Adsorption of REEs from Aqueous Solution by EDTA-Chitosan Modified with Zeolite Imidazole Framework (ZIF-8)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Material Characterization
2.1.1. XRD Patterns
2.1.2. FT-IR Spectra
2.1.3. SEM Micrographs
2.1.4. BET Surface Area, Pore-Size, and Pore-Volume Analysis
2.2. Evaluation of REE Adsorption Performance
2.2.1. Effect of Adsorbent Dosage
2.2.2. Effect of Temperature
2.2.3. Effect of Initial pH
2.2.4. Effect of Adsorption Time
2.2.5. Effect of Competitive Ions
2.3. Adsorption Kinetics Study
2.4. Adsorption Isotherm Study
2.5. Comparison of Maximal Adsorption Capacity and Partition Coefficient with Other Adsorbents in Previous Studies
2.6. EDTA–CS@ZIF-8 Recyclability
2.7. Adsorption Mechanism
3. Materials and Methods
3.1. Adsorbent Synthesis
3.2. Adsorbent Characterization
3.3. Adsorption Experiments
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holland, M. Reducing the health risks of the copper, rare earth and cobalt industries: Transition to a circular low-carbon economy. In OECD Green Growth Paper; Organization for Economic Co-Operation and Development: Paris, France, 2020. [Google Scholar] [CrossRef]
- Li, Q.; Zhong, H.; Cao, Y. Effective extraction and recovery of rare earth elements (REEs) in contaminated soils using a reusable biosurfactant. Chemosphere 2020, 256, 127070. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Wang, X.; Romero, C.; Chen, H.; Yao, Z.; Kaziunas, A.; Schlake, R.; Anand, M.; Lowe, T.; Driscoll, G.; et al. Extraction of selected rare earth elements from anthracite acid mine drainage using supercritical CO2 via coagulation and complexation. J. Rare Earths 2021, 1, 83–89. [Google Scholar] [CrossRef]
- Judge, W.D.; Azimi, G. Recent progress in impurity removal during rare earth element processing: A review. Hydrometallurgy 2020, 196, 105435. [Google Scholar] [CrossRef]
- Kosheleva, A.; Atamaniuk, I.; Politaeva, N.; Kuchta, K. Adsorption of rare earth elements using biobased sorbents. MATEC Web Conf. 2018, 245, 18001. [Google Scholar] [CrossRef]
- Zhao, L.; Duan, X.; Azhar, M.; Sun, H.; Fang, X.; Wang, S. Selective adsorption of rare earth ions from aqueous solution on metal-organic framework HKUST-1. Chem. Eng. J. Adv. 2020, 1, 100009. [Google Scholar] [CrossRef]
- Han, K.N. Characteristics of Precipitation of Rare Earth Elements with Various Precipitants. Minerals 2020, 10, 178. [Google Scholar] [CrossRef] [Green Version]
- Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 4, 1285–1303. [Google Scholar] [CrossRef]
- Pereao, O.; Bode-Aluko, C.; Fatoba, O.; Petrik, L.; Laatikainen, K. Rare earth elements removal techniques from water/wastewater: A review. Desalination Water Treat. 2018, 130, 71–86. [Google Scholar] [CrossRef] [Green Version]
- Sulaymon, A. Biosorption of Heavy Metals: A Review. J. Chem. Sci. Technol. 2014, 3, 74–102. [Google Scholar]
- De Microbiología, L.; de Ciencias, F.; da Coruña, U.; de Zapateira, C. Biosorption: A Review of the Latest Advances. Appl. Biosorption Wastewater Treat. 2020, 8, 1584. [Google Scholar]
- Bhattacharjee, C.; Dutta, S.; Saxena, V.K. A review on biosorptive removal of dyes and heavy metals from wastewater using watermelon rind as biosorbent. Environ. Adv. 2020, 2, 100007. [Google Scholar] [CrossRef]
- Saleem, J.; Shahid, U.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Conv. Bioref. 2019, 9, 775–802. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Shi, C.; Pan, L.; Zhang, X.; Zou, J.J. Rational design, synthesis, adsorption principles and applications of metal oxide adsorbents: A review. Nanoscale 2020, 12, 4790–4815. [Google Scholar] [CrossRef]
- Gomez-Maldonado, D.; Vega Erramuspe, I.B.; Peresin, M.S. Natural polymers as alternative adsorbents and treatment agents for water remediation. BioResources 2019, 14, 10093–10160. [Google Scholar]
- Manyangadze, M.; Chikuruwo, N.H.M.; Narsaiah, T.B.; Chakra, C.S.; Radhakumari, M.; Danha, G. Enhancing adsorption capacity of nano-adsorbents via surface modification: A review. South Afr. J. Chem. Eng. 2020, 31, 25–32. [Google Scholar] [CrossRef]
- Shahraki, S.; Delarami, H.S.; Khosravi, F.; Nejat, R. Improving the adsorption potential of chitosan for heavy metal ions using aromatic ring-rich derivatives. J. Colloid Interface Sci. 2020, 576, 79–89. [Google Scholar] [CrossRef]
- Fathy, M.; Selim, H.; Shahawy, A.E.L. Chitosan/MCM-48 nanocomposite as a potential adsorbent for removing phenol from aqueous solution. RSC Adv. 2020, 10, 23417–23430. [Google Scholar] [CrossRef]
- Wang, X.; Lin, Q.; Pan, H.; Jia, S.; Wu, H.; Shi, Y.; Wang, Z. Oxidation modification of chitosan-based mesoporous carbon by soft template method and the adsorption and release properties of hydroxycamptothecin. Sci. Rep. 2020, 10, 15772. [Google Scholar] [CrossRef] [PubMed]
- Ahamad, T.; Naushad, M.; Al-Shahrani, T.; Al-Hokbany, N.; Alshehri, S.M. Preparation of chitosan based magnetic nanocomposite for tetracycline adsorption: Kinetic and thermodynamic studies. Int. J. Biol. Macromol. 2020, 147, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Joudi, M.; Nasserlah, H.; Hafdi, H.; Mouldar, J.; Hatlml, B.; El Mhammedl, M.A.; Bakasse, M. Synthesis of an efficient hydroxyapatite–chitosan–montmorillonite thin film for the adsorption of anionic and cationic dyes: Adsorption isotherm, kinetic and thermodynamic study. SN Appl. Sci. 2020, 2, 1078. [Google Scholar] [CrossRef]
- Meng, J.; Liu, X.; Niu, C.; Pang, Q.; Li, J.; Liu, F.; Liu, Z.; Mai, L. Advances in metal–organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186. [Google Scholar] [CrossRef]
- Darshika, K.J.A.W.; Gao, J.; Liu, B. Metal organic frameworks for adsorption-based separation of fluorocompounds: A review. Mater. Adv. 2020, 1, 310–320. [Google Scholar]
- Li, H.; Zhao, S.; Zang, S.; Li, J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem. Soc. Rev. 2020, 49, 6364–6401. [Google Scholar] [CrossRef]
- Alhumaimess, M.S. Metal–organic frameworks and their catalytic applications. J. Saudi Chem. Soc. 2020, 6, 461–473. [Google Scholar] [CrossRef]
- Cai, M.; Chen, G.; Qin, L.; Qu, C.; Dong, X.; Ni, J.; Yin, X. Metal Organic Frameworks as Drug Targeting Delivery Vehicles in the Treatment of Cancer. Pharmaceutics 2020, 12, 232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kobielska, P.; Howarth, A.; Farha, O.; Nayak, S. Metal-organic frameworks for heavy metal removal from water. Coord. Chem. Rev. 2018, 358, 92–107. [Google Scholar] [CrossRef]
- Ha, B.; Cheng, G.; Zhang, E.; Zhang, L.; Wang, X. Three dimensional hierarchically porous ZIF-8 derived carbon/LDH core-shell composite for high performance supercapacitors. Electrochim. Acta. 2018, 263, 391–399. [Google Scholar]
- Jyh Jiunn, B.; Ng, E.; Seng, O. Synthesis and size control of zeolitic imidazolate framework-8 (ZIF-8): From the perspective of reaction kinetics and thermodynamics of nucleation. Mater. Chem. Phys. 2018, 216, 393–401. [Google Scholar]
- Shahrak, M.N.; Ghahramaninezhad, M.; Eydifarash, M. Zeolitic imidazolate framework-8 for efficient adsorption and removal of Cr(VI) ions from aqueous solution. Environ. Sci. Pollut. Res. 2017, 24, 9624–9634. [Google Scholar] [CrossRef]
- Liu, L.; Yang, W.; Gu, D.; Zhao, X.; Pan, Q. In situ Preparation of Chitosan/ZIF-8 Composite Beads for Highly Efficient Removal of U(VI). Front. Chem. 2019, 7, 607. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 11. [Google Scholar] [CrossRef]
- Edet, U.A.; Ifelebuegu, A.O. Kinetics, Isotherms, and Thermodynamic Modeling of the Adsorption of Phosphates from Model Wastewater Using Recycled Brick Waste. Processes 2020, 8, 665. [Google Scholar] [CrossRef]
- Dolatyari, L.; Yaftian, M.R.; Rostamnia, S. Adsorption characteristics of Eu(III) and Th(IV) ions onto modified mesoporous silica SBA-15 materials. J. Taiwan Inst. Chem. Eng. 2016, 60, 174–184. [Google Scholar] [CrossRef]
- Anah, L.; Astrini, N. Influence of pH on Cr(VI) ions removal from aqueous solutions using carboxymethyl cellulosebased hydrogel as adsorbent. IOP Conf. Ser. Earth Environ. Sci. 2017, 60, 012010. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Zhang, S.; Zhao, K.; Wang, Z.; Xu, S.; Liang, Z.; Wu, K. Adsorption of La3+ and Ce3+ by poly-γ-glutamic acid crosslinked with polyvinyl alcohol. J. Rare Earths 2015, 8, 884–891. [Google Scholar] [CrossRef]
- Rahmati, M.M.; Rabbani, P.; Abdolali, A.; Keshtkar, A.R. Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. J. Hazard. Mater. 2011, 185, 401–407. [Google Scholar] [CrossRef] [PubMed]
- Pillai, S.S.; Mullassery, M.D.; Fernandez, N.B.; Girija, N.; Geetha, P.; Koshy, M. Biosorption of Cr(VI) from aqueous solution by chemically modified potato starch: Equilibrium and kinetic studies. Ecotoxicol. Environ. Saf. 2013, 92, 199–205. [Google Scholar] [CrossRef]
- Mahmoodi, N.M.; Hayati, B.; Bahrami, H.; Arami, M. Dye adsorption and desorption properties of Mentha pulegium in single and binary systems. J. Appl. Polym. Sci. 2011, 122, 1489–1499. [Google Scholar] [CrossRef]
- Mourabet, M.; el Boujaady, H.; el Rhilassi, A.; Ramdane, H.; Bennani-Ziatni, M.; el Hamri, R.; Taitai, A. Defluoridation of water using Brushite: Equilibrium, kinetic and thermodynamic studies. Desalination 2011, 1–3, 1–9. [Google Scholar] [CrossRef]
- Liu, L.; Luo, X.-B.; Ding, L.; Luo, S.-L. 4-Application of Nanotechnology in the Removal of Heavy Metal from Water. Nanomater. Remov. Pollut. Resour. Reutil. 2019, 83–147. [Google Scholar] [CrossRef]
- Na, C.J.; Yoo, M.J.; Tsang, D.C.W.; Kim, H.W.; Kim, K.H. High-performance materials for effective sorptive removal of formaldehyde in air. J. Hazard. Mater. 2019, 366, 452–465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Kano, N.; Mishima, K.; Okawa, H. Adsorption and Desorption Mechanisms of Rare Earth Elements (REEs) by Layered Double Hydroxide (LDH) Modified with Chelating Agents. Appl. Sci. 2019, 9, 4805. [Google Scholar] [CrossRef] [Green Version]
- Du, X.; Kishima, C.; Zhang, H.; Miyamoto, N.; Kano, N. Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS). Appl. Sci. 2020, 10, 4745. [Google Scholar] [CrossRef]
- Kano, N.; Pang, M.L.; Deng, Y.L.; Imaizumi, H. Adsorption of Rare Earth Elements (REEs) onto activated carbon modified with Potassium Permanganate (KMnO4). J. Appl. Solut. Chem. Model. 2017, 6, 51–61. [Google Scholar] [CrossRef]
- Lee, Y.-R.; Yu, K.; Ravi, S.; Ahn, W.-S. Selective Adsorption of Rare Earth Elements over Functionalized Cr-MIL-101. ACS Appl. Mater. Interfaces 2018, 10, 23918–23927. [Google Scholar] [CrossRef]
- Galhoum, A.A.; Mafhouz, M.G.; Abdel-Rehem, S.T.; Gomaa, N.A.; Atia, A.A.; Vincent, T.; Guibal, E. Cysteine-functionalized chitosan magnetic nano-based particles for the recovery of light and heavy rare earth metals: Uptake kinetics and sorption isotherms. Nanomaterials 2015, 5, 154–179. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, N.; Kano, N.; Wang, Y.; Gao, L.D.; Imaizumi, H. Biosorption of Lanthanides using three kinds of seaweed biomasses. Radioisotopes 2010, 59, 623–636. [Google Scholar] [CrossRef] [Green Version]
- AbdelMagied, A.F.; Abdelhamid, H.N.; Ashour, R.M.; Zou, X.; Forsberg, K. Hierarchical porous zeolitic imidazolate frameworks nanoparticles for efficient adsorption of rare-earth elements. Micropor. Mesopor. Mater. 2019, 278, 175–184. [Google Scholar] [CrossRef]
- Li, J.; Gong, A.; Li, F.; Qiu, L.; Zhang, W.; Gao, G.; Liu, Y.; Li, J. Synthesis and characterization of magnetic mesoporous Fe3O4@mSiO2–DODGA nanoparticles for adsorption of 16 rare earth elements. RCS Adv. 2018, 8, 39149–39161. [Google Scholar] [CrossRef] [Green Version]
- Iftekhar, S.; Srivastava, V.; Casas, A.; Sillanpää, M. Synthesis of novel GA-g-PAM/SiO2 nanocomposite for the recovery of rare earth elements (REE) ions from aqueous solution. J. Clean. Prod. 2018, 170, 251–259. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Hua, W.; Shen, L.; Yu, X.; Wang, X. Electrospun poly(acrylic acid)/silica hydrogel nanofibers scaffold for highly efficient adsorption of lanthanide ions and its photoluminescence performance. ACS Appl. Mater. Interfaces 2016, 8, 23995–24007. [Google Scholar] [CrossRef]
- Iftekhar, S.; Srivastava, V.; Hammouda, S.B.; Sillanpää, M. Fabrication of novel metal ion imprinted xanthan gum-layered double hydroxide nanocomposite for adsorption of rare earth elements. Carbohydr. Polym. 2018, 194, 274–284. [Google Scholar] [CrossRef] [PubMed]
- Gerente, C.; Lee, V.K.C.; le Cloirec, P.; Mckay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption-Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 41–127. [Google Scholar] [CrossRef]
- Wang, Y.; Dai, X.; Zhan, Y.; Ding, X.; Wang, M.; Wang, X. In situ growth of ZIF-8 nanoparticles on chitosan to form the hybrid nanocomposites for high-efficiency removal of Congo Red. Int. J. Biol. Macromol. 2019, 137, 77–86. [Google Scholar] [CrossRef] [PubMed]
Sample | BET Surface Area (m2·g−1) | Pore Volume (cm3·g−1) | Pore Size (nm) |
---|---|---|---|
ZIF-8 | 1052 | 0.6360 | 2.416 |
CS | 0.3429 | 0.001207 | 14.08 |
EDTA–CS@ZIF-8 | 29.314 | 0.01704 | 2.325 |
Scheme | qexp (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
qe (mg·g−1) | k1 (h−1) | R2 | qe (mg·g−1) | k2 (g·mg−1·h−1) | R2 | ||
La(III) | 5.954 | 0.9117 | 0.1143 | 0.9973 | 5.920 | 0.4075 | 0.9996 |
Eu(III) | 6.556 | 0.2720 | 0.1848 | 0.9975 | 6.570 | 2.068 | 1.000 |
Yb(III) | 6.238 | 0.3131 | 0.06310 | 0.9666 | 6.258 | 0.9746 | 0.9998 |
Sample | Langmuir Isotherm | Freundich Isotherm | Dubinin–Radushkevich Isotherm | ||||||
---|---|---|---|---|---|---|---|---|---|
qmax (mg·g−1) | KL (L·mg−1) | R2 | KF ((mg·g−1)·(dm−3·mg−1)1/n) | 1/n | R2 | q0 (mmol·g−1) | E (kJ·mol−1) | R2 | |
La(III) | 256.4 | 1.440 | 0.9982 | 103.7 | 0.4186 | 0.9720 | 8.614 | 13.61 | 0.9866 |
Eu(III) | 270.3 | 1.420 | 0.9841 | 110.1 | 0.3715 | 0.9448 | 10.15 | 12.91 | 0.9881 |
Yb(III) | 294.1 | 1.210 | 0.9881 | 115.8 | 0.4706 | 0.9873 | 11.89 | 12.50 | 0.9810 |
Sample | Adsorbent | Final Concentration (mg·L−1) | qmax (mg·g−1) | Partition Coefficient (mg·g−1·mM−1) | Ref. |
---|---|---|---|---|---|
La(III) | Activated carbon | 5.27 × 10−2 | 7.100 × 10−2 | 1.347 | [45] |
Cr-MIL−101-PMIDA | 115 | 37.4 | 0.3252 | [46] | |
Fe3O4/chitosan(Cys) NC | 1 | 17 | 17 | [47] | |
Sargassum hemiphyllum | 3.51 × 10−2 | 9.73 × 10−2 | 2.772 | [48] | |
ZIF-8 NPs | 6.36 | 28.8 | 4.528 | [49] | |
EDTA-CS@ZIF-8 | 8.937 | 256.4 | 28.69 | This study | |
Eu(III) | Activated carbon | 0.0612 | 9.720 × 10−2 | 1.588 | [45] |
Fe3O4@mSiO2-DODGA NPs | 2 | 36.86 | 18.43 | [50] | |
Sargassum hemiphyllum | 2.07 × 10−2 | 0.119 | 5.749 | [48] | |
SiO2/GA-g-PAM NC | 2.5 | 10.11 | 4.004 | [51] | |
SiO2/PAA NC | 15 | 268.8 | 17.92 | [52] | |
EDTA-CS@ZIF-8 | 7.007 | 270.3 | 38.53 | This study | |
Yb(III) | Fe3O4/chitosan(Cys) NC | 1 | 18.4 | 18.4 | [47] |
Fe3O4@mSiO2-DODGA NPs | 0.4 | 34.36 | 85.9 | [50] | |
Zr/XG-Zn-Al NC | 8.25 | 25.73 | 3.119 | [53] | |
EDTA-CS@ZIF-8 | 5.459 | 294.1 | 53.87 | This study |
Name Atomic% | Before Adsorption | After Adsorption |
---|---|---|
C1s | 61.96 | 59.05 |
N1s | 23.04 | 18.49 |
O1s | 9.24 | 14.2 |
Zn2p3 | 5.75 | 5.34 |
Eu3d5 | - | 1.02 |
Parameters | Conditions |
---|---|
Rf frequency | 27.12 MHz |
Incident power | 1.3 kW |
Outer gas | 17 dm3Ar min−1 |
Intermediate gas | 0.55 dm3Ar min−1 |
Carrier gas | 0.58 dm3Ar min−1 |
Observation height/mm | 10.3 mm above work coil |
Integration time | 3 s |
Detection wavelength/nm | 379.48 (La(III)) 381.97 (Eu (III)) 328.94 (Yb (III)) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, S.; Du, X.; Bat-Amgalan, M.; Zhang, H.; Miyamoto, N.; Kano, N. Adsorption of REEs from Aqueous Solution by EDTA-Chitosan Modified with Zeolite Imidazole Framework (ZIF-8). Int. J. Mol. Sci. 2021, 22, 3447. https://doi.org/10.3390/ijms22073447
Feng S, Du X, Bat-Amgalan M, Zhang H, Miyamoto N, Kano N. Adsorption of REEs from Aqueous Solution by EDTA-Chitosan Modified with Zeolite Imidazole Framework (ZIF-8). International Journal of Molecular Sciences. 2021; 22(7):3447. https://doi.org/10.3390/ijms22073447
Chicago/Turabian StyleFeng, Sihan, Xiaoyu Du, Munkhpurev Bat-Amgalan, Haixin Zhang, Naoto Miyamoto, and Naoki Kano. 2021. "Adsorption of REEs from Aqueous Solution by EDTA-Chitosan Modified with Zeolite Imidazole Framework (ZIF-8)" International Journal of Molecular Sciences 22, no. 7: 3447. https://doi.org/10.3390/ijms22073447
APA StyleFeng, S., Du, X., Bat-Amgalan, M., Zhang, H., Miyamoto, N., & Kano, N. (2021). Adsorption of REEs from Aqueous Solution by EDTA-Chitosan Modified with Zeolite Imidazole Framework (ZIF-8). International Journal of Molecular Sciences, 22(7), 3447. https://doi.org/10.3390/ijms22073447