Construction of a Full-Length cDNA Over-Expressing Library to Identify Valuable Genes from Populus tomentosa
Abstract
:1. Introduction
2. Results
2.1. Construction of Populus-FOX-Arabidopsis Library
2.2. Screening and Identification of Functional Genes in the FOX Library
2.3. Characterization of Two Mutants with Different Phenotypes to Evaluate the FOX Library
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Growth Conditions
4.2. RNA Extraction
4.3. Construction of P. tomentosa Fl-cDNA Overexpression Library, Plant Transformation and Selection
4.4. Genomic DNA Isolation, PCR and Sequencing
4.5. Phylogenetic Analysis and Sequence Alignment
4.6. Gene Expression Analysis
4.7. Microscopy and Histochemistry
4.8. Scanning Electron Microscopy (SEM) Observation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, G.; Schlauch, K.; Tam, R.; Cortes, D.; Torres, M.A.; Shulaev, V.; Dangl, J.L.; Mittler, R. The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signaling in Response to Diverse Stimuli. Sci. Signal. 2009, 2, ra45. [Google Scholar] [CrossRef] [Green Version]
- Harfouche, A.; Meilan, R.; Altman, A. Molecular and physiological responses to abiotic stress in forest trees and their relevance to tree improvement. Tree Physiol. 2014, 34, 1181–1198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jansson, S.; Douglas, C.J. Populus: A model system for plant biology. Annu. Rev. Plant Biol. 2007, 58, 435–458. [Google Scholar] [CrossRef] [PubMed]
- Osakabe, Y.; Kajita, S.; Osakabe, K. Genetic engineering of woody plants: Current and future targets in a stressful environment. Physiol. Plant 2011, 142, 105–117. [Google Scholar] [CrossRef]
- Alonso, J.M.; Stepanova, A.N.; Leisse, T.J.; Kim, C.J.; Chen, H.; Shinn, P.; Stevenson, D.K.; Zimmerman, J.; Barajas, P.; Cheuk, R. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301, 653–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piffanelli, P.; Droc, G.; Mieulet, D.; Lanau, N.; Bès, M.; Bourgeois, E.; Rouvière, C.; Gavory, F.; Cruaud, C.; Ghesquière, A.; et al. Large-scale characterization of Tos17 insertion sites in a rice T-DNA mutant library. Plant Mol. Biol. 2007, 65, 587–601. [Google Scholar] [CrossRef] [PubMed]
- Ram, H.; Soni, P.; Salvi, P.; Gandass, N.; Sharma, A.; Kaur, A.; Sharma, T.R. Insertional Mutagenesis Approaches and Their Use in Rice for Functional Genomics. Plants 2019, 8, 310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nandety, R.S.; Serrani-Yarce, J.C.; Gill, U.S.; Oh, S.; Lee, H.K.; Zhang, X.; Dai, X.; Zhang, W.; Krom, N.; Wen, J.; et al. Insertional mutagenesis of Brachypodium distachyon using the Tnt1 retrotransposable element. Plant J. 2020, 103, 1924–1936. [Google Scholar] [CrossRef]
- Tadege, M.; Wen, J.; He, J.; Tu, H.; Kwak, Y.; Eschstruth, A.; Cayrel, A.; Endre, G.; Zhao, P.X.; Chabaud, M.; et al. Large-scale insertional mutagenesis using the Tnt1 retrotransposon in the model legume Medicago truncatula. Plant J. 2008, 54, 335–347. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, S.; Tian, H.; Wang, S.; Chen, J.-G. The Small Ethylene Response Factor ERF96 is Involved in the Regulation of the Abscisic Acid Response in Arabidopsis. Front. Plant Sci. 2015, 6. [Google Scholar] [CrossRef] [Green Version]
- Jiao, B.; Zhao, X.; Lu, W.; Guo, L.; Luo, K. The R2R3 MYB transcription factor MYB189 negatively regulates secondary cell wall biosynthesis in Populus. Tree Physiol. 2019, 39, 1187–1200. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yu, R.; Wang, J.; Lin, Z.; Han, X.; Deng, Z.; Fan, L.; He, H.; Deng, X.W.; Chen, H. The Asymmetric Expression of SAUR Genes Mediated by ARF7/19 Promotes the Gravitropism and Phototropism of Plant Hypocotyls. Cell Rep. 2020, 31, 107529. [Google Scholar] [CrossRef]
- Zhang, J.Z. Overexpression analysis of plant transcription factors. Curr. Opin. Plant Biol. 2003, 6, 430–440. [Google Scholar] [CrossRef]
- Waki, T.; Miyashima, S.; Nakanishi, M.; Ikeda, Y.; Hashimoto, T.; Nakajima, K. A GAL4-based targeted activation tagging system inArabidopsis thaliana. Plant J. 2013, 73, 357–367. [Google Scholar] [CrossRef] [PubMed]
- Manimaran, P.; Venkata Reddy, S.; Moin, M.; Raghurami Reddy, M.; Yugandhar, P.; Mohanraj, S.S.; Balachandran, S.M.; Kirti, P.B. Activation-tagging in indica rice identifies a novel transcription factor subunit, NF-YC13 associated with salt tolerance. Sci. Rep. 2017, 7, 9341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davies, J.P.; Reddy, V.S.; Liu, X.L.; Reddy, A.S.; Ainley, W.M.; Folkerts, O.; Marri, P.; Jiang, K.; Wagner, D.R. Development of an activation tagging system for maize. Plant Direct 2019, 3, e00118. [Google Scholar] [CrossRef]
- Fladung, M.; Polak, O. Ac/Ds-transposon activation tagging in poplar: A powerful tool for gene discovery. BMC Genom. 2012, 13, 61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Busov, V.B.; Meilan, R.; Pearce, D.W.; Ma, C.; Rood, S.B.; Strauss, S.H. Activation tagging of a dominant gibberellin catabolism gene (GA 2-oxidase) from poplar that regulates tree stature. Plant Physiol. 2003, 132, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Trupiano, D.; Yordanov, Y.; Regan, S.; Meilan, R.; Tschaplinski, T.; Scippa, G.S.; Busov, V. Identification, characterization of an AP2/ERF transcription factor that promotes adventitious, lateral root formation in Populus. Planta 2013, 238, 271–282. [Google Scholar] [CrossRef]
- Yordanov, Y.S.; Ma, C.; Strauss, S.H.; Busov, V.B. EARLY BUD-BREAK 1 (EBB1) is a regulator of release from seasonal dormancy in poplar trees. Proc. Natl. Acad. Sci. USA 2014, 111, 10001–10006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dash, M.; Yordanov, Y.S.; Georgieva, T.; Tschaplinski, T.J.; Yordanova, E.; Busov, V. Poplar PtabZIP1-like enhances lateral root formation and biomass growth under drought stress. Plant J. 2017, 89, 692–705. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, T.; Nakazawa, M.; Kawashima, M.; Muto, S.; Gohda, K.; Suzuki, K.; Ishikawa, A.; Kobayashi, H.; Yoshizumi, T.; Tsumoto, Y. Sequence database of 1172 T-DNA insertion sites in Arabidopsis activation-tagging lines that showed phenotypes in T1 generation. Plant J. 2003, 36, 421–429. [Google Scholar] [CrossRef] [Green Version]
- Ichikawa, T.; Nakazawa, M.; Kawashima, M.; Iizumi, H.; Kuroda, H.; Kondou, Y.; Tsuhara, Y.; Suzuki, K.; Ishikawa, A.; Seki, M. The FOX hunting system: An alternative gain-of-function gene hunting technique. Plant J. 2006, 48, 974–985. [Google Scholar] [CrossRef] [PubMed]
- Kondou, Y.; Higuchi, M.; Matsui, M. High-throughput characterization of plant gene functions by using gain-of-function technology. Annu. Rev. Plant Biol. 2010, 61, 373–393. [Google Scholar] [CrossRef]
- Curtis, M.D.; Grossniklaus, U. A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 2003, 133, 462–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, M.; Mizukado, S.; Fujita, Y.; Ichikawa, T.; Nakazawa, M.; Seki, M.; Matsui, M.; Yamaguchi-Shinozaki, K.; Shinozaki, K. Identification of stress-tolerance-related transcription-factor genes via mini-scale Full-length cDNA Over-eXpressor (FOX) gene hunting system. Biochem. Biophys. Res. Commun. 2007, 364, 250–257. [Google Scholar] [CrossRef]
- Kondou, Y.; Higuchi, M.; Takahashi, S.; Sakurai, T.; Ichikawa, T.; Kuroda, H.; Yoshizumi, T.; Tsumoto, Y.; Horii, Y.; Kawashima, M. Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant J. 2009, 57, 883–894. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; Kondou, Y.; Akiyama, K.; Kurotani, A.; Higuchi, M.; Ichikawa, T.; Kuroda, H.; Kusano, M.; Mori, M.; Saitou, T.; et al. RiceFOX: A Database of Arabidopsis Mutant Lines Overexpressing Rice Full-Length cDNA that Contains a Wide Range of Trait Information to Facilitate Analysis of Gene Function. Plant Cell Physiol. 2011, 52, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Chen, H.; Hou, Z.; Li, Y.; Yang, C.; Wang, D.; Song, C.P. Screening of abiotic stress-responsive cotton genes using a cotton full-length cDNA overexpressing Arabidopsis library. J. Integr. Plant Biol. 2019, 62, 998–1016. [Google Scholar] [CrossRef]
- Wang, Y.-H.; Mosebach, C.M.; Kibbey, A.S.; Ryhal, M.K.; Jones, A.D.; Palmer, J.A.; Kochian, L.V. Generation of Arabidopsis Mutants by Heterologous Expression of a Full-Length cDNA Library from Tomato Fruits. Plant Mol. Biol. Rep. 2009, 27, 454–461. [Google Scholar] [CrossRef]
- Ling, J.; Li, R.; Nwafor, C.C.; Cheng, J.; Li, M.; Xu, Q.; Wu, J.; Gan, L.; Yang, Q.; Liu, C.; et al. Development of iFOX-hunting as a functional genomic tool and demonstration of its use to identify early senescence-related genes in the polyploid Brassica napus. Plant Biotechnol. J. 2018, 16, 591–602. [Google Scholar] [CrossRef] [Green Version]
- Himuro, Y.; Tanaka, H.; Hashiguchi, M.; Ichikawa, T.; Nakazawa, M.; Seki, M.; Fujita, M.; Shinozaki, K.; Matsui, M.; Akashi, R.; et al. FOX-superroots of Lotus corniculatus, overexpressing Arabidopsis full-length cDNA, show stable variations in morphological traits. J. Plant Physiol. 2011, 168, 181–187. [Google Scholar] [CrossRef]
- Nakamura, H.; Hakata, M.; Amano, K.; Miyao, A.; Toki, N.; Kajikawa, M.; Pang, J.; Higashi, N.; Ando, S.; Toki, S.; et al. A genome-wide gain-of function analysis of rice genes using the FOX-hunting system. Plant Mol. Biol. 2007, 65, 357–371. [Google Scholar] [CrossRef] [Green Version]
- Rauschendorfer, J.; Yordanov, Y.; Dobrev, P.; Vankova, R.; Sykes, R.; Kulheim, C.; Busov, V. Overexpression of a developing xylem cDNA library in transgenic poplar generates high mutation rate specific to wood formation. Plant Biotechnol. J. 2020, 18, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Reece-Hoyes, J.S.; Walhout, A.J.M. Gateway Recombinational Cloning. Cold Spring Harb. Protoc. 2018, 2018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, X.; Henriques, R.; Lin, S.-S.; Niu, Q.-W.; Chua, N.-H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protoc. 2006, 1, 641–646. [Google Scholar] [CrossRef] [PubMed]
- An, L.; Zhou, Z.; Su, S.; Yan, A.; Gan, Y. GLABROUS INFLORESCENCE STEMS (GIS) is required for trichome branching through gibberellic acid signaling in Arabidopsis. Plant Cell Physiol. 2012, 53, 457–469. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qi, T.; Song, S.; Ren, Q.; Wu, D.; Huang, H.; Chen, Y.; Fan, M.; Peng, W.; Ren, C.; Xie, D. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana. Plant Cell 2011, 23, 1795–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bloomer, R.H.; Juenger, T.E.; Symonds, V.V. Natural variation in GL1 and its effects on trichome density in Arabidopsis thaliana. Mol. Ecol. 2012, 21, 3501–3515. [Google Scholar] [CrossRef] [PubMed]
- Morohashi, K.; Zhao, M.; Yang, M.; Read, B.; Lloyd, A.; Lamb, R.; Grotewold, E. Participation of the Arabidopsis bHLH factor GL3 in trichome initiation regulatory events. Plant Physiol. 2007, 145, 736–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, B.; Sinkevicius, K.W.; Selinger, D.A.; Tarczynski, M.C. The homeobox gene GLABRA2 affects seed oil content in Arabidopsis. Plant Mol. Biol. 2006, 60, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Schellmann, S.; Schnittger, A.; Kirik, V.; Wada, T.; Okada, K.; Beermann, A.; Thumfahrt, J.; Jurgens, G.; Hulskamp, M. TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J. 2002, 21, 5036–5046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirik, V.; Simon, M.; Huelskamp, M.; Schiefelbein, J. The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev. Biol. 2004, 268, 506–513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, C.S.; Kolevski, B.; Smyth, D.R. TRANSPARENT TESTA GLABRA2, a Trichome and Seed Coat Development Gene of Arabidopsis, Encodes a WRKY Transcription Factor. Plant Cell 2002, 14, 1359–1375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, L.; Zheng, K.; Wang, X.; Tian, H.; Wang, X.; Wang, S. Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors. Front. Plant Sci. 2014, 5, 262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Duan, Y.; Yin, J.; Ye, S.; Zhu, J.; Zhang, F.; Lu, W.; Fan, D.; Luo, K. Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J. Exp. Bot. 2014, 65, 6629–6644. [Google Scholar] [CrossRef]
- Li, W.; Tian, Z.; Yu, D. WRKY13 acts in stem development in Arabidopsis thaliana. Plant Sci. 2015, 236, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Kim, J.; Yoo, S.J.; Yoo, S.Y.; Roh, H.; Choi, J.H.; Choi, M.S.; Chung, K.S.; Han, E.J.; Hong, S.M. Isolation of 151 mutants that have developmental defects from T-DNA tagging. Plant Cell Physiol. 2007, 48, 169–178. [Google Scholar] [CrossRef] [Green Version]
- Ricachenevsky, F.K.; Punshon, T.; Lee, S.; Oliveira, B.H.N.; Trenz, T.S.; Maraschin, F.D.S.; Hindt, M.N.; Danku, J.; Salt, D.E.; Fett, J.P.; et al. Elemental Profiling of Rice FOX Lines Leads to Characterization of a New Zn Plasma Membrane Transporter, OsZIP7. Front. Plant Sci. 2018, 9, 865. [Google Scholar] [CrossRef] [Green Version]
- Breuer, C.; Kawamura, A.; Ichikawa, T.; Tominaga-Wada, R.; Wada, T.; Kondou, Y.; Muto, S.; Matsui, M.; Sugimoto, K. The Trihelix Transcription Factor GTL1 Regulates Ploidy-Dependent Cell Growth in the Arabidopsis Trichome. Plant Cell 2009, 21, 2307–2322. [Google Scholar] [CrossRef] [Green Version]
- Ye, Z.-H.; Zhong, R. Molecular control of wood formation in trees. J. Exp. Bot. 2015, 66, 4119–4131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhong, R.; Lee, C.; Ye, Z.-H. Functional Characterization of Poplar Wood-Associated NAC Domain Transcription Factors. Plant Physiol. 2010, 152, 1044–1055. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.C.; Li, W.; Sun, Y.H.; Kumari, S.; Wei, H.; Li, Q.; Tunlaya-Anukit, S.; Sederoff, R.R.; Chiang, V.L. SND1 Transcription Factor-Directed Quantitative Functional Hierarchical Genetic Regulatory Network in Wood Formation in Populus trichocarpa. Plant Cell 2013, 25, 4324–4341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Avci, U.; Nakashima, J.; Hahn, M.G.; Chen, F.; Dixon, R.A. Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc. Natl. Acad. Sci. USA 2010, 107, 22338–22343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ge, S.; Han, X.; Xu, X.; Shao, Y.; Zhu, Q.; Liu, Y.; Du, J.; Xu, J.; Zhang, S. WRKY15 Suppresses Tracheary Element Differentiation Upstream of VND7 During Xylem Formation. Plant Cell 2020, 32, 2307–2324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Didi, V.; Jackson, P.; Hejatko, J. Hormonal regulation of secondary cell wall formation. J. Exp. Bot. 2015, 66, 5015–5027. [Google Scholar] [CrossRef]
- Johnsson, C.; Jin, X.; Xue, W.; Dubreuil, C.; Lezhneva, L.; Fischer, U. The plant hormone auxin directs timing of xylem development by inhibition of secondary cell wall deposition through repression of secondary wall NAC-domain transcription factors. Physiol. Plant 2019, 165, 673–689. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.H.; Du, Q.; Zhuo, C.; Qi, L.; Wang, H. LBD29-Involved Auxin Signaling Represses NAC Master Regulators and Fiber Wall Biosynthesis. Plant Physiol. 2019, 181, 595–608. [Google Scholar] [CrossRef] [Green Version]
- Soyano, T.; Thitamadee, S.; Machida, Y.; Chua, N.H. ASYMMETRIC LEAVES2-LIKE19/LATERAL ORGAN BOUNDARIES DOMAIN30 and ASL20/LBD18 regulate tracheary element differentiation in Arabidopsis. Plant Cell 2008, 20, 3359–3373. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Line | Pt Gene ID | At Gene ID | Query Cover | Phenotype | Annotation |
---|---|---|---|---|---|
N1 | Potri.002G212700.1 | AT1G65410.1 | 0.728 | Poor growth, thin stem | NON-INTRINSIC ABC PROTEIN 11 (ATNAP11) |
N3 | Potri.005G175900.1 | AT1G44835.2 | 0.715 | Poor growth, thin stem | YbaK/aminoacyl-tRNA synthetase-associated domain-containing protein |
N46 | Potri.008G075200.1 | AT3G10985.1 | 0.602 | Poor growth, senilism | SENESCENCE ASSOCIATED GENE 20 (ATSAG20) |
A33 | Potri.006G224000.1 | AT5G26180.1 | 0.7 | Dwarf | TRNA METHYLTRANSFERASE 4H (ATTRM4H) |
N66 | Potri.006G130900.1 | AT5G60390.3 | 0.953 | Dwarf | GTP binding Elongation factor Tu family protein |
N4 | Potri.003G126100.1 | AT4G11600.1 | 0.677 | Dwarf, poor growth | GLUTATHIONE PEROXIDASE 6 (ATGPX6) |
N9 | Potri.010G013400.1 | AT3G05540.1 | 0.792 | Dwarf, poor growth | TRANSLATIONALLY CONTROLLED TUMOR PROTEIN 2 (ATTCTP2) |
N15 | Potri.012G114200.1 | AT5G61670.2 | 0.772 | Dwarf, Poor growth | Protein disulfide-isomerase/S-S rearrangase |
N10 | Potri.001G123200.1 | AT4G16530.1 | 0.453 | Dwarf, poor growth | DUF577 |
N19 | Potri.018G119600.1 | AT1G75400.1 | 0.354 | Dwarf, delayed flowering | RING/U-box superfamily protein |
N13 | Potri.011G045100.1 | AT2G20840.1 | 0.788 | Dwarf, delayed flowering | SECRETORY CARRIER MEMBRANE PROTEIN 3 (ATSCAMP3) |
N11 | Potri.008G145600.1 | AT1G17960.1 | 0.542 | Dwarf, fewer branches | Threonyl-tRNA synthetase |
N6 | Potri.007G011200.1 | AT4G37870.1 | 0.873 | Dwarf, fewer branches | PHOSPHOENOLPYRUVATE CARBOXYKINASE 1 (ATPCK1) |
N40 | Potri.004G233800.1 | AT5G61510.1 | 0.753 | Fewer branches | GroES-like zinc-binding alcohol dehydrogenase family protein |
N65 | Potri.019G058000.1 | AT3G56360.1 | 0.542 | Fewer branches | Hypothetical protein |
A5 | Potri.008G178700.1 | AT1G24360.1 | 0.693 | Rapid growth | NAD(P)-binding Rossmann-fold superfamily protein |
A11 | Potri.016G091200.1 | AT5G03290.1 | 0.89 | Rapid growth, big leaves | ISOCITRATE DEHYDROGENASE V (ATIDHV) |
A4 | Potri.012G047200.1 | AT1G73590.1 | 0.823 | Slender petioles | PIN-FORMED 1 (ATPIN1) |
A1 | Potri.017G153500.1 | AT1G17860.1 | 0.665 | Slender petioles, dwarf | THALIANA KUNITZ TRYPSIN INHIBITOR 5 (ATKTI5) |
A2 | Potri.001G162800.1 | AT1G17290.1 | 0.841 | Slender petioles, small leaves | ALANINE AMINOTRANSFERASE (ATAlaAT1) |
A12 | Potri.019G054600.1 | AT1G24706.2 | 0.742 | Slender petioles | THO/TREX complex |
A7 | Potri.016G084800.1 | AT3G09640.1 | 0.86 | Small leaves, more branches | ASCORBATE PEROXIDASE 2 (ATAPX2) |
N21 | Potri.004G177500.1 | AT4G38510.4 | 0.98 | Small leaves, more branches | V-ATPASE B SUBUNIT 2 (ATVAB2) |
A3 | Potri.009G042400.1 | AT3G54140.1 | 0.833 | Small leaves, more branches | PEPTIDE TRANSPORTER 1 (ATPTR1) |
A6 | Potri.005G242500.1 | AT5G42150.1 | 0.775 | Small leaves | Glutathione S-transferase family protein |
A10 | Potri.009G133000.1 | AT4G38630.1 | 0.617 | Small leaves | MULTIUBIQUITIN-CHAIN-BINDING PROTEIN 1 (ATMCB1) |
N23 | Potri.008G056300.1 | AT3G55440.1 | 0.744 | Fewer cauline leaves | CYTOSOLIC TRIOSE PHOSPHATE ISOMERASE (ATCTIMC) |
N18 | Potri.015G029000.1 | AT1G48410.1 | 0.915 | Serrated leaves, delayed flowering, malformed siliques | ARGONAUTE 1 (ATAGO1) |
N94 | Potri.002G015100.1 | AT3G03190.1 | 0.642 | Small leaves, thin stem | GLUTATHIONE S-TRANSFERASE F11 (ATGSTF11) |
N96 | Potri.001G413500.1 | AT2G31670.1 | 0.649 | Thin stem | Stress responsive alpha-beta barrel domain protein. |
N73 | Potri.004G015300.1 | AT4G21960.1 | 0.843 | Stiffer stem | Peroxidase superfamily protein |
A9 | Potri.008G161200.1 | AT4G14550.1 | 0.756 | Thicker stem | INDOLE-3-ACETIC ACID INDUCIBLE 14 (ATIAA14) |
N8 | Potri.005G146800.1 | AT5G67500.1 | 0.83 | Lodging | VOLTAGE DEPENDENT ANION CHANNEL 2 (ATVDAC2) |
A14 | Potri.004G081700.1 | AT1G27190.1 | 0.819 | Seed abortion | BAK1-INTERACTING RECEPTOR-LIKE KINASE 3 (ATBIR3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, L.; Li, Z.; Song, Q.; Li, X.; Luo, K. Construction of a Full-Length cDNA Over-Expressing Library to Identify Valuable Genes from Populus tomentosa. Int. J. Mol. Sci. 2021, 22, 3448. https://doi.org/10.3390/ijms22073448
Kong L, Li Z, Song Q, Li X, Luo K. Construction of a Full-Length cDNA Over-Expressing Library to Identify Valuable Genes from Populus tomentosa. International Journal of Molecular Sciences. 2021; 22(7):3448. https://doi.org/10.3390/ijms22073448
Chicago/Turabian StyleKong, Lingfei, Zeyu Li, Qin Song, Xiaohong Li, and Keming Luo. 2021. "Construction of a Full-Length cDNA Over-Expressing Library to Identify Valuable Genes from Populus tomentosa" International Journal of Molecular Sciences 22, no. 7: 3448. https://doi.org/10.3390/ijms22073448
APA StyleKong, L., Li, Z., Song, Q., Li, X., & Luo, K. (2021). Construction of a Full-Length cDNA Over-Expressing Library to Identify Valuable Genes from Populus tomentosa. International Journal of Molecular Sciences, 22(7), 3448. https://doi.org/10.3390/ijms22073448