Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles
Abstract
:1. Introduction
- (a)
- in the blood, by reduced hemoglobin and hematocrit, increased proportions of reticulocytes, elevated thrombocytes and thrombocrit, fewer SH–groups (sulfhydryl groups); and,
- (b)
- in the urine, by elevated excretion of the δ-aminolevulinic acid (δ–ALA).
2. Results
2.1. Systemic Toxic Effects of Nanoparticles
2.2. Gel Electrophoresis of Rat Myocardium
2.3. The Contractility of Myocardial Preparations
2.3.1. The Effect of Muscle Length on the Characteristics of Isometric Tension in Isolated Ventricular Trabeculae and Papillary Muscles
2.3.2. Physiological Mode of Loading Sequence Simulating Cardiac Cycle Phases
Force–Velocity Relationship of Isolated Trabeculae and Papillary Muscles and In Vitro Motility Assay of Isolated Contractile Proteins
Work Production
2.3.3. Post–Rest Potentiation of Contractility
2.4. Combined Cardiotoxicity of PbO–NP and CdO–NP
2.5. BPC Administration
3. Discussion
4. Materials and Methods
4.1. Method of Preparation and Physical and Chemical Characteristics of Lead Oxide (PbO) and Cadmium Oxide (CdO) Nanoparticles
4.2. Experimental Animals
4.3. Random Amplification of Polymorphic DNA (RAPD) Test
4.4. Histopathology and Morphometry
4.5. Determination of α– and β–Cardiac Myosin Heavy Chain (MHC) Ratio
4.6. In Vitro Motility Assay for Assessment of Mechanical Characteristics of Actin–Myosin Interaction
4.7. Measurement of the Contractile Response of Isolated Myocardial Preparations
4.8. Mathematical Processing and Analysis
5. Conclusions
- The moderate multi-organ toxic effects of the subchronic exposure of male rats to CdO–NP and/or PbO–NP have been demonstrated by a number of hematological, biochemical, and histological indices. Many of these effects are similar to those revealed previously for intoxications with Cd and/or Pb soluble salts, while some effects seem to be rather specific to the nano-particulate state as such.
- We are the first to have obtained phenomenological data for the influence of CdO–NP and/or PbO–NP exposure on the mechanical activity parameters of isolated ventricular trabeculae and papillary muscles, and for the sliding velocity of isolated myofilaments in an in vitro motility assay. It is shown that the sliding velocity falls under exposure to CdO–NP and PbO–NP, both alone and in combination, which is explained by a shift in the expression of myosin heavy chain isoforms towards slower cycling β–MHC.
- The stability of the tension–length and force–velocity slopes in isolated cardiac muscles from intoxicated rats confirms that under moderate subchronic intoxication with CdO–NP and/or PbO–NP, the heterometric regulation of myocardial contractility is preserved.
- The toxic impact of metal NPs also manifested itself in decreased mechanical work produced by isolated muscle preparations after the exposure of rats to CdO–NP and PbO–NP, which was more pronounced under their combined action.
- The type of combined CdO–NP and PbO–NP cardiotoxicity, if modeled with the help of the Response Surface Methodology, appears to be variable depending on a number of factors, in particular on whether it is examined in trabeculae or papillary muscles.
- Some characteristics of rat myocardium altered by the impact of CdO–NP and PbO–NP intoxication were fully or partially normalized if intoxication developed against background administration of the proposed bioprotective complex (BPC).
- We believe that this sum of knowledge strengthens the scientific foundations of risk assessment and risk management projects in occupational and environmental settings characterized by human exposure to lead and/or cadmium nanoparticles and may be clinically relevant too.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Protsenko, Y.L.; Katsnelson, B.A.; Klinova, S.V.; Lookin, O.N.; Balakin, A.A.; Nikitina, L.V.; Gerzen, O.P.; Minigalieva, I.A.; Privalova, L.I.; Gurvich, V.B.; et al. Effects of subchronic lead intoxication of rats on the myocardium contractility. Food Chem. Toxicol. 2018, 120, 378–389. [Google Scholar] [CrossRef] [PubMed]
- Protsenko, Y.L.; Katsnelson, B.A.; Klinova, S.V.; Lookin, O.N.; Balakin, A.A.; Nikitina, L.V.; Gerzen, O.P.; Nabiev, S.R.; Minigalieva, I.A.; Privalova, L.I.; et al. Further analysis of rat myocardium contractility changes associated with a subchronic lead intoxication. Food Chem. Toxicol. 2019, 125, 233–241. [Google Scholar] [CrossRef]
- Protsenko, Y.L.; Klinova, S.V.; Gerzen, O.P.; Privalova, L.I.; Minigalieva, I.A.; Balakin, A.A.; Lookin, O.N.; Lisin, R.V.; Butova, K.A.; Nabiev, S.R.; et al. Changes in rat myocardium contractility under subchronic intoxication with lead and cadmium salts administered alone or in combination. Toxicol. Rep. 2020, 7, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Katsnelson, B.A.; Klinova, S.V.; Gerzen, O.P.; Balakin, A.A.; Lookin, O.N.; Lisin, R.V.; Nabiev, S.R.; Privalova, L.I.; Minigalieva, I.A.; Panov, V.G.; et al. Force-velocity characteristics of isolated myocardium preparations from rats exposed to subchronic intoxication with lead and cadmium acting separately or in combination. Food Chem. Toxicol. 2020, 144, 111641. [Google Scholar] [CrossRef] [PubMed]
- Ghugal, S.G.; Umare, S.S.; Sasikala, R. A stable, efficient and reusable CdS–SnO2 heterostructured photocatalyst for the mineralization of Acid Violet 7 dye. Appl. Catal. A Gen. 2015, 496, 25–31. [Google Scholar] [CrossRef]
- Kokane, S.B.; Sartale, S.; Girija, K.; Jagannath; Sasikala, R. Photocatalytic performance of Pd decorated TiO2–CdO composite: Role of in situ formed CdS in the photocatalytic activity. Int. J. Hydrog. Energy 2015, 40, 13431–13442. [Google Scholar] [CrossRef]
- Majeed, I.; Nadeem, M.A.; Al-Oufi, M.; Nadeem, M.A.; Waterhouse, G.I.N.; Badshah, A.; Metson, J.B.; Idriss, H. On the role of metal particle size and surface coverage for photo-catalytic hydrogen production: A case study of the Au/CdS system. Appl. Catal. B Environ. 2016, 182, 266–276. [Google Scholar] [CrossRef]
- Bentolila, L.A.; Michalet, X.; Pinaud, F.F.; Tsay, J.M.; Doose, S.; Li, J.J.; Sundaresan, G.; Wu, A.M.; Gambhir, S.S.; Weiss, S. Quantum dots for molecular imaging and cancer medicine. Discov. Med. 2005, 5, 213–218. [Google Scholar]
- Katsnelson, B.A.; Privalova, L.I.; Sutunkova, M.P.; Minigalieva, I.A.; Gurvich, V.B.; Shur, V.Y.; Shishkina, E.V.; Makeyev, O.H.; Valamina, I.E.; Varaksin, A.N.; et al. Chapter 11: Experimental Research into Metallic and Metal Oxide Nanoparticle Toxicity In Vivo. In Bioengineering Applications of Carbon Nanostructures; Yan, B., Zhou, H., Gardea-Torresdey, J., Eds.; Springer: Singapore, 2017; Volume 11, pp. 259–319. [Google Scholar]
- Kopp, S.J.; Perry, H.M., Jr.; Glonek, T.; Erlanger, M.; Perry, E.F.; Barany, M.; D’Agrosa, L.S. Cardiac physiologic-metabolic changes after chronic low-level heavy metal feeding. Am. J. Physiol. Circ. Physiol. 1980, 239, H22–H30. [Google Scholar] [CrossRef]
- Chao, S.H.; Suzuki, Y.; Zysk, J.R.; Cheung, W.Y. Activation of calmodulin by various metal cations as a function of ionic radius. Mol. Pharmacol. 1984, 26, 75–82. [Google Scholar]
- Chao, S.H.; Bu, C.-H.; Cheung, W.Y. Activation of troponin C by Cd2+ and Pb2+. Arch. Toxicol. 1990, 64, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Carmignani, M.; Volpe, A.R.; Boscolo, P.; Qiao, N.; Di Gioacchino, M.; Grilli, A.; Felaco, M. Catcholamine and nitric oxide systems as targets of chronic lead exposure in inducing selective functional impairment. Life Sci. 2000, 68, 401–415. [Google Scholar] [CrossRef]
- Eum, K.-D.; Lee, M.-S.; Paek, D. Cadmium in blood and hypertension. Sci. Total. Environ. 2008, 407, 147–153. [Google Scholar] [CrossRef]
- Vassallo, D.V.; Lebarch, E.C.; Moreira, C.M.; Wiggers, G.A.; Stefanon, I. Lead reduces tension development and the myosin ATPase activity of the rat right ventricular myocardium. Braz. J. Med. Biol. Res. 2008, 41, 789–795. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, I.M.; Buyukakilli, B.; Ballı, E.; Çimen, B.; Gunes, S.; Erdogan, S. Determination of acute and chronic effects of cadmium on the cardiovascular system of rats. Toxicol. Mech. Methods 2009, 19, 308–317. [Google Scholar] [CrossRef]
- Gallagher, C.M.; Meliker, J.R. Blood and urine cadmium, blood pressure, and hypertension: A systematic review and meta-analysis. Environ. Health Perspect. 2010, 118, 1676–1684. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.L.; Perlstein, T.S.; Perry, M.J.; McNeely, E.; Weuve, J. Cadmium exposure in association with history of stroke and heart failure. Environ. Res. 2010, 110, 199–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simões, M.R.; Ribeiro Júnior, R.F.; Vescovi, M.V.A.; De Jesus, H.C.; Padilha, A.S.; Stefanon, I.; Vassallo, D.V.; Salaices, M.; Fioresi, M. Acute Lead Exposure Increases Arterial Pressure: Role of the Renin-Angiotensin System. PLoS ONE 2011, 6, e18730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caciari, T.; Sancini, A.; Fioravanti, M.; Capozzella, A.; Casale, T.; Montuori, L.; Fiaschetti, M.; Schifano, M.P.; Andreozzi, G.; Nardone, N. Cadmium and hypertension in exposed workers: A meta-analysis. Int. J. Occup. Med. Environ. Health 2013, 26, 440–456. [Google Scholar] [CrossRef]
- Fioresi, M.; Simões, M.R.; Furieri, L.B.; Broseghini-Filho, G.B.; Vescovi, M.V.A.; Stefanon, I.; Vassallo, D.V. Chronic Lead Exposure Increases Blood Pressure and Myocardial Contractility in Rats. PLoS ONE 2014, 9, e96900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tellez–Plaza, M.; Jones, M.R.; Dominguez–Lucas, A.; Guallar, E.; Navas-Acien, A. Cadmium exposure and clinical cardiovascular disease: A systematic review. Curr. Atheroscler. Rep. 2013, 15, 356. [Google Scholar] [CrossRef]
- Silveira, E.A.; Siman, F.D.M.; Faria, T.d.O.; Vescovi, M.V.A.; Furieri, L.B.; Lizardo, J.H.F.; Stefanon, I.; Padilha, A.S.; Vassallo, D.V. Low-dose chronic lead exposure increases systolic arterial pressure and vascular reactivity of rat aortas. Free. Radic. Biol. Med. 2014, 67, 366–376. [Google Scholar] [CrossRef]
- Borné, Y.; Barregard, L.; Persson, M.; Hedblad, B.; Fagerberg, B.; Engström, G. Cadmium exposure and incidence of heart failure and atrial fibrillation: A population-based prospective cohort study. BMJ Open 2015, 5, e007366. [Google Scholar] [CrossRef]
- Silva, M.A.S.C.; De Oliveira, T.F.; Almenara, C.C.P.; Broseghini-Filho, G.B.; Vassallo, D.V.; Padilha, A.S.; Silveira, E.A. Exposure to a Low Lead Concentration Impairs Contractile Machinery in Rat Cardiac Muscle. Biol. Trace Elem. Res. 2015, 167, 280–287. [Google Scholar] [CrossRef] [PubMed]
- Larsson, S.C.; Wolk, A. Urinary cadmium and mortality from all causes, cancer and cardiovascular disease in the general population: Systematic review and meta-analysis of cohort studies. Int. J. Epidemiol. 2016, 45, 782–791. [Google Scholar] [CrossRef] [Green Version]
- Sutunkova, M.P.; Minigalieva, I.A.; Klinova, S.V.; Panov, V.G.; Gurvich, V.B.; Privalova, L.I.; Sakhautdinova, R.R.; Shur, V.Y.; Shishkina, E.V.; Shtin, T.N.; et al. Some data on the comparative and combined toxic activity of nanoparticles containing lead and cadmium with special attention to their vasotoxicity. Nanotoxicology 2021, 15, 205–222. [Google Scholar] [CrossRef]
- Klinova, S.V.; Minigalieva, I.A.; Privalova, L.I.; Valamina, I.E.; Makeyev, O.H.; Shuman, E.A.; Korotkov, A.A.; Panov, V.G.; Sutunkova, M.P.; Ryabova, J.V.; et al. Further verification of some postulates of the combined toxicity theory: New animal experimental data on separate and joint adverse effects of lead and cadmium. Food Chem. Toxicol. 2020, 136, 110971. [Google Scholar] [CrossRef] [PubMed]
- Bocalini, D.S.; dos Santos, L.; Antonio, E.L.; Santos, A.A.; Davel, A.P.; Rossoni, L.V.; Vassalo, D.V.; Tucci, P.J. Myocardial remodeling after large infarcts in rat converts post rest–potentiation in force decay. Arq. Bras. Cardiol. 2012, 98, 243–251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravens, U.; Link, S.; Gath, J.; Noble, M.I.M. Post-Rest Potentiation and its Decay after Inotropic Interventions in Isolated Rat Heart Muscle. Pharmacol. Toxicol. 1995, 76, 9–16. [Google Scholar] [CrossRef] [PubMed]
- IPCS Inchem. International Programme on Chemical Safety; Environmental Health Criteria 134—Cadmium; World Health Organization: Geneva, Switzerland, 1992; Available online: http://www.inchem.org/documents/ehc/ehc/ehc134.htm (accessed on 30 December 2020).
- IPCS Inchem. International Programme on Chemical Safety; Environmental Health Criteria 165—Inorganic Lead; World Health Organization: Geneva, Switzerland, 1995; Available online: http://www.inchem.org/documents/ehc/ehc/ehc165.htm (accessed on 30 December 2020).
- Zhou, J.; Allen, A.M.; Yamada, H.; Sun, Y.; Mendelsohn, F.A.O. Localization and Properties of Angiotensin Converting Enzyme and Angiotensin Receptors in the Heart. In The Cardiac-Renin Angiotensin System; Lindpaintner, K., Ganten, D., Eds.; Futura Publishing Co Inc.: Armonk, NY, USA, 1994; pp. 63–88. [Google Scholar]
- Masaki, T. The Endothelin Family: An Overview. J. Cardiovasc. Pharmacol. 2000, 35, S3–S5. [Google Scholar] [CrossRef]
- Firth, J.D.; Roberts, A.F.; Raine, A.E. Effect of Endothelin on the Function of the Isolated Perfused Working Rat Heart. Clin. Sci. 1990, 79, 221–226. [Google Scholar] [CrossRef] [PubMed]
- Choong, G.; Liu, Y.; Templeton, D.M. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem. Biol. Interact. 2014, 211, 54–65. [Google Scholar] [CrossRef] [PubMed]
- Schulz, H.; Harder, V.; Ibald-Mulli, A.; Khandoga, A.; Koenig, W.; Krombach, F.; Radykewicz, R.; Stampfl, A.; Thorand, B.; Peters, A. Cardiovascular Effects of Fine and Ultrafine Particles. J. Aerosol Med. 2005, 18, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Varnai, V.M.; Piasek, M.; Blanus˘a, M.; Sarić, M.M.; Šimić, D.; Kostial, K. Calcium Supplementation Efficiently Reduces Lead Absorption in Suckling Rats. Pharmacol. Toxicol. 2001, 89, 326–330. [Google Scholar] [CrossRef] [PubMed]
- Privalova, L. Lead and Its Compounds. In Harmful Substances in the Environment. Elements of Groups I–IV of the Periodic Table and Their Inorganic Compounds; Filov, V.A., Ed.; Professional: St. Petersburg, Russia, 2005; pp. 400–427. (In Russian) [Google Scholar]
- Nawrot, T.S.; Staessen, J.A.; Roels, H.A.; Munters, E.; Cuypers, A.; Richart, T.; Ruttens, A.; Smeets, K.; Clijsters, H.; Vangronsveld, J. Cadmium exposure in the population: From health risks to strategies of prevention. BioMetals 2010, 23, 769–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, M.F.; Gesser, H. Sarcoplasmic reticulum, potassium, and cardiac force in rainbow trout and plaice. Am. J. Physiol. Integr. Comp. Physiol. 1989, 257, R599–R604. [Google Scholar] [CrossRef] [PubMed]
- De Mattos, G.F.; Costa, C.; Savio, F.; Alonso, M.; Nicolson, G.L. Lead poisoning: Acute exposure of the heart to lead ions promotes changes in cardiac function and Cav1.2 ion channels. Biophys. Rev. 2017, 9, 807–825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berenji, K.; Drazner, M.H.; Rothermel, B.A.; Hill, J.A. Does load-induced ventricular hypertrophy progress to systolic heart failure? Am. J. Physiol. Heart Circ. Physiol. 2005, 289, H8–H16. [Google Scholar] [CrossRef]
- Swynghedauw, B. Molecular Mechanisms of Myocardial Remodeling. Physiol. Rev. 1999, 79, 215–262. [Google Scholar] [CrossRef]
- Tietz, N.W. Clinical Guide to Laboratory Tests, 3rd ed.; W.B. Saunders Company: Philadelphia, PA, USA, 1995; 942p. [Google Scholar]
- Pardee, J.D.; Spudich, J.A. Purification of muscle actin. Methods Enzymol. 1982, 85 Pt B, 164–181. [Google Scholar] [CrossRef]
- Potter, J.D. Preparation of troponin and its subunits. Methods Enzymol. 1982, 85 Pt B, 241–263. [Google Scholar] [CrossRef]
- Matyushenko, A.M.; Artemova, N.V.; Shchepkin, D.V.; Kopylova, G.V.; Bershitsky, S.Y.; Tsaturyan, A.K.; Sluchanko, N.N.; Levitsky, D.I. Structural and functional effects of two stabilizing substitutions, D137L and G126R, in the middle part of α-tropomyosin molecule. FEBS J. 2014, 281, 2004–2016. [Google Scholar] [CrossRef] [Green Version]
- Alpert, N.R.; Brosseau, C.; Federico, A.; Krenz, M.; Robbins, J.; Warshaw, D.M. Molecular mechanics of mouse cardiac myosin isoforms. Am. J. Physiol. Heart Circ. Physiol. 2002, 283, H1446–H1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, A.M.; Homsher, E.; Regnier, M. Regulation of Contraction in Striated Muscle. Physiol. Rev. 2000, 80, 853–924. [Google Scholar] [CrossRef] [PubMed]
- Shaffer, J.F.; Wong, P.; Bezold, K.L.; Harris, S.P. Functional Differences between the N-Terminal Domains of Mouse and Human Myosin Binding Protein-C. J. Biomed. Biotechnol. 2010, 2010, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Nikitina, L.V.; Kopylova, G.V.; Shchepkin, D.V.; Katsnelson, L.B. Study of the interaction between rabbit cardiac contractile and regulatory proteins. An in vitro motility assay. Biochemistry 2008, 73, 178–184. [Google Scholar] [CrossRef] [PubMed]
- Mashanov, G.I.; Molloy, J.E. Automatic Detection of Single Fluorophores in Live Cells. Biophys. J. 2007, 92, 2199–2211. [Google Scholar] [CrossRef] [Green Version]
- Hisano, R.; Cooper, G. Correlation of Force-Length Area with Oxygen Consumption in Ferret Papillary Muscle. Circ. Res. 1987, 61, 318–328. [Google Scholar] [CrossRef] [Green Version]
- Mast, F.; Elzinga, G. Heat Released during Relaxation Equals Force-Length Area in Isometric Contractions of Rabbit Papillary Muscle. Circ. Res. 1990, 67, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Panov, V.G.; Varaksin, A.N. Identification of combined action types in experiments with two toxicants: A response surface linear model with a cross term. Toxicol. Mech. Methods 2016, 26, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Medinger, J.; Nedyalkova, M.; Lattuada, M. Solvothermal Synthesis Combined with Design of Experiments—Optimization Approach for Magnetite Nanocrystal Clusters. Nanomaterials 2021, 11, 360. [Google Scholar] [CrossRef] [PubMed]
- Box, G.E.P.; Draper, N.R. Response Surfaces, Mixtures and Ridge Analyses, 2nd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2007; 880p. [Google Scholar]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, 4th ed.; Wiley Series in Probability and Statistics; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2016; 856p. [Google Scholar]
Index | Groups of Rats Exposed to: | |||
---|---|---|---|---|
Water (Control) | CdO–NP | PbO–NP | CdO–NP + PbO–NP | |
Blood nucleated cells | ||||
Coefficient of genomic DNA fragmentation | 0.4123 ± 0.0028 | 0.4452 ± 0.0004 * | 0.4358 ± 0.0003 *● | 0.5817 ± 0.0016 *●# |
Heart | ||||
Right ventricular cardiomyocyte thickness, µm | 3.06 ± 0.09 | 3.07± 0.09 | 2.80 ± 0.07 * | 2.65 ± 0.08 *● |
Kidneys | ||||
Glomeruli diameter, µm | 40.08 ± 1.09 | 42.65 ± 1.75 | 32.90 ± 1.01 *● | 42.43 ± 0.98 # |
Epithelial desquamation, % | 0.0 ± 0.0 | 63.06 ± 12.09 * | 21.73 ± 5.51 *● | 44.28 ± 8.83 *# |
Brush border loss, % | 6.70 ± 1.90 | 45.18 ± 5.03 * | 33.54 ± 5.44 * | 57.12 ± 5.69 *# |
Liver | ||||
Akaryotic hepatocytes, % | 11.38 ± 0.65 | 22.30 ± 1.79 * | 14.95 ± 0.90 *● | 29.35 ± 2.24 *●# |
Binuclear hepatocytes, % | 3.82 ± 0.43 | 3.20 ± 0.67 | 5.35 ± 0.53 *● | 2.85 ± 0.42 # |
Kupffer cells, % | 10.55 ± 0.36 | 24.40 ± 1.00 * | 23.75 ± 1.29 * | 20.45 ± 1.20 *● |
% | Control | PbO–NP | CdO–NP | PbO–NP + CdO–NP |
---|---|---|---|---|
α–MHC | 92 ± 1.06 | 76 ± 2.04 * | 78 ± 1.63 * | 61 ± 1.22 * |
β–MHC | 8 ± 1.06 | 24 ± 2.04 * | 22 ± 1.63 * | 39 ± 1.22 * |
VMAX (µm/s) | |||
---|---|---|---|
Control | PbO–NP | CdO–NP | PbO–NP + CdO–NP |
4.90 ± 0.05 | 4.60 ± 0.05 * | 4.45 ± 0.10 * | 4.63 ± 0.09 * |
Myocardium Characteristics | Group of Rats | ||
---|---|---|---|
Controls | Exposed to CdO–NP + PbO–NP | Exposed to CdO–NP + PbO–NP along with BPC | |
Expression of α–MHC, % | 92 ± 3 | 61 ± 3 * | 85 ± 2 *▪ |
Expression of β–MHC, % | 8 ± 3 | 39 ± 3 * | 15 ± 3 *▪ |
Sliding velocity of thin filaments over myosin (VMAX), µm/s | 4.90 ± 0.15 | 4.63 ± 0.22 * | 4.81 ± 0.27 ▪ |
Velocity of trabeculae at working length corresponding to 0.95 LMAX and load corresponding to 0.9 P/P0, VMAX/Lw | 0.53 ± 0.03 | 0.35 ± 0.03 * | 0.54 ± 0.03 ▪ |
End–systolic length of trabeculae at working length corresponding to 0.95 LMAX and load corresponding to 0.6 P/P0, L/Lwork | 0.94 ± 0.01 | 0.96 ± 0.00* | 0.95 ± 0.01 ▪ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Klinova, S.V.; Katsnelson, B.A.; Minigalieva, I.A.; Gerzen, O.P.; Balakin, A.A.; Lisin, R.V.; Butova, K.A.; Nabiev, S.R.; Lookin, O.N.; Katsnelson, L.B.; et al. Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. Int. J. Mol. Sci. 2021, 22, 3466. https://doi.org/10.3390/ijms22073466
Klinova SV, Katsnelson BA, Minigalieva IA, Gerzen OP, Balakin AA, Lisin RV, Butova KA, Nabiev SR, Lookin ON, Katsnelson LB, et al. Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. International Journal of Molecular Sciences. 2021; 22(7):3466. https://doi.org/10.3390/ijms22073466
Chicago/Turabian StyleKlinova, Svetlana V., Boris A. Katsnelson, Ilzira A. Minigalieva, Oksana P. Gerzen, Alexander A. Balakin, Ruslan V. Lisin, Ksenia A. Butova, Salavat R. Nabiev, Oleg N. Lookin, Leonid B. Katsnelson, and et al. 2021. "Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles" International Journal of Molecular Sciences 22, no. 7: 3466. https://doi.org/10.3390/ijms22073466
APA StyleKlinova, S. V., Katsnelson, B. A., Minigalieva, I. A., Gerzen, O. P., Balakin, A. A., Lisin, R. V., Butova, K. A., Nabiev, S. R., Lookin, O. N., Katsnelson, L. B., Privalova, L. I., Kuznetsov, D. A., Shur, V. Y., Shishkina, E. V., Makeev, O. H., Valamina, I. E., Panov, V. G., Sutunkova, M. P., Nikitina, L. V., & Protsenko, Y. L. (2021). Cardioinotropic Effects in Subchronic Intoxication of Rats with Lead and/or Cadmium Oxide Nanoparticles. International Journal of Molecular Sciences, 22(7), 3466. https://doi.org/10.3390/ijms22073466