform Infrared Spectroscopy (FTIR)
3.3.2. Atomic Force Microscopy (AFM)
3.3.3. Thermogravimetric Analysis (TG)
3.3.4. Mechanical Properties
3.3.5. Color Measurement
3.3.6. Swelling
3.3.7. Theoretical Degree of Chitosan Crosslinking
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anitha, A.; Rejinold, N.S.; Bumgardner, J.D.; Nair, S.V.; Jayakumar, R. Approaches for Functional Modification or Cross-Linking of Chitosan. In Chitosan-Based Systems for Biopharmaceuticals; John Wiley & Sons, Ltd.: Chichester, UK, 2012; Volume 95, pp. 107–124. ISBN 9780470978320. [Google Scholar]
- Ostrowska-Czubenko, J.; Pieróg, M.; Gierszewska-Drużyńska, M. Water state in chemically and physically crosslinked chitosan membranes. J. Appl. Polym. Sci. 2013, 130, 1707–1715. [Google Scholar] [CrossRef]
- Gierszewska, M.; Jakubowska, E.; Olewnik-Kruszkowska, E. Effect of chemical crosslinking on properties of chitosan-montmorillonite composites. Polym. Test. 2019, 77, 105872. [Google Scholar] [CrossRef]
- Li, H.; Gao, X.; Wang, Y.; Zhang, X.; Tong, Z. Comparison of chitosan/starch composite film properties before and after cross-linking. Int. J. Biol. Macromol. 2013, 52, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Nagireddi, S.; Katiyar, V.; Uppaluri, R. Pd(II) adsorption characteristics of glutaraldehyde cross-linked chitosan copolymer resin. Int. J. Biol. Macromol. 2017, 94, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Bera, B.; Das, J.K.; Das, N. Mesoporous silica based composite membrane formation by in-situ cross-linking of phenol and formaldehyde at room temperature for enhanced CO 2 separation. Microporous Mesoporous Mater. 2018, 256, 177–189. [Google Scholar] [CrossRef]
- Sun, S.; Liu, P.; Ji, N.; Hou, H.; Dong, H. Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing. Food Hydrocoll. 2018, 77, 964–975. [Google Scholar] [CrossRef]
- Cittan, M.; Tirtom, V.N.; Dinçer, A.; Çelik, A. Epichlorohydrin crosslinked chitosan–clay composite beads for on-line preconcentration and determination of chromium(iii) by flow injection flame atomic absorption spectrometry. Anal. Methods 2014, 6, 5298. [Google Scholar] [CrossRef]
- Aqil, A.; Tchemtchoua, V.T.; Colige, A.; Atanasova, G.; Poumay, Y.; Jérôme, C. Preparation and characterizations of EGDE crosslinked chitosan electrospun membranes. Clin. Hemorheol. Microcirc. 2015, 60, 39–50. [Google Scholar] [CrossRef]
- Kimura, S.; Isobe, N.; Wada, M.; Kuga, S.; Ko, J.-H.; Kim, U.-J. Enzymatic hydrolysis of chitosan-dialdehyde cellulose hydrogels. Carbohydr. Polym. 2011, 83, 1850–1853. [Google Scholar] [CrossRef]
- Paradossi, G.; Chiessi, E.; Cavalieri, F.; Moscone, D.; Crescenzi, V. Networks based on chitosan and oxidized cyclodextrin—II. Structural and catalytic features of a copper (II)-loaded network. Polym. Gels Netw. 1998, 5, 525–540. [Google Scholar] [CrossRef]
- He, X.; Du, M.; Li, H.; Zhou, T. Removal of direct dyes from aqueous solution by oxidized starch cross-linked chitosan/silica hybrid membrane. Int. J. Biol. Macromol. 2016, 82, 174–181. [Google Scholar] [CrossRef]
- Grabska-Zielińska, S.; Sionkowska, A.; Reczyńska, K.; Pamuła, E. Physico-Chemical Characterization and Biological Tests of Collagen/Silk Fibroin/Chitosan Scaffolds Cross-Linked by Dialdehyde Starch. Polymers 2020, 12, 372. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Shi, Z.; Kuriger, T.; Hanton, L.R.; Simpson, J.; Moratti, S.C.; Robinson, B.H.; Athanasiadis, T.; Valentine, R.; Wormald, P.J.; et al. Synthesis and Characterization of Chitosan/Dextran-Based Hydrogels for Surgical Use. Macromol. Symp. 2009, 279, 151–157. [Google Scholar] [CrossRef]
- Perez-Puyana, V.; Jiménez-Rosado, M.; Romero, A.; Guerrero, A. Crosslinking of hybrid scaffolds produced from collagen and chitosan. Int. J. Biol. Macromol. 2019, 139, 262–269. [Google Scholar] [CrossRef]
- O’Brien, F.; Harley, B.A.; Yannas, I.V.; Gibson, L. Influence of freezing rate on pore structure in freeze-dried collagen-GAG scaffolds. Biomaterials 2004, 25, 1077–1086. [Google Scholar] [CrossRef]
- Moreira Teixeira, L.S.; Feijen, J.; van Blitterswijk, C.A.; Dijkstra, P.J.; Karperien, M. Enzyme-catalyzed crosslinkable hydrogels: Emerging strategies for tissue engineering. Biomaterials 2012, 33, 1281–1290. [Google Scholar] [CrossRef] [PubMed]
- Wurm, F.R.; Klok, H.-A. Be squared: Expanding the horizon of squaric acid-mediated conjugations. Chem. Soc. Rev. 2013, 42, 8220. [Google Scholar] [CrossRef] [PubMed]
- Ziegler-Borowska, M.; Mylkie, K.; Nowak, P.; Rybczynski, P.; Sikora, A.; Chelminiak-Dudkiewicz, D.; Kaczmarek-Kedziera, A. Testing for Ketoprofen Binding to HSA Coated Magnetic Nanoparticles under Normal Conditions and after Oxidative Stress. Molecules 2020, 25, 1945. [Google Scholar] [CrossRef] [PubMed]
- Skopinska-Wisniewska, J.; Kuderko, J.; Bajek, A.; Maj, M.; Sionkowska, A.; Ziegler-Borowska, M. Collagen/elastin hydrogels cross-linked by squaric acid. Mater. Sci. Eng. C 2016, 60, 100–108. [Google Scholar] [CrossRef]
- Pearson, F.G.; Marchessault, R.H.; Liang, C.Y. Infrared spectra of crystalline polysaccharides. V. Chitin. J. Polym. Sci. 1960, 43, 101–116. [Google Scholar] [CrossRef]
- Ostrowska-Czubenko, J.; Gierszewska-Drużyńska, M. Effect of ionic crosslinking on the water state in hydrogel chitosan membranes. Carbohydr. Polym. 2009, 77, 590–598. [Google Scholar] [CrossRef]
- Pawlak, A.; Mucha, M. Thermogravimetric and FTIR studies of chitosan blends. Thermochim. Acta 2003, 396, 153–166. [Google Scholar] [CrossRef]
- Smitha, B.; Sridhar, S.; Khan, A.A. Chitosan–sodium alginate polyion complexes as fuel cell membranes. Eur. Polym. J. 2005, 41, 1859–1866. [Google Scholar] [CrossRef]
- Baglin, F.G.; Rose, C.B. The infrared and Raman spectra of crystalline squaric acid. Spectrochim. Acta 1970, 26A, 2293–2304. [Google Scholar] [CrossRef]
- Georgopoulos, S.L.; Diniz, R.; Yoshida, M.I.; Speziali, N.L.; Dos Santos, H.F.; Junqueira, G.M.A.; de Oliveira, L.F.C. Vibrational spectroscopy and aromaticity investigation of squarate salts: A theoretical and experimental approach. J. Mol. Struct. 2006, 794, 63–70. [Google Scholar] [CrossRef]
- Rao, C.N.R. Chemical Application of Infrared Spectroscopy; Academic Press: New York, NY, USA, 1963. [Google Scholar]
- Ostrowska-Czubenko, J.; Gierszewska, M.; Pieróg, M. pH-responsive hydrogel membranes based on modified chitosan: Water transport and kinetics of swelling. J. Polym. Res. 2015, 22, 153. [Google Scholar] [CrossRef] [Green Version]
- Knaul, J.Z.; Hudson, S.M.; Creber, K.A.M. Improved mechanical properties of chitosan fibers. J. Appl. Polym. Sci. 1999, 72, 1721–1732. [Google Scholar] [CrossRef]
- Ziegler-Borowska, M.; Chelminiak-Dudkiewicz, D.; Siódmiak, T.; Sikora, A.; Wegrzynowska-Drzymalska, K.; Skopinska-Wisniewska, J.; Kaczmarek, H.; Marszałł, M. Chitosan–Collagen Coated Magnetic Nanoparticles for Lipase Immobilization—New Type of “Enzyme Friendly” Polymer Shell Crosslinking with Squaric Acid. Catalysts 2017, 7, 26. [Google Scholar] [CrossRef] [Green Version]
- Souza, N.L.G.D.; Salles, T.F.; Brandão, H.M.; Edwards, H.G.M.; de Oliveira, L.F.C. Synthesis, Vibrational Spectroscopic and Thermal Properties of Oxocarbon Cross-Linked Chitosan. J. Br. Chem. Soc. 2015, 26, 1247–1256. [Google Scholar] [CrossRef]
- Flory, P.J.; Rehner, J. Statistical Mechanics of Cross-Linked Polymer Networks II. Swelling. J. Chem. Phys. 1943, 11, 521–526. [Google Scholar] [CrossRef]
- Peppas, N. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000, 50, 27–46. [Google Scholar] [CrossRef]
- Siegel, R.A.; Johannes, I.; Hunt, C.A.; Firestone, B.A. Buffer Effects on Swelling Kinetics in Polybasic Gels. Pharm. Res. An Off. J. Am. Assoc. Pharm. Sci. 1992, 9, 76–81. [Google Scholar]
- Berger, J.; Reist, M.; Mayer, J.M.; Felt, O.; Peppas, N.A.; Gurny, R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur. J. Pharm. Biopharm. 2004, 57, 19–34. [Google Scholar] [CrossRef]
- Domard, A. pH and c.d. measurements on a fully deacetylated chitosan: Application to CuII—polymer interactions. Int. J. Biol. Macromol. 1987, 9, 98–104. [Google Scholar] [CrossRef]
- Mi, F.-L.; Shyu, S.-S.; Wong, T.-B.; Jang, S.-F.; Lee, S.-T.; Lu, K.-T. Chitosan-polyelectrolyte complexation for the preparation of gel beads and controlled release of anticancer drug. II. Effect of pH-dependent ionic crosslinking or interpolymer complex using tripolyphosphate or polyphosphate as reagent. J. Appl. Polym. Sci. 1999, 74, 1093–1107. [Google Scholar] [CrossRef]
- Mi, F.-L.; Shyu, S.-S.; Lee, S.-T.; Wong, T.-B. Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method. J. Polym. Sci. Part B Polym. Phys. 1999, 37, 1551–1564. [Google Scholar] [CrossRef]
- Peppas, N.A.; Khare, A.R. Preparation, structure and diffusional behavior of hydrogels in controlled release. Adv. Drug Deliv. Rev. 1993, 11, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Shikata, T.; Okuzono, M. Are All Polar Molecules Hydrophilic? Hydration Numbers of Ketones and Esters in Aqueous Solution. J. Phys. Chem. B 2013, 117, 7718–7723. [Google Scholar] [CrossRef]
- Ewing, A.V.; Gabrienko, A.A.; Semikolenov, S.V.; Dubkov, K.A.; Kazarian, S.G. How Do Intermolecular Interactions Affect Swelling of Polyketones with a Differing Number of Carbonyl Groups? An In Situ ATR-FTIR Spectroscopic Study of CO2 Sorption in Polymers. J. Phys. Chem. C 2015, 119, 431–440. [Google Scholar] [CrossRef]
- Gadelmawla, E.S.; Koura, M.M.; Maksoud, T.M.A.; Elewa, I.M.; Soliman, H.H. Roughness parameters. J. Mater. Process. Technol. 2002, 123, 133–145. [Google Scholar] [CrossRef]
- Yap, W.F.; Yunus, W.M.M.; Talib, Z.A.; Yusof, N.A. X-ray photoelectron spectroscopy and atomic force microscopy studies on crosslinked chitosan thin film. Int. J. Phys. Sci. 2011, 6, 2744–2749. [Google Scholar] [CrossRef]
- Sionkowska, A.; Michalska-Sionkowska, M.; Walczak, M. Preparation and characterization of collagen/hyaluronic acid/chitosan film crosslinked with dialdehyde starch. Int. J. Biol. Macromol. 2020, 149, 290–295. [Google Scholar] [CrossRef]
- Sionkowska, A.; Kaczmarek, B.; Gnatowska, M.; Kowalonek, J. The influence of UV-irradiation on chitosan modified by the tannic acid addition. J. Photochem. Photobiol. B Biol. 2015, 148, 333–339. [Google Scholar] [CrossRef]
- Lewandowska, K. Miscibility and thermal stability of poly(vinyl alcohol)/chitosan mixtures. Thermochim. Acta 2009, 493, 42–48. [Google Scholar] [CrossRef]
- Lewandowska, K.; Sionkowska, A.; Kaczmarek, B.; Furtos, G. Characterization of chitosan composites with various clays. Int. J. Biol. Macromol. 2014, 65, 534–541. [Google Scholar] [CrossRef]
- Li, K.; Zhu, J.; Guan, G.; Wu, H. Preparation of chitosan-sodium alginate films through layer-by-layer assembly and ferulic acid crosslinking: Film properties, characterization, and formation mechanism. Int. J. Biol. Macromol. 2019, 122, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Grabska, S.; Sionkowska, A. Preparation and characterization of biopolymeric films with magnetic properties. Mol. Cryst. Liq. Cryst. 2018, 670, 80–89. [Google Scholar] [CrossRef]
- Wegrzynowska-Drzymalska, K.; Grebicka, P.; Mlynarczyk, D.T.; Chelminiak-Dudkiewicz, D.; Kaczmarek, H.; Goslinski, T.; Ziegler-Borowska, M. Crosslinking of Chitosan with Dialdehyde Chitosan as a New Approach for Biomedical Applications. Materials 2020, 13, 3413. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Du, Y.; Fan, L. Dialdehyde starch-crosslinked chitosan films and their antimicrobial effects. J. Polym. Sci. Part B Polym. Phys. 2003, 41, 993–997. [Google Scholar] [CrossRef]
- Frick, J.M.; Ambrosi, A.; Pollo, L.D.; Tessaro, I.C. Influence of Glutaraldehyde Crosslinking and Alkaline Post-treatment on the Properties of Chitosan-Based Films. J. Polym. Environ. 2018, 26, 2748–2757. [Google Scholar] [CrossRef]
- Pavoni, J.M.F.; dos Santos, N.Z.; May, I.C.; Pollo, L.D.; Tessaro, I.C. Impact of acid type and glutaraldehyde crosslinking in the physicochemical and mechanical properties and biodegradability of chitosan films. Polym. Bull. 2021, 78, 981–1000. [Google Scholar] [CrossRef]
- Marquie, C.; Aymard, C.; Cuq, J.L.; Guilbert, S. Biodegradable Packaging Made from Cottonseed Flour: Formation and Improvement by Chemical Treatments with Gossypol, Formaldehyde, and Glutaraldehyde. J. Agric. Food Chem. 1995, 43, 2762–2767. [Google Scholar] [CrossRef]
- Halim, A.L.A.; Kamari, A.; Phillip, E. Chitosan, gelatin and methylcellulose films incorporated with tannic acid for food packaging. Int. J. Biol. Macromol. 2018, 120, 1119–1126. [Google Scholar] [CrossRef]
- Suganthi, S.; Vignesh, S.; Kalyana Sundar, J.; Raj, V. Fabrication of PVA polymer films with improved antibacterial activity by fine-tuning via organic acids for food packaging applications. Appl. Water Sci. 2020, 10, 100. [Google Scholar] [CrossRef] [Green Version]
- Onaran, M.B.; Comeau, A.B.; Seto, C.T. Squaric Acid-Based Peptidic Inhibitors of Matrix Metalloprotease-1. J. Org. Chem. 2005, 70, 10792–10802. [Google Scholar] [CrossRef] [Green Version]
- Olewnik-Kruszkowska, E.; Gierszewska, M.; Jakubowska, E.; Tarach, I.; Sedlarik, V.; Pummerova, M. Antibacterial Films Based on PVA and PVA–Chitosan Modified with Poly(Hexamethylene Guanidine). Polymers 2019, 11, 2093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Sample | C=O | C=C | Amide I | Amide II |
---|---|---|---|---|
H2SQ | 1814 | 1645 | - 2 | - 2 |
Ch | - 2 | - 2 | 1632 | 1544 |
ChQ1 | - 2 | ~1700 1 | 1631 | 1537 3 |
ChQ2 | - 2 | ~1691 1 | 1631 | 1536 3 |
ChQ3 | - 2 | ~1700 1 | 1631 | 1536 3 |
Sample | Rq [nm] | Ra [nm] | T5% [°C] | T10% [°C] |
---|---|---|---|---|
Ch | 2.30 ± 0.02 | 1.89 ± 0.03 | 104.9 ± 0.2 | 145.7 ± 0.6 |
ChQ1 | 2.68 ± 0.04 | 2.19 ± 0.10 | 105.4 ± 0.2 | 147.2 ± 0.3 |
ChQ2 | 2.99 ± 0.04 | 2.51 ± 0.11 | 106.2 ± 0.4 | 147.9 ± 0.2 |
ChQ3 | 3.67 ± 0.05 | 2.95 ± 0.13 | 115.8 ± 0.5 | 158.6 ± 0.9 |
Sample | Color Variable 1 | |||
---|---|---|---|---|
L | a | b | ΔE | |
Ch | 90.40 ± 0.23 | −1.40 ± 0.02 | 5.04 ± 0.02 | - |
ChQ1 | 82.51 ± 0.13 | −3.21 ± 0.06 | 24.39 ± 0.09 | 21.0 ± 0.19 |
ChQ2 | 79.94 ± 0.09 | −3.93 ± 0.06 | 27.63 ± 0.11 | 25.0 ± 0.21 |
ChQ3 | 77.42 ± 0.21 | −4.23 ± 0.09 | 29.51 ± 0.07 | 27.9 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olewnik-Kruszkowska, E.; Gierszewska, M.; Grabska-Zielińska, S.; Skopińska-Wiśniewska, J.; Jakubowska, E. Examining the Impact of Squaric Acid as a Crosslinking Agent on the Properties of Chitosan-Based Films. Int. J. Mol. Sci. 2021, 22, 3329. https://doi.org/10.3390/ijms22073329
Olewnik-Kruszkowska E, Gierszewska M, Grabska-Zielińska S, Skopińska-Wiśniewska J, Jakubowska E. Examining the Impact of Squaric Acid as a Crosslinking Agent on the Properties of Chitosan-Based Films. International Journal of Molecular Sciences. 2021; 22(7):3329. https://doi.org/10.3390/ijms22073329
Chicago/Turabian StyleOlewnik-Kruszkowska, Ewa, Magdalena Gierszewska, Sylwia Grabska-Zielińska, Joanna Skopińska-Wiśniewska, and Ewelina Jakubowska. 2021. "Examining the Impact of Squaric Acid as a Crosslinking Agent on the Properties of Chitosan-Based Films" International Journal of Molecular Sciences 22, no. 7: 3329. https://doi.org/10.3390/ijms22073329
APA StyleOlewnik-Kruszkowska, E., Gierszewska, M., Grabska-Zielińska, S., Skopińska-Wiśniewska, J., & Jakubowska, E. (2021). Examining the Impact of Squaric Acid as a Crosslinking Agent on the Properties of Chitosan-Based Films. International Journal of Molecular Sciences, 22(7), 3329. https://doi.org/10.3390/ijms22073329