Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges
Abstract
:1. Introduction
2. Genetics and Epigenetic Architecture of DLB
2.1. Genetic Factors
2.1.1. Synuclein Genes
2.1.2. APOE
2.1.3. GBA
2.1.4. PSEN1/2
2.1.5. MAPT
2.1.6. APP
2.1.7. Additional Variants in DLB
2.2. Epigenetics Factors
3. DLB Biomarkers in Biological Fluids
3.1. CSF Biomarkers
3.2. Blood Biomarkers
4. miRNA Expression Profiling
5. Skin Biomarkers of DLB
6. Prodromic Biomarkers of DLB
7. Imaging Biomarkers of DLB
7.1. Neuroimaging Biomarkers to Assess the Neural Damage
7.1.1. α-Synuclein Aggregates
- Noradrenergic System
- Dopaminergic System
7.1.2. β-Amyloid and Tau Aggregates
7.2. Neuroimaging Biomarkers to Assess Brain Tissue Damage
7.2.1. Structural Damage
7.2.2. Functional Damage
7.3. Neuroimaging Biomarkers to Assess Neuroinflammation
8. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Hogan, D.B.; Fiest, K.M.; Roberts, J.I.; Maxwell, C.J.; Dykeman, J.; Pringsheim, T.; Steeves, T.; Smith, E.E.; Pearson, D.; Jetté, N. The Prevalence and Incidence of Dementia with Lewy Bodies: A Systematic Review. Can. J. Neurol. Sci. 2016, 43 (Suppl. S1), 83–95. [Google Scholar] [CrossRef]
- Barber, R.; Panikkar, A.; McKeith, I.G. Dementia with Lewy bodies: Diagnosis and management. Int. J. Geriatr. Psychiatry 2001, 16 (Suppl. S1), 12–18. [Google Scholar] [CrossRef]
- McKeith, I.G.; Boeve, B.F.; Dickson, D.W.; Halliday, G.; Taylor, J.P.; Weintraub, D.; Aarsland, D.; Galvin, J.; Attems, J.; Ballard, C.G.; et al. Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 2017, 89, 88–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeith, I.G.; Galasko, D.; Kosaka, K.; Perry, E.K.; Dickson, D.W.; Hansen, L.A.; Salmon, D.P.; Lowe, J.; Mirra, S.S.; Byrne, E.J.; et al. Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the consortium on DLB international workshop. Neurology 1996, 47, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Ferman, T.J.; Aoki, N.; Crook, J.E.; Murray, M.E.; Graff-Radford, N.R.; van Gerpen, J.A.; Uitti, R.J.; Wszolek, Z.K.; Graff-Radford, J.; Pedraza, O.; et al. The limbic and neocortical contribution of α-synuclein, tau, and amyloid β to disease duration in dementia with Lewy bodies. Alzheimers Dement. 2018, 14, 330–339. [Google Scholar] [CrossRef]
- Vann Jones, S.A.; O’Brien, J.T. The prevalence and incidence of dementia with Lewy bodies: A systematic review of population and clinical studies. Psychol. Med. 2014, 44, 673–683. [Google Scholar] [CrossRef]
- Cersosimo, M.G. Propagation of alpha-synuclein pathology from the olfactory bulb: Possible role in the pathogenesis of dementia with Lewy bodies. Cell Tissue Res. 2018, 373, 233–243. [Google Scholar] [CrossRef]
- Braak, H.; Ghebremedhin, E.; Rüb, U.; Bratzke, H.; Del Tredici, K. Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res. 2004, 318, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Toledo, J.B.; Cairns, N.J.; Da, X.; Chen, K.; Carter, D.; Fleisher, A.; Householder, E.; Ayutyanont, N.; Roontiva, A.; Bauer, R.J.; et al. Clinical and multimodal biomarker correlates of ADNI neuropathological findings. Acta Neuropathol. Commun. 2013, 1, 65. [Google Scholar] [CrossRef] [Green Version]
- Hansen, L.; Salmon, D.; Galasko, D.; Masliah, E.; Katzman, R.; DeTeresa, R.; Thal, L.; Pay, M.M.; Hofstetter, R.; Klauber, M. The Lewy body variant of Alzheimer’s disease: A clinical and pathologic entity. Neurology 1990, 40, 1–8. [Google Scholar] [CrossRef]
- Kane, J.P.M.; Surendranathan, A.; Bentley, A.; Barker, S.A.H.; Taylor, J.P.; Thomas, A.J.; Allan, L.M.; McNally, R.J.; James, P.W.; McKeith, I.G.; et al. Clinical prevalence of Lewy body dementia. Alzheimers Res. Ther. 2018, 10, 19. [Google Scholar] [CrossRef] [Green Version]
- Nervi, A.; Reitz, C.; Tang, M.X.; Santana, V.; Piriz, A.; Reyes, D.; Lantigua, R.; Medrano, M.; Jiménez-Velázquez, I.Z.; Lee, J.H.; et al. Familial aggregation of dementia with Lewy bodies. Arch. Neurol. 2011, 68, 90–93. [Google Scholar] [CrossRef] [Green Version]
- Orme, T.; Guerreiro, R.; Bras, J. The Genetics of Dementia with Lewy Bodies: Current Understanding and Future Directions. Curr. Neurol. Neurosci. Rep. 2018, 18, 67. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, R.; Ross, O.A.; Kun-Rodrigues, C.; Hernandez, D.G.; Orme, T.; Eicher, J.D.; Shepherd, C.E.; Parkkinen, L.; Darwent, L.; Heckman, M.G.; et al. Investigating the genetic architecture of dementia with Lewy bodies: A two-stage genome-wide association study. Lancet Neurol. 2018, 17, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Guerreiro, R.; Escott-Price, V.; Hernandez, D.G.; Kun-Rodrigues, C.; Ross, O.A.; Orme, T.; Neto, J.L.; Carmona, S.; Dehghani, N.; Eicher, J.D.; et al. Heritability and genetic variance of dementia with Lewy bodies. Neurobiol. Dis. 2019, 127, 492–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, C.S.; Burke, J.R.; Steffens, D.C.; Hulette, C.M.; Breitner, J.C.; Plassman, B.L. Twin pairs discordant for neuropathologically confirmed Lewy body dementia. J. Neurol. Neurosurg. Psychiatry 2009, 80, 562–565. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.; Crook, R.; Prihar, G.; Roberts, G.; Raghavan, R.; Perry, R. Senile dementia of the Lewy body type has an apolipoprotein E epsilon 4 allele frequency intermediate between controls and Alzheimer’s disease. Neurosci. Lett. 1994, 182, 1–2. [Google Scholar] [CrossRef]
- Bras, J.; Guerreiro, R.; Darwent, L.; Parkkinen, L.; Ansorge, O.; Escott-Price, V.; Hernandez, D.G.; Nalls, M.A.; Clark, L.N.; Honig, L.S.; et al. Genetic analysis implicates APOE, SNCA and suggests lysosomal dysfunction in the etiology of dementia with Lewy bodies. Hum. Mol. Genet. 2014, 23, 6139–6146. [Google Scholar] [CrossRef] [Green Version]
- Nalls, M.A.; Duran, R.; Lopez, G.; Kurzawa-Akanbi, M.; McKeith, I.G.; Chinnery, P.F.; Morris, C.M.; Theuns, J.; Crosiers, D.; Cras, P.; et al. A multicenter study of glucocerebrosidase mutations in dementia with Lewy bodies. JAMA Neurol. 2013, 70, 727–735. [Google Scholar] [CrossRef]
- Orme, T.; Hernandez, D.; Ross, O.A.; Kun-Rodrigues, C.; Darwent, L.; Shepherd, C.E.; Parkkinen, L.; Ansorge, O.; Clark, L.; Honig, L.S.; et al. Analysis of neurodegenerative disease-causing genes in dementia with Lewy bodies. Acta Neuropathol. Commun. 2020, 8, 5. [Google Scholar] [CrossRef]
- Benskey, M.J.; Perez, R.G.; Manfredsson, F.P. The contribution of alpha synuclein to neuronal survival and function—Implications for Parkinson’s disease. J. Neurochem. 2016, 137, 331–359. [Google Scholar] [CrossRef] [PubMed]
- Zarranz, J.J.; Alegre, J.; Gómez-Esteban, J.C.; Lezcano, E.; Ros, R.; Ampuero, I.; Vidal, L.; Hoenicka, J.; Rodriguez, O.; Atarés, B.; et al. The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann. Neurol. 2004, 55, 164–173. [Google Scholar] [CrossRef]
- Morfis, L.; Cordato, D.J. Dementia with Lewy bodies in an elderly Greek male due to alpha-synuclein gene mutation. J. Clin. Neurosci. 2006, 13, 942–944. [Google Scholar] [CrossRef] [PubMed]
- Golbe, L.I.; Di Iorio, G.; Sanges, G.; Lazzarini, A.M.; La Sala, S.; Bonavita, V.; Duvoisin, R.C. Clinical genetic analysis of Parkinson’s disease in the Contursi kindred. Ann. Neurol. 1996, 40, 767–775. [Google Scholar] [CrossRef]
- Singleton, A.B.; Farrer, M.; Johnson, J.; Singleton, A.; Hague, S.; Kachergus, J.; Hulihan, M.; Peuralinna, T.; Dutra, A.; Nussbaum, R.; et al. alpha-Synuclein locus triplication causes Parkinson’s disease. Science 2003, 302, 841. [Google Scholar] [CrossRef] [Green Version]
- Markopoulou, K.; Dickson, D.W.; McComb, R.D.; Wszolek, Z.K.; Katechalidou, L.; Avery, L.; Stansbury, M.S.; Chase, B.A. Clinical, neuropathological and genotypic variability in SNCA A53T familial Parkinson’s disease. Variability in familial Parkinson’s disease. Acta Neuropathol. 2008, 116, 25–35. [Google Scholar] [CrossRef] [Green Version]
- Guella, I.; Evans, D.M.; Szu-Tu, C.; Nosova, E.; Bortnick, S.F.; Goldman, J.G.; Dalrymple-Alford, J.C.; Geurtsen, G.J.; Litvan, I.; Ross, O.A.; et al. α-synuclein genetic variability: A biomarker for dementia in Parkinson disease. Ann. Neurol. 2016, 79, 991–999. [Google Scholar] [CrossRef]
- Sanghvi, H.; Singh, R.; Morrin, H.; Rajkumar, A.P. Systematic review of genetic association studies in people with Lewy body dementia. Int. J. Geriatr. Psychiatry 2020, 35, 436–448. [Google Scholar] [CrossRef]
- Ohtake, H.; Limprasert, P.; Fan, Y.; Onodera, O.; Kakita, A.; Takahashi, H.; Bonner, L.T.; Tsuang, D.W.; Murray, I.V.; Lee, V.M.; et al. Beta-synuclein gene alterations in dementia with Lewy bodies. Neurology 2004, 63, 805–811. [Google Scholar] [CrossRef]
- Nishioka, K.; Wider, C.; Vilariño-Güell, C.; Soto-Ortolaza, A.I.; Lincoln, S.J.; Kachergus, J.M.; Jasinska-Myga, B.; Ross, O.A.; Rajput, A.; Robinson, C.A.; et al. Association of alpha-, beta-, and gamma-Synuclein with diffuse lewy body disease. Arch. Neurol. 2010, 67, 970–975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Irwin, D.J.; Grossman, M.; Weintraub, D.; Hurtig, H.I.; Duda, J.E.; Xie, S.X.; Lee, E.B.; Van Deerlin, V.M.; Lopez, O.L.; Kofler, J.K.; et al. Neuropathological and genetic correlates of survival and dementia onset in synucleinopathies: A retrospective analysis. Lancet Neurol. 2017, 16, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.A.; Inman, C.E.; Wargel, Z.M.; Dube, U.; Freeberg, B.M.; Galluppi, A.; Haines, J.N.; Dhavale, D.D.; Miller, R.; Choudhury, F.A.; et al. genotype regulates pathology and disease progression in synucleinopathy. Sci. Transl. Med. 2020, 12. [Google Scholar] [CrossRef]
- Zhao, N.; Attrebi, O.N.; Ren, Y.; Qiao, W.; Sonustun, B.; Martens, Y.A.; Meneses, A.D.; Li, F.; Shue, F.; Zheng, J.; et al. APOE4 exacerbates α-synuclein pathology and related toxicity independent of amyloid. Sci. Transl. Med. 2020, 12. [Google Scholar] [CrossRef] [PubMed]
- Berge, G.; Sando, S.B.; Rongve, A.; Aarsland, D.; White, L.R. Apolipoprotein E ε2 genotype delays onset of dementia with Lewy bodies in a Norwegian cohort. J. Neurol. Neurosurg. Psychiatry 2014, 85, 1227–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boot, B.P.; Orr, C.F.; Ahlskog, J.E.; Ferman, T.J.; Roberts, R.; Pankratz, V.S.; Dickson, D.W.; Parisi, J.; Aakre, J.A.; Geda, Y.E.; et al. Risk factors for dementia with Lewy bodies: A case-control study. Neurology 2013, 81, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Borroni, B.; Grassi, M.; Costanzi, C.; Archetti, S.; Caimi, L.; Padovani, A. APOE genotype and cholesterol levels in lewy body dementia and Alzheimer disease: Investigating genotype-phenotype effect on disease risk. Am. J. Geriatr. Psychiatry 2006, 14, 1022–1031. [Google Scholar] [CrossRef] [PubMed]
- Lamb, H.; Christie, J.; Singleton, A.B.; Leake, A.; Perry, R.H.; Ince, P.G.; McKeith, I.G.; Melton, L.M.; Edwardson, J.A.; Morris, C.M. Apolipoprotein E and alpha-1 antichymotrypsin polymorphism genotyping in Alzheimer’s disease and in dementia with Lewy bodies. Distinctions between diseases. Neurology 1998, 50, 388–391. [Google Scholar] [CrossRef]
- Larsson, V.; Torisson, G.; Londos, E. Relative survival in patients with dementia with Lewy bodies and Parkinson’s disease dementia. PLoS ONE 2018, 13, e0202044. [Google Scholar] [CrossRef]
- Geiger, J.T.; Ding, J.; Crain, B.; Pletnikova, O.; Letson, C.; Dawson, T.M.; Rosenthal, L.S.; Pantelyat, A.; Gibbs, J.R.; Albert, M.S.; et al. Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiol. Dis. 2016, 94, 55–62. [Google Scholar] [CrossRef] [Green Version]
- Sidransky, E.; Lopez, G. The link between the GBA gene and parkinsonism. Lancet Neurol. 2012, 11, 986–998. [Google Scholar] [CrossRef] [Green Version]
- Clark, L.N.; Kartsaklis, L.A.; Wolf Gilbert, R.; Dorado, B.; Ross, B.M.; Kisselev, S.; Verbitsky, M.; Mejia-Santana, H.; Cote, L.J.; Andrews, H.; et al. Association of glucocerebrosidase mutations with dementia with lewy bodies. Arch. Neurol. 2009, 66, 578–583. [Google Scholar] [CrossRef] [Green Version]
- Shiner, T.; Mirelman, A.; Gana Weisz, M.; Bar-Shira, A.; Ash, E.; Cialic, R.; Nevler, N.; Gurevich, T.; Bregman, N.; Orr-Urtreger, A.; et al. High Frequency of GBA Gene Mutations in Dementia With Lewy Bodies Among Ashkenazi Jews. JAMA Neurol. 2016, 73, 1448–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goker-Alpan, O.; Giasson, B.I.; Eblan, M.J.; Nguyen, J.; Hurtig, H.I.; Lee, V.M.; Trojanowski, J.Q.; Sidransky, E. Glucocerebrosidase mutations are an important risk factor for Lewy body disorders. Neurology 2006, 67, 908–910. [Google Scholar] [CrossRef]
- Mata, I.F.; Samii, A.; Schneer, S.H.; Roberts, J.W.; Griffith, A.; Leis, B.C.; Schellenberg, G.D.; Sidransky, E.; Bird, T.D.; Leverenz, J.B.; et al. Glucocerebrosidase gene mutations: A risk factor for Lewy body disorders. Arch. Neurol. 2008, 65, 379–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuang, D.; Leverenz, J.B.; Lopez, O.L.; Hamilton, R.L.; Bennett, D.A.; Schneider, J.A.; Buchman, A.S.; Larson, E.B.; Crane, P.K.; Kaye, J.A.; et al. GBA mutations increase risk for Lewy body disease with and without Alzheimer disease pathology. Neurology 2012, 79, 1944–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keogh, M.J.; Kurzawa-Akanbi, M.; Griffin, H.; Douroudis, K.; Ayers, K.L.; Hussein, R.I.; Hudson, G.; Pyle, A.; Cordell, H.J.; Attems, J.; et al. Exome sequencing in dementia with Lewy bodies. Transl. Psychiatry 2016, 6, e728. [Google Scholar] [CrossRef] [Green Version]
- Sidransky, E.; Nalls, M.A.; Aasly, J.O.; Aharon-Peretz, J.; Annesi, G.; Barbosa, E.R.; Bar-Shira, A.; Berg, D.; Bras, J.; Brice, A.; et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N. Engl. J. Med. 2009, 361, 1651–1661. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, A.; Piao, Y.S.; Miyashita, A.; Kuwano, R.; Onodera, O.; Ohtake, H.; Suzuki, M.; Nishizawa, M.; Takahashi, H. A mutant PSEN1 causes dementia with Lewy bodies and variant Alzheimer’s disease. Ann. Neurol. 2005, 57, 429–434. [Google Scholar] [CrossRef]
- Meeus, B.; Verstraeten, A.; Crosiers, D.; Engelborghs, S.; Van den Broeck, M.; Mattheijssens, M.; Peeters, K.; Corsmit, E.; Elinck, E.; Pickut, B.; et al. DLB and PDD: A role for mutations in dementia and Parkinson disease genes? Neurobiol. Aging 2012, 33, 629.e5–629.e18. [Google Scholar] [CrossRef] [PubMed]
- Vergouw, L.J.M.; van Steenoven, I.; van de Berg, W.D.J.; Teunissen, C.E.; van Swieten, J.C.; Bonifati, V.; Lemstra, A.W.; de Jong, F.J. An update on the genetics of dementia with Lewy bodies. Parkinsonism Relat. Disord. 2017, 43, 1–8. [Google Scholar] [CrossRef]
- Singleton, A.B.; Lamb, H.; Leake, A.; McKeith, I.G.; Ince, P.G.; Perry, R.H.; Morris, C.M. No association between a polymorphism in the presenilin 1 gene and dementia with Lewy bodies. Neuroreport 1997, 8, 3637–3639. [Google Scholar] [CrossRef]
- Labbé, C.; Ogaki, K.; Lorenzo-Betancor, O.; Soto-Ortolaza, A.I.; Walton, R.L.; Rayaprolu, S.; Fujioka, S.; Murray, M.E.; Heckman, M.G.; Puschmann, A.; et al. Role for the microtubule-associated protein tau variant p.A152T in risk of α-synucleinopathies. Neurology 2015, 85, 1680–1686. [Google Scholar] [CrossRef] [Green Version]
- Labbé, C.; Heckman, M.G.; Lorenzo-Betancor, O.; Soto-Ortolaza, A.I.; Walton, R.L.; Murray, M.E.; Allen, M.; Uitti, R.J.; Wszolek, Z.K.; Smith, G.E.; et al. MAPT haplotype H1G is associated with increased risk of dementia with Lewy bodies. Alzheimers Dement. 2016, 12, 1297–1304. [Google Scholar] [CrossRef] [Green Version]
- Colom-Cadena, M.; Gelpi, E.; Martí, M.J.; Charif, S.; Dols-Icardo, O.; Blesa, R.; Clarimón, J.; Lleó, A. MAPT H1 haplotype is associated with enhanced α-synuclein deposition in dementia with Lewy bodies. Neurobiol. Aging 2013, 34, 936–942. [Google Scholar] [CrossRef]
- Setó-Salvia, N.; Clarimón, J.; Pagonabarraga, J.; Pascual-Sedano, B.; Campolongo, A.; Combarros, O.; Mateo, J.I.; Regaña, D.; Martínez-Corral, M.; Marquié, M.; et al. Dementia risk in Parkinson disease: Disentangling the role of MAPT haplotypes. Arch. Neurol. 2011, 68, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guyant-Marechal, I.; Berger, E.; Laquerrière, A.; Rovelet-Lecrux, A.; Viennet, G.; Frebourg, T.; Rumbach, L.; Campion, D.; Hannequin, D. Intrafamilial diversity of phenotype associated with app duplication. Neurology 2008, 71, 1925–1926. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, R.A.; Lantos, P.L.; Cairns, N.J. Overlap between neurodegenerative disorders. Neuropathology 2005, 25, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Rosenberg, C.K.; Pericak-Vance, M.A.; Saunders, A.M.; Gilbert, J.R.; Gaskell, P.C.; Hulette, C.M. Lewy body and Alzheimer pathology in a family with the amyloid-beta precursor protein APP717 gene mutation. Acta Neuropathol. 2000, 100, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Piscopo, P.; Marcon, G.; Piras, M.R.; Crestini, A.; Campeggi, L.M.; Deiana, E.; Cherchi, R.; Tanda, F.; Deplano, A.; Vanacore, N.; et al. A novel PSEN2 mutation associated with a peculiar phenotype. Neurology 2008, 70, 1549–1554. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, K.; Cochran, E.J.; Murrell, J.R.; Polymeropoulos, M.H.; Shannon, K.M.; Crowther, R.A.; Goedert, M.; Ghetti, B. Abundant neuritic inclusions and microvacuolar changes in a case of diffuse Lewy body disease with the A53T mutation in the alpha-synuclein gene. Acta Neuropathol. 2005, 110, 298–305. [Google Scholar] [CrossRef]
- Kun-Rodrigues, C.; Orme, T.; Carmona, S.; Hernandez, D.G.; Ross, O.A.; Eicher, J.D.; Shepherd, C.; Parkkinen, L.; Darwent, L.; Heckman, M.G.; et al. A comprehensive screening of copy number variability in dementia with Lewy bodies. Neurobiol. Aging 2019, 75, 223.e1–223.e10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rongve, A.; Witoelar, A.; Ruiz, A.; Athanasiu, L.; Abdelnour, C.; Clarimon, J.; Heilmann-Heimbach, S.; Hernández, I.; Moreno-Grau, S.; de Rojas, I.; et al. GBA and APOE ε4 associate with sporadic dementia with Lewy bodies in European genome wide association study. Sci. Rep. 2019, 9, 7013. [Google Scholar] [CrossRef] [PubMed]
- Vijayaraghavan, S.; Darreh-Shori, T.; Rongve, A.; Berge, G.; Sando, S.B.; White, L.R.; Auestad, B.H.; Witoelar, A.; Andreassen, O.A.; Ulstein, I.D.; et al. Association of Butyrylcholinesterase-K Allele and Apolipoprotein E ɛ4 Allele with Cognitive Decline in Dementia with Lewy Bodies and Alzheimer’s Disease. J. Alzheimers Dis. 2016, 50, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Fehér, A.; Juhász, A.; Rimanóczy, A.; Csibri, E.; Kálmán, J.; Janka, Z. Association between a genetic variant of the alpha-7 nicotinic acetylcholine receptor subunit and four types of dementia. Dement. Geriatr. Cogn. Disord. 2009, 28, 56–62. [Google Scholar] [CrossRef]
- Sharma, R.; Graff-Radford, J.; Rademakers, R.; Boeve, B.F.; Petersen, R.C.; Jones, D.T. CSF1R mutation presenting as dementia with Lewy bodies. Neurocase 2019, 25, 17–20. [Google Scholar] [CrossRef]
- Keogh, M.J.; Wei, W.; Wilson, I.; Coxhead, J.; Ryan, S.; Rollinson, S.; Griffin, H.; Kurzawa-Akanbi, M.; Santibanez-Koref, M.; Talbot, K.; et al. Genetic compendium of 1511 human brains available through the UK Medical Research Council Brain Banks Network Resource. Genome Res. 2017, 27, 165–173. [Google Scholar] [CrossRef] [Green Version]
- Quadri, M.; Mandemakers, W.; Grochowska, M.M.; Masius, R.; Geut, H.; Fabrizio, E.; Breedveld, G.J.; Kuipers, D.; Minneboo, M.; Vergouw, L.J.M.; et al. LRP10 genetic variants in familial Parkinson’s disease and dementia with Lewy bodies: A genome-wide linkage and sequencing study. Lancet Neurol. 2018, 17, 597–608. [Google Scholar] [CrossRef]
- Heckman, M.G.; Soto-Ortolaza, A.I.; Contreras, M.Y.S.; Murray, M.E.; Pedraza, O.; Diehl, N.N.; Walton, R.; Labbé, C.; Lorenzo-Betancor, O.; Uitti, R.J.; et al. LRRK2 variation and dementia with Lewy bodies. Park. Relat. Disord. 2016, 31, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chinnery, P.F.; Taylor, G.A.; Howell, N.; Andrews, R.M.; Morris, C.M.; Taylor, R.W.; McKeith, I.G.; Perry, R.H.; Edwardson, J.A.; Turnbull, D.M. Mitochondrial DNA haplogroups and susceptibility to AD and dementia with Lewy bodies. Neurology 2000, 55, 302–304. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Liu, L.; Emson, P.; Harrington, C.R.; McKeith, I.G.; Perry, R.H.; Morris, C.M.; Charles, I.G. The CCTTT polymorphism in the NOS2A gene is associated with dementia with Lewy bodies. Neuroreport 2000, 11, 297–299. [Google Scholar] [CrossRef]
- Koide, T.; Ohtake, H.; Nakajima, T.; Furukawa, H.; Sakai, K.; Kamei, H.; Makifuchi, T.; Fukuhara, N. A patient with dementia with Lewy bodies and codon 232 mutation of PRNP. Neurology 2002, 59, 1619–1621. [Google Scholar] [CrossRef]
- Bonner, L.T.; Tsuang, D.W.; Cherrier, M.M.; Eugenio, C.J.; Du Jennifer, Q.; Steinbart, E.J.; Limprasert, P.; La Spada, A.R.; Seltzer, B.; Bird, T.D.; et al. Familial dementia with Lewy bodies with an atypical clinical presentation. J. Geriatr. Psychiatry Neurol. 2003, 16, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Geut, H.; Vergouw, L.J.M.; Galis, Y.; Ingrassia, A.; de Jong, F.J.; Quadri, M.; Bonifati, V.; Lemstra, A.W.; Rozemuller, A.J.M.; van de Berg, W.D.J. Neuropathological and genetic characteristics of a post-mortem series of cases with dementia with Lewy bodies clinically suspected of Creutzfeldt-Jakob’s disease. Parkinsonism Relat. Disord. 2019, 63, 162–168. [Google Scholar] [CrossRef]
- Fujioka, S.; Sundal, C.; Strongosky, A.J.; Castanedes, M.C.; Rademakers, R.; Ross, O.A.; Vilariño-Güell, C.; Farrer, M.J.; Wszolek, Z.K.; Dickson, D.W. Sequence variants in eukaryotic translation initiation factor 4-gamma (eIF4G1) are associated with Lewy body dementia. Acta Neuropathol. 2013, 125, 425–438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beck, J.; Collinge, J.; Mead, S. Prion protein gene M232R variation is probably an uncommon polymorphism rather than a pathogenic mutation. Brain 2012, 135, e209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Lee, S.J.; Conway, O.J.; Jansen, I.; Carrasquillo, M.M.; Kleineidam, L.; van den Akker, E.; Hernández, I.; van Eijk, K.R.; Stringa, N.; Chen, J.A.; et al. A nonsynonymous mutation in PLCG2 reduces the risk of Alzheimer’s disease, dementia with Lewy bodies and frontotemporal dementia, and increases the likelihood of longevity. Acta Neuropathol. 2019, 138, 237–250. [Google Scholar] [CrossRef] [Green Version]
- Heyn, H.; Esteller, M. DNA methylation profiling in the clinic: Applications and challenges. Nat. Rev. Genet. 2012, 13, 679–692. [Google Scholar] [CrossRef] [PubMed]
- Funahashi, Y.; Yoshino, Y.; Yamazaki, K.; Mori, Y.; Mori, T.; Ozaki, Y.; Sao, T.; Ochi, S.; Iga, J.I.; Ueno, S.I. DNA methylation changes at SNCA intron 1 in patients with dementia with Lewy bodies. Psychiatry Clin. Neurosci. 2017, 71, 28–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foraker, J.; Millard, S.P.; Leong, L.; Thomson, Z.; Chen, S.; Keene, C.D.; Bekris, L.M.; Yu, C.E. The APOE Gene is Differentially Methylated in Alzheimer’s Disease. J. Alzheimers Dis. 2015, 48, 745–755. [Google Scholar] [CrossRef] [PubMed]
- Tulloch, J.; Leong, L.; Chen, S.; Keene, C.D.; Millard, S.P.; Shutes-David, A.; Lopez, O.L.; Kofler, J.; Kaye, J.A.; Woltjer, R.; et al. APOE DNA methylation is altered in Lewy body dementia. Alzheimers Dement. 2018, 14, 889–894. [Google Scholar] [CrossRef]
- Ozaki, Y.; Yoshino, Y.; Yamazaki, K.; Ochi, S.; Iga, J.I.; Nagai, M.; Nomoto, M.; Ueno, S.I. DRD2 methylation to differentiate dementia with Lewy bodies from Parkinson’s disease. Acta Neurol. Scand. 2020, 141, 177–182. [Google Scholar] [CrossRef]
- Delgado-Morales, R.; Esteller, M. Opening up the DNA methylome of dementia. Mol. Psychiatry 2017, 22, 485–496. [Google Scholar] [CrossRef]
- Sanchez-Mut, J.V.; Heyn, H.; Vidal, E.; Moran, S.; Sayols, S.; Delgado-Morales, R.; Schultz, M.D.; Ansoleaga, B.; Garcia-Esparcia, P.; Pons-Espinal, M.; et al. Human DNA methylomes of neurodegenerative diseases show common epigenomic patterns. Transl. Psychiatry 2016, 6, e718. [Google Scholar] [CrossRef] [Green Version]
- Desplats, P.; Spencer, B.; Coffee, E.; Patel, P.; Michael, S.; Patrick, C.; Adame, A.; Rockenstein, E.; Masliah, E. Alpha-synuclein sequesters Dnmt1 from the nucleus: A novel mechanism for epigenetic alterations in Lewy body diseases. J. Biol. Chem. 2011, 286, 9031–9037. [Google Scholar] [CrossRef] [Green Version]
- Villa, C.; Lavitrano, M.; Salvatore, E.; Combi, R. Molecular and Imaging Biomarkers in Alzheimer’s Disease: A Focus on Recent Insights. J. Pers. Med. 2020, 10, 61. [Google Scholar] [CrossRef]
- Van Steenoven, I.; Aarsland, D.; Weintraub, D.; Londos, E.; Blanc, F.; van der Flier, W.M.; Teunissen, C.E.; Mollenhauer, B.; Fladby, T.; Kramberger, M.G.; et al. Cerebrospinal Fluid Alzheimer’s Disease Biomarkers Across the Spectrum of Lewy Body Diseases: Results from a Large Multicenter Cohort. J. Alzheimers Dis. 2016, 54, 287–295. [Google Scholar] [CrossRef] [Green Version]
- Parnetti, L.; Tiraboschi, P.; Lanari, A.; Peducci, M.; Padiglioni, C.; D’Amore, C.; Pierguidi, L.; Tambasco, N.; Rossi, A.; Calabresi, P. Cerebrospinal fluid biomarkers in Parkinson’s disease with dementia and dementia with Lewy bodies. Biol. Psychiatry 2008, 64, 850–855. [Google Scholar] [CrossRef]
- Bibl, M.; Mollenhauer, B.; Esselmann, H.; Lewczuk, P.; Klafki, H.W.; Sparbier, K.; Smirnov, A.; Cepek, L.; Trenkwalder, C.; Rüther, E.; et al. CSF amyloid-beta-peptides in Alzheimer’s disease, dementia with Lewy bodies and Parkinson’s disease dementia. Brain 2006, 129, 1177–1187. [Google Scholar] [CrossRef]
- Bellomo, G.; Paolini Paoletti, F.; Chipi, E.; Petricciuolo, M.; Simoni, S.; Tambasco, N.; Parnetti, L. A/T/(N) Profile in Cerebrospinal Fluid of Parkinson’s Disease with/without Cognitive Impairment and Dementia with Lewy Bodies. Diagnostics 2020, 10, 1015. [Google Scholar] [CrossRef]
- Vanderstichele, H.; De Vreese, K.; Blennow, K.; Andreasen, N.; Sindic, C.; Ivanoiu, A.; Hampel, H.; Bürger, K.; Parnetti, L.; Lanari, A.; et al. Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU181P assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin. Chem. Lab. Med. 2006, 44, 1472–1480. [Google Scholar] [CrossRef]
- Kasuga, K.; Tokutake, T.; Ishikawa, A.; Uchiyama, T.; Tokuda, T.; Onodera, O.; Nishizawa, M.; Ikeuchi, T. Differential levels of alpha-synuclein, beta-amyloid42 and tau in CSF between patients with dementia with Lewy bodies and Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2010, 81, 608–610. [Google Scholar] [CrossRef] [PubMed]
- Bousiges, O.; Bombois, S.; Schraen, S.; Wallon, D.; Quillard, M.M.; Gabelle, A.; Lehmann, S.; Paquet, C.; Amar-Bouaziz, E.; Magnin, E.; et al. Cerebrospinal fluid Alzheimer biomarkers can be useful for discriminating dementia with Lewy bodies from Alzheimer’s disease at the prodromal stage. J. Neurol. Neurosurg. Psychiatry 2018, 89, 467–475. [Google Scholar] [CrossRef]
- Spies, P.E.; Slats, D.; Sjögren, J.M.; Kremer, B.P.; Verhey, F.R.; Rikkert, M.G.; Verbeek, M.M. The cerebrospinal fluid amyloid beta42/40 ratio in the differentiation of Alzheimer’s disease from non-Alzheimer’s dementia. Curr. Alzheimer Res. 2010, 7, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Struyfs, H.; Van Broeck, B.; Timmers, M.; Fransen, E.; Sleegers, K.; Van Broeckhoven, C.; De Deyn, P.P.; Streffer, J.R.; Mercken, M.; Engelborghs, S. Diagnostic Accuracy of Cerebrospinal Fluid Amyloid-β Isoforms for Early and Differential Dementia Diagnosis. J. Alzheimers Dis. 2015, 45, 813–822. [Google Scholar] [CrossRef] [Green Version]
- Mulugeta, E.; Londos, E.; Ballard, C.; Alves, G.; Zetterberg, H.; Blennow, K.; Skogseth, R.; Minthon, L.; Aarsland, D. CSF amyloid β38 as a novel diagnostic marker for dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 2011, 82, 160–164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spies, P.E.; Melis, R.J.; Sjögren, M.J.; Rikkert, M.G.; Verbeek, M.M. Cerebrospinal fluid alpha-synuclein does not discriminate between dementia disorders. J. Alzheimers Dis. 2009, 16, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiasserini, D.; Biscetti, L.; Eusebi, P.; Salvadori, N.; Frattini, G.; Simoni, S.; De Roeck, N.; Tambasco, N.; Stoops, E.; Vanderstichele, H.; et al. Differential role of CSF fatty acid binding protein 3, α-synuclein, and Alzheimer’s disease core biomarkers in Lewy body disorders and Alzheimer’s dementia. Alzheimers Res. Ther. 2017, 9, 52. [Google Scholar] [CrossRef]
- Kapaki, E.; Paraskevas, G.P.; Emmanouilidou, E.; Vekrellis, K. The diagnostic value of CSF α-synuclein in the differential diagnosis of dementia with Lewy bodies vs. normal subjects and patients with Alzheimer’s disease. PLoS ONE 2013, 8, e81654. [Google Scholar] [CrossRef] [Green Version]
- Bougea, A.; Stefanis, L.; Emmanouilidou, E.; Vekrelis, K.; Kapaki, E. High discriminatory ability of peripheral and CFSF biomarkers in Lewy body diseases. J. Neural. Transm. 2020, 127, 311–322. [Google Scholar] [CrossRef]
- Llorens, F.; Schmitz, M.; Varges, D.; Kruse, N.; Gotzmann, N.; Gmitterová, K.; Mollenhauer, B.; Zerr, I. Cerebrospinal α-synuclein in α-synuclein aggregation disorders: Tau/α-synuclein ratio as potential biomarker for dementia with Lewy bodies. J. Neurol. 2016, 263, 2271–2277. [Google Scholar] [CrossRef]
- van Steenoven, I.; Majbour, N.K.; Vaikath, N.N.; Berendse, H.W.; van der Flier, W.M.; van de Berg, W.D.J.; Teunissen, C.E.; Lemstra, A.W.; El-Agnaf, O.M.A. α-Synuclein species as potential cerebrospinal fluid biomarkers for dementia with lewy bodies. Mov. Disord. 2018, 33, 1724–1733. [Google Scholar] [CrossRef] [Green Version]
- Paciotti, S.; Bellomo, G.; Gatticchi, L.; Parnetti, L. Are We Ready for Detecting α-Synuclein Prone to Aggregation in Patients? The Case of “Protein-Misfolding Cyclic Amplification” and “Real-Time Quaking-Induced Conversion” as Diagnostic Tools. Front. Neurol. 2018, 9, 415. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, J.C.; Eggers, C.; Kalbe, E.; Weisenbach, S.; Hohmann, C.; Vollmar, S.; Baudrexel, S.; Diederich, N.J.; Heiss, W.D.; Hilker, R. Neurotransmitter changes in dementia with Lewy bodies and Parkinson disease dementia in vivo. Neurology 2010, 74, 885–892. [Google Scholar] [CrossRef]
- Vermeiren, Y.; Van Dam, D.; Aerts, T.; Engelborghs, S.; Martin, J.J.; De Deyn, P.P. The monoaminergic footprint of depression and psychosis in dementia with Lewy bodies compared to Alzheimer’s disease. Alzheimers Res. Ther. 2015, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Aerts, M.B.; Esselink, R.A.; Claassen, J.A.; Abdo, W.F.; Bloem, B.R.; Verbeek, M.M. CSF tau, Aβ42, and MHPG differentiate dementia with Lewy bodies from Alzheimer’s disease. J. Alzheimers Dis. 2011, 27, 377–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herbert, M.K.; Aerts, M.B.; Kuiperij, H.B.; Claassen, J.A.H.R.; Spies, P.E.; Esselink, R.A.J.; Bloem, B.R.; Verbeek, M.M. Addition of MHPG to Alzheimer’s disease biomarkers improves differentiation of dementia with Lewy bodies from Alzheimer’s disease but not other dementias. Alzheimers Dement. 2014, 10, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Szot, P.; White, S.S.; Greenup, J.L.; Leverenz, J.B.; Peskind, E.R.; Raskind, M.A. Compensatory changes in the noradrenergic nervous system in the locus ceruleus and hippocampus of postmortem subjects with Alzheimer’s disease and dementia with Lewy bodies. J. Neurosci. 2006, 26, 467–478. [Google Scholar] [CrossRef] [Green Version]
- Janssens, J.; Vermeiren, Y.; Fransen, E.; Aerts, T.; Van Dam, D.; Engelborghs, S.; De Deyn, P.P. Cerebrospinal fluid and serum MHPG improve Alzheimer’s disease versus dementia with Lewy bodies differential diagnosis. Alzheimers Dement. 2018, 10, 172–181. [Google Scholar] [CrossRef] [PubMed]
- Nixon, R.A. The role of autophagy in neurodegenerative disease. Nat. Med. 2013, 19, 983–997. [Google Scholar] [CrossRef]
- Parnetti, L.; Balducci, C.; Pierguidi, L.; De Carlo, C.; Peducci, M.; D’Amore, C.; Padiglioni, C.; Mastrocola, S.; Persichetti, E.; Paciotti, S.; et al. Cerebrospinal fluid beta-glucocerebrosidase activity is reduced in Dementia with Lewy Bodies. Neurobiol. Dis. 2009, 34, 484–486. [Google Scholar] [CrossRef]
- Chiasserini, D.; Paciotti, S.; Eusebi, P.; Persichetti, E.; Tasegian, A.; Kurzawa-Akanbi, M.; Chinnery, P.F.; Morris, C.M.; Calabresi, P.; Parnetti, L.; et al. Selective loss of glucocerebrosidase activity in sporadic Parkinson’s disease and dementia with Lewy bodies. Mol. Neurodegener. 2015, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Sepe, F.N.; Chiasserini, D.; Parnetti, L. Role of FABP3 as biomarker in Alzheimer’s disease and synucleinopathies. Future Neurol. 2018, 13, 199–207. [Google Scholar] [CrossRef] [Green Version]
- Van Steenoven, I.; Koel-Simmelink, M.J.A.; Vergouw, L.J.M.; Tijms, B.M.; Piersma, S.R.; Pham, T.V.; Bridel, C.; Ferri, G.L.; Cocco, C.; Noli, B.; et al. Identification of novel cerebrospinal fluid biomarker candidates for dementia with Lewy bodies: A proteomic approach. Mol. Neurodegener. 2020, 15, 36. [Google Scholar] [CrossRef]
- Laske, C.; Fallgatter, A.J.; Stransky, E.; Hagen, K.; Berg, D.; Maetzler, W. Decreased α-synuclein serum levels in patients with Lewy body dementia compared to Alzheimer’s disease patients and control subjects. Dement. Geriatr. Cogn. Disord. 2011, 31, 413–416. [Google Scholar] [CrossRef]
- El-Agnaf, O.M.; Salem, S.A.; Paleologou, K.E.; Curran, M.D.; Gibson, M.J.; Court, J.A.; Schlossmacher, M.G.; Allsop, D. Detection of oligomeric forms of alpha-synuclein protein in human plasma as a potential biomarker for Parkinson’s disease. FASEB J. 2006, 20, 419–425. [Google Scholar] [CrossRef]
- Graham, C.; Santiago-Mugica, E.; Abdel-All, Z.; Li, M.; McNally, R.; Kalaria, R.N.; Mukaetova-Ladinska, E.B. Erythrocytes as Biomarkers for Dementia: Analysis of Protein Content and Alpha-Synuclein. J. Alzheimers Dis. 2019, 71, 569–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsal-García, L.; Urbizu, A.; Arnaldo, L.; Campdelacreu, J.; Vilas, D.; Ispierto, L.; Gascón-Bayarri, J.; Reñé, R.; Álvarez, R.; Beyer, K. Expression Levels of an Alpha-Synuclein Transcript in Blood May Distinguish between Early Dementia with Lewy Bodies and Parkinson’s Disease. Int. J. Mol. Sci. 2021, 22, 725. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.P.; Javaid, J.I.; Faull, K.; Davis, J.M.; Janicak, P.G. CSF and plasma MHPG, and CSF MHPG index: Pretreatment levels in diagnostic groups and response to somatic treatments. Psychiatry Res. 1994, 51, 51–60. [Google Scholar] [CrossRef]
- Van der Zee, S.; Vermeiren, Y.; Fransen, E.; Van Dam, D.; Aerts, T.; Gerritsen, M.J.; Spikman, J.M.; van Laar, T.; De Deyn, P.P. Monoaminergic Markers Across the Cognitive Spectrum of Lewy Body Disease. J. Parkinsons Dis. 2018, 8, 71–84. [Google Scholar] [CrossRef] [Green Version]
- Storch, J.; Thumser, A.E. Tissue-specific functions in the fatty acid-binding protein family. J. Biol. Chem. 2010, 285, 32679–32683. [Google Scholar] [CrossRef] [Green Version]
- Steinacker, P.; Mollenhauer, B.; Bibl, M.; Cepek, L.; Esselmann, H.; Brechlin, P.; Lewczuk, P.; Poser, S.; Kretzschmar, H.A.; Wiltfang, J.; et al. Heart fatty acid binding protein as a potential diagnostic marker for neurodegenerative diseases. Neurosci. Lett. 2004, 370, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Mollenhauer, B.; Steinacker, P.; Bahn, E.; Bibl, M.; Brechlin, P.; Schlossmacher, M.G.; Locascio, J.J.; Wiltfang, J.; Kretzschmar, H.A.; Poser, S.; et al. Serum heart-type fatty acid-binding protein and cerebrospinal fluid tau: Marker candidates for dementia with Lewy bodies. Neurodegener. Dis. 2007, 4, 366–375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tafrihi, M.; Hasheminasab, E. MiRNAs: Biology, Biogenesis, their Web-based Tools, and Databases. Microrna 2019, 8, 4–27. [Google Scholar] [CrossRef] [PubMed]
- Satoh, J. MicroRNAs and their therapeutic potential for human diseases: Aberrant microRNA expression in Alzheimer’s disease brains. J. Pharmacol. Sci. 2010, 114, 269–275. [Google Scholar] [CrossRef] [Green Version]
- Cogswell, J.P.; Ward, J.; Taylor, I.A.; Waters, M.; Shi, Y.; Cannon, B.; Kelnar, K.; Kemppainen, J.; Brown, D.; Chen, C.; et al. Identification of miRNA changes in Alzheimer’s disease brain and CSF yields putative biomarkers and insights into disease pathways. J. Alzheimers Dis. 2008, 14, 27–41. [Google Scholar] [CrossRef]
- Roser, A.E.; Caldi Gomes, L.; Schünemann, J.; Maass, F.; Lingor, P. Circulating miRNAs as Diagnostic Biomarkers for Parkinson’s Disease. Front. Neurosci. 2018, 12, 625. [Google Scholar] [CrossRef]
- Zhao, Y.; Jaber, V.; Alexandrov, P.N.; Vergallo, A.; Lista, S.; Hampel, H.; Lukiw, W.J. microRNA-Based Biomarkers in Alzheimer’s Disease (AD). Front. Neurosci. 2020, 14, 585432. [Google Scholar] [CrossRef]
- van den Berg, M.M.J.; Krauskopf, J.; Ramaekers, J.G.; Kleinjans, J.C.S.; Prickaerts, J.; Briedé, J.J. Circulating microRNAs as potential biomarkers for psychiatric and neurodegenerative disorders. Prog. Neurobiol. 2020, 185, 101732. [Google Scholar] [CrossRef]
- Shigemizu, D.; Akiyama, S.; Asanomi, Y.; Boroevich, K.A.; Sharma, A.; Tsunoda, T.; Sakurai, T.; Ozaki, K.; Ochiya, T.; Niida, S. A comparison of machine learning classifiers for dementia with Lewy bodies using miRNA expression data. BMC Med. Genom. 2019, 12, 150. [Google Scholar] [CrossRef]
- Yakunin, E.; Loeb, V.; Kisos, H.; Biala, Y.; Yehuda, S.; Yaari, Y.; Selkoe, D.J.; Sharon, R. A-synuclein neuropathology is controlled by nuclear hormone receptors and enhanced by docosahexaenoic acid in a mouse model for Parkinson’s disease. Brain Pathol. 2012, 22, 280–294. [Google Scholar] [CrossRef] [Green Version]
- Gámez-Valero, A.; Campdelacreu, J.; Vilas, D.; Ispierto, L.; Samaniego, D.; Gascón-Bayarri, J.; Reñé, R.; Álvarez, R.; Armengol, M.P.; Borràs, F.E.; et al. Platelet miRNA bio-signature discriminates between dementia with Lewy bodies and Alzheimer disease. bioaRxiv 2020. [Google Scholar] [CrossRef]
- Pietrzak, M.; Papp, A.; Curtis, A.; Handelman, S.K.; Kataki, M.; Scharre, D.W.; Rempala, G.; Sadee, W. Gene expression profiling of brain samples from patients with Lewy body dementia. Biochem. Biophys. Res. Commun. 2016, 479, 875–880. [Google Scholar] [CrossRef] [Green Version]
- Nelson, P.T.; Wang, W.X.; Janse, S.A.; Thompson, K.L. MicroRNA expression patterns in human anterior cingulate and motor cortex: A study of dementia with Lewy bodies cases and controls. Brain Res. 2018, 1678, 374–383. [Google Scholar] [CrossRef] [Green Version]
- Lachenal, G.; Pernet-Gallay, K.; Chivet, M.; Hemming, F.J.; Belly, A.; Bodon, G.; Blot, B.; Haase, G.; Goldberg, Y.; Sadoul, R. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell Neurosci. 2011, 46, 409–418. [Google Scholar] [CrossRef] [Green Version]
- García-Romero, N.; Carrión-Navarro, J.; Esteban-Rubio, S.; Lázaro-Ibáñez, E.; Peris-Celda, M.; Alonso, M.M.; Guzmán-De-Villoria, J.; Fernández-Carballal, C.; de Mendivil, A.O.; García-Duque, S.; et al. DNA sequences within glioma-derived extracellular vesicles can cross the intact blood-brain barrier and be detected in peripheral blood of patients. Oncotarget 2017, 8, 1416–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalani, A.; Tyagi, A.; Tyagi, N. Exosomes: Mediators of neurodegeneration, neuroprotection and therapeutics. Mol. Neurobiol. 2014, 49, 590–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gui, Y.; Liu, H.; Zhang, L.; Lv, W.; Hu, X. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget 2015, 6, 37043–37053. [Google Scholar] [CrossRef] [Green Version]
- Riancho, J.; Vázquez-Higuera, J.L.; Pozueta, A.; Lage, C.; Kazimierczak, M.; Bravo, M.; Calero, M.; Gonalezález, A.; Rodríguez, E.; Lleó, A.; et al. MicroRNA Profile in Patients with Alzheimer’s Disease: Analysis of miR-9-5p and miR-598 in Raw and Exosome Enriched Cerebrospinal Fluid Samples. J. Alzheimers Dis. 2017, 57, 483–491. [Google Scholar] [CrossRef]
- Gámez-Valero, A.; Campdelacreu, J.; Vilas, D.; Ispierto, L.; Reñé, R.; Álvarez, R.; Armengol, M.P.; Borràs, F.E.; Beyer, K. Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer’s disease and dementia with Lewy bodies. Transl. Neurodegener. 2019, 8, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKeever, P.M.; Schneider, R.; Taghdiri, F.; Weichert, A.; Multani, N.; Brown, R.A.; Boxer, A.L.; Karydas, A.; Miller, B.; Robertson, J.; et al. MicroRNA Expression Levels Are Altered in the Cerebrospinal Fluid of Patients with Young-Onset Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 8826–8841. [Google Scholar] [CrossRef] [Green Version]
- Burgos, K.; Malenica, I.; Metpally, R.; Courtright, A.; Rakela, B.; Beach, T.; Shill, H.; Adler, C.; Sabbagh, M.; Villa, S.; et al. Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer’s and Parkinson’s diseases correlate with disease status and features of pathology. PLoS ONE 2014, 9, e94839. [Google Scholar] [CrossRef] [PubMed]
- Sørensen, S.S.; Nygaard, A.B.; Christensen, T. miRNA expression profiles in cerebrospinal fluid and blood of patients with Alzheimer’s disease and other types of dementia—An exploratory study. Transl. Neurodegener. 2016, 5, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, X.; Zheng, D.; Nao, J. Circulating Exosome microRNAs as Diagnostic Biomarkers of Dementia. Front. Aging Neurosci. 2020, 12, 580199. [Google Scholar] [CrossRef]
- Donadio, V.; Incensi, A.; Rizzo, G.; Capellari, S.; Pantieri, R.; Stanzani Maserati, M.; Devigili, G.; Eleopra, R.; Defazio, G.; Montini, F.; et al. A new potential biomarker for dementia with Lewy bodies: Skin nerve α-synuclein deposits. Neurology 2017, 89, 318–326. [Google Scholar] [CrossRef]
- Donadio, V. Skin nerve α-synuclein deposits in Parkinson’s disease and other synucleinopathies: A review. Clin. Auton. Res. 2019, 29, 577–585. [Google Scholar] [CrossRef]
- Manne, S.; Kondru, N.; Jin, H.; Serrano, G.E.; Anantharam, V.; Kanthasamy, A.; Adler, C.H.; Beach, T.G.; Kanthasamy, A.G. Blinded RT-QuIC Analysis of α-Synuclein Biomarker in Skin Tissue From Parkinson’s Disease Patients. Mov. Disord. 2020, 35, 2230–2239. [Google Scholar] [CrossRef]
- Wang, Z.; Becker, K.; Donadio, V.; Siedlak, S.; Yuan, J.; Rezaee, M.; Incensi, A.; Kuzkina, A.; Orrù, C.; Tatsuoka, C.; et al. Skin α-Synuclein Aggregation Seeding Activity as a Novel Biomarker for Parkinson Disease. JAMA Neurol. 2021, 78, 30–40. [Google Scholar] [CrossRef]
- McKeith, I.G.; Ferman, T.J.; Thomas, A.J.; Blanc, F.; Boeve, B.F.; Fujishiro, H.; Kantarci, K.; Muscio, C.; O’Brien, J.T.; Postuma, R.B.; et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology 2020, 94, 743–755. [Google Scholar] [CrossRef] [PubMed]
- Ferman, T.J.; Smith, G.E.; Kantarci, K.; Boeve, B.F.; Pankratz, V.S.; Dickson, D.W.; Graff-Radford, N.R.; Wszolek, Z.; Van Gerpen, J.; Uitti, R.; et al. Nonamnestic mild cognitive impairment progresses to dementia with Lewy bodies. Neurology 2013, 81, 2032–2038. [Google Scholar] [CrossRef] [Green Version]
- Villa, C.; Ferini-Strambi, L.; Combi, R. The Synergistic Relationship between Alzheimer’s Disease and Sleep Disorders: An Update. J. Alzheimers Dis. 2015, 46, 571–580. [Google Scholar] [CrossRef]
- Postuma, R.B.; Iranzo, A.; Hu, M.; Högl, B.; Boeve, B.F.; Manni, R.; Oertel, W.H.; Arnulf, I.; Ferini-Strambi, L.; Puligheddu, M.; et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: A multicentre study. Brain 2019, 142, 744–759. [Google Scholar] [CrossRef] [PubMed]
- Schenck, C.H.; Montplaisir, J.Y.; Frauscher, B.; Hogl, B.; Gagnon, J.F.; Postuma, R.; Sonka, K.; Jennum, P.; Partinen, M.; Arnulf, I.; et al. Rapid eye movement sleep behavior disorder: Devising controlled active treatment studies for symptomatic and neuroprotective therapy--a consensus statement from the International Rapid Eye Movement Sleep Behavior Disorder Study Group. Sleep Med. 2013, 14, 795–806. [Google Scholar] [CrossRef]
- Högl, B.; Stefani, A.; Videnovic, A. Idiopathic REM sleep behaviour disorder and neurodegeneration—An update. Nat. Rev. Neurol. 2018, 14, 40–55. [Google Scholar] [CrossRef]
- Iranzo, A.; Tolosa, E.; Gelpi, E.; Molinuevo, J.L.; Valldeoriola, F.; Serradell, M.; Sanchez-Valle, R.; Vilaseca, I.; Lomeña, F.; Vilas, D.; et al. Neurodegenerative disease status and post-mortem pathology in idiopathic rapid-eye-movement sleep behaviour disorder: An observational cohort study. Lancet Neurol. 2013, 12, 443–453. [Google Scholar] [CrossRef]
- Galbiati, A.; Verga, L.; Giora, E.; Zucconi, M.; Ferini-Strambi, L. The risk of neurodegeneration in REM sleep behavior disorder: A systematic review and meta-analysis of longitudinal studies. Sleep Med. Rev. 2019, 43, 37–46. [Google Scholar] [CrossRef]
- Iranzo, A.; Fairfoul, G.; Chumbala Na Ayudhaya, A.; Serradel, M.; Gelpi, E.; Vilaseca, I.; Sanchez-Valle, R.; Gaig, C.; Santamaria, J.; Tolosa, E.; et al. Detection of α-synuclein in CSF by RT-QuIC in patients with isolated rapid-eye-movement sleep behaviour disorder: A longitudinal observational study. Lancet Neurology. 2021, 20, 203–212. [Google Scholar] [CrossRef]
- Génier Marchand, D.; Postuma, R.B.; Escudier, F.; De Roy, J.; Pelletier, A.; Montplaisir, J.; Gagnon, J.F. How does dementia with Lewy bodies start? prodromal cognitive changes in REM sleep behavior disorder. Ann. Neurol. 2018, 83, 1016–1026. [Google Scholar] [CrossRef] [PubMed]
- Ferini-Strambi, L.; Fasiello, E.; Sforza, M.; Salsone, M.; Galbiati, A. Neuropsychological, electrophysiological, and neuroimaging biomarkers for REM behavior disorder. Expert Rev. Neurother. 2019, 19, 1069–1087. [Google Scholar] [CrossRef] [PubMed]
- Onyike, C.U.; Smith, G.S. In vivo imaging of neurodegeneration in dementia with Lewy bodies (DLB). Int. Psychogeriatr. 2016, 28, 527–528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braak, H.; Del Tredici, K.; Rüb, U.; de Vos, R.A.; Jansen Steur, E.N.; Braak, E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 2003, 24, 197–211. [Google Scholar] [CrossRef]
- Labate, A.; Salsone, M.; Novellino, F.; Morelli, M.; Sturniolo, M.; Gambardella, A.; Quattrone, A. Combined use of cardiac m-i123-iodobenzylguanidine scintigraphy and ¹23I-fp-cit single photon emission computed tomography in older adults with rapid eye movement sleep behavior disorder. J. Am. Geriatr. Soc. 2011, 59, 928–929. [Google Scholar] [CrossRef] [PubMed]
- Cousins, O.; Yousaf, T.; Wilson, H.; Pagano, G.; Politis, M. Molecular Imaging of Dementia With Lewy Bodies. Int. Rev. Neurobiol. 2019, 144, 59–93. [Google Scholar] [CrossRef]
- Brooks, D.J.; Tambasco, N. Imaging synucleinopathies. Mov. Disord. 2016, 31, 814–829. [Google Scholar] [CrossRef]
- Kikuchi, A.; Takeda, A.; Okamura, N.; Tashiro, M.; Hasegawa, T.; Furumoto, S.; Kobayashi, M.; Sugeno, N.; Baba, T.; Miki, Y.; et al. In vivo visualization of alpha-synuclein deposition by carbon-11-labelled 2-[2-(2-dimethylaminothiazol-5-yl)ethenyl]-6-[2-(fluoro)ethoxy]benzoxazole positron emission tomography in multiple system atrophy. Brain 2010, 133, 1772–1778. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, W.; Zhou, D.; Gaba, V.; Liu, J.; Li, S.; Peng, X.; Xu, J.; Dhavale, D.; Bagchi, D.P.; d’Avignon, A.; et al. Design, Synthesis, and Characterization of 3-(Benzylidene)indolin-2-one Derivatives as Ligands for α-Synuclein Fibrils. J. Med. Chem. 2015, 58, 6002–6017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Braune, S.; Reinhardt, M.; Bathmann, J.; Krause, T.; Lehmann, M.; Lücking, C.H. Impaired cardiac uptake of meta-[123I]iodobenzylguanidine in Parkinson’s disease with autonomic failure. Acta Neurol. Scand. 1998, 97, 307–314. [Google Scholar] [CrossRef]
- Kane, J.P.M.; Roberts, G.; Petrides, G.S.; Lloyd, J.J.; O’Brien, J.T.; Thomas, A.J. I-MIBG scintigraphy utility and cut-off value in a clinically representative dementia cohort. Parkinsonism Relat. Disord. 2019, 62, 79–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wakabayashi, K.; Takahashi, H.; Ohama, E.; Takeda, S.; Ikuta, F. Lewy bodies in the visceral autonomic nervous system in Parkinson’s disease. Adv. Neurol. 1993, 60, 609–612. [Google Scholar] [PubMed]
- Hague, K.; Lento, P.; Morgello, S.; Caro, S.; Kaufmann, H. The distribution of Lewy bodies in pure autonomic failure: Autopsy findings and review of the literature. Acta Neuropathol. 1997, 94, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, K.; Takahashi, H. Neuropathology of autonomic nervous system in Parkinson’s disease. Eur. Neurol. 1997, 38 (Suppl. 2), 2–7. [Google Scholar] [CrossRef] [PubMed]
- Giannoccaro, M.P.; Donadio, V.; Giannini, G.; Devigili, G.; Rizzo, G.; Incensi, A.; Cason, E.; Calandra-Buonaura, G.; Eleopra, R.; Cortelli, P.; et al. Comparison of 123I-MIBG scintigraphy and phosphorylated α-synuclein skin deposits in synucleinopathies. Parkinsonism Relat. Disord. 2020, 81, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Yoshita, M.; Arai, H.; Arai, T.; Asada, T.; Fujishiro, H.; Hanyu, H.; Iizuka, O.; Iseki, E.; Kashihara, K.; Kosaka, K.; et al. Diagnostic accuracy of 123I-meta-iodobenzylguanidine myocardial scintigraphy in dementia with Lewy bodies: A multicenter study. PLoS ONE 2015, 10, e0120540. [Google Scholar] [CrossRef]
- Orimo, S.; Amino, T.; Itoh, Y.; Takahashi, A.; Kojo, T.; Uchihara, T.; Tsuchiya, K.; Mori, F.; Wakabayashi, K.; Takahashi, H. Cardiac sympathetic denervation precedes neuronal loss in the sympathetic ganglia in Lewy body disease. Acta Neuropathol. 2005, 109, 583–588. [Google Scholar] [CrossRef] [PubMed]
- Orimo, S.; Uchihara, T.; Nakamura, A.; Mori, F.; Kakita, A.; Wakabayashi, K.; Takahashi, H. Axonal alpha-synuclein aggregates herald centripetal degeneration of cardiac sympathetic nerve in Parkinson’s disease. Brain 2008, 131, 642–650. [Google Scholar] [CrossRef] [Green Version]
- Orimo, S.; Kanazawa, T.; Nakamura, A.; Uchihara, T.; Mori, F.; Kakita, A.; Wakabayashi, K.; Takahashi, H. Degeneration of cardiac sympathetic nerve can occur in multiple system atrophy. Acta Neuropathol. 2007, 113, 81–86. [Google Scholar] [CrossRef]
- Yoshita, M.; Taki, J.; Yamada, M. A clinical role for [(123)I]MIBG myocardial scintigraphy in the distinction between dementia of the Alzheimer’s-type and dementia with Lewy bodies. J. Neurol. Neurosurg. Psychiatry 2001, 71, 583–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noguchi-Shinohara, M.; Tokuda, T.; Yoshita, M.; Kasai, T.; Ono, K.; Nakagawa, M.; El-Agnaf, O.M.; Yamada, M. CSF alpha-synuclein levels in dementia with Lewy bodies and Alzheimer’s disease. Brain Res. 2009, 1251, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Hirao, K.; Kanetaka, H.; Namioka, N.; Hatanaka, H.; Hirose, D.; Fukasawa, R.; Umahara, T.; Sakurai, H.; Hanyu, H. Utility of the combination of DAT SPECT and MIBG myocardial scintigraphy in differentiating dementia with Lewy bodies from Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komatsu, J.; Samuraki, M.; Nakajima, K.; Arai, H.; Arai, T.; Asada, T.; Fujishiro, H.; Hanyu, H.; Iizuka, O.; Iseki, E.; et al. I-MIBG myocardial scintigraphy for the diagnosis of DLB: A multicentre 3-year follow-up study. J. Neurol. Neurosurg. Psychiatry 2018, 89, 1167–1173. [Google Scholar] [CrossRef] [PubMed]
- King, A.E.; Mintz, J.; Royall, D.R. Meta-analysis of 123I-MIBG cardiac scintigraphy for the diagnosis of Lewy body-related disorders. Mov. Disord. 2011, 26, 1218–1224. [Google Scholar] [CrossRef]
- Oda, H.; Ishii, K.; Terashima, A.; Shimada, K.; Yamane, Y.; Kawasaki, R.; Ohkawa, S. Myocardial scintigraphy may predict the conversion to probable dementia with Lewy bodies. Neurology 2013, 81, 1741–1745. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, S.; Hirose, D.; Namioka, N.; Kanetaka, H.; Hirao, K.; Hatanaka, H.; Takenoshita, N.; Kaneko, Y.; Ogawa, Y.; Umahara, T.; et al. Correlation between clinical symptoms and striatal DAT uptake in patients with DLB. Ann. Nucl. Med. 2017, 31, 390–398. [Google Scholar] [CrossRef] [PubMed]
- Benamer, T.S.; Patterson, J.; Grosset, D.G.; Booij, J.; de Bruin, K.; van Royen, E.; Speelman, J.D.; Horstink, M.H.; Sips, H.J.; Dierckx, R.A.; et al. Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: The [123I]-FP-CIT study group. Mov. Disord. 2000, 15, 503–510. [Google Scholar] [CrossRef]
- Booij, J.; Speelman, J.D.; Horstink, M.W.; Wolters, E.C. The clinical benefit of imaging striatal dopamine transporters with [123I]FP-CIT SPET in differentiating patients with presynaptic parkinsonism from those with other forms of parkinsonism. Eur. J. Nucl. Med. 2001, 28, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Ashkan, K.; Wallace, B.A.; Mitrofanis, J.; Pollo, C.; Brard, P.Y.; Fagret, D.; Benabid, A.L. SPECT imaging, immunohistochemical and behavioural correlations in the primate models of Parkinson’s disease. Parkinsonism Relat. Disord. 2007, 13, 266–275. [Google Scholar] [CrossRef]
- Sossi, V.; Dinelle, K.; Topping, G.J.; Holden, J.E.; Doudet, D.; Schulzer, M.; Ruth, T.J.; Stoessl, A.J.; de la Fuente-Fernandez, R. Dopamine transporter relation to levodopa-derived synaptic dopamine in a rat model of Parkinson’s: An in vivo imaging study. J. Neurochem. 2009, 109, 85–92. [Google Scholar] [CrossRef] [PubMed]
- McKeith, I.; O’Brien, J.; Walker, Z.; Tatsch, K.; Booij, J.; Darcourt, J.; Padovani, A.; Giubbini, R.; Bonuccelli, U.; Volterrani, D.; et al. Sensitivity and specificity of dopamine transporter imaging with 123I-FP-CIT SPECT in dementia with Lewy bodies: A phase III, multicentre study. Lancet Neurol. 2007, 6, 305–313. [Google Scholar] [CrossRef]
- Novellino, F.; Bagnato, A.; Salsone, M.; Cascini, G.L.; Nicoletti, G.; Arabia, G.; Pugliese, P.; Morelli, M.; Paglionico, S.; Cipullo, S.; et al. Myocardial (123)I-MIBG scintigraphy for differentiation of Lewy bodies disease from FTD. Neurobiol. Aging 2010, 31, 1903–1911. [Google Scholar] [CrossRef]
- Morgan, S.; Kemp, P.; Booij, J.; Costa, D.C.; Padayachee, S.; Lee, L.; Barber, C.; Carter, J.; Walker, Z. Differentiation of frontotemporal dementia from dementia with Lewy bodies using FP-CIT SPECT. J. Neurol. Neurosurg. Psychiatry 2012, 83, 1063–1070. [Google Scholar] [CrossRef] [Green Version]
- Walker, Z.; Costa, D.C.; Walker, R.W.; Shaw, K.; Gacinovic, S.; Stevens, T.; Livingston, G.; Ince, P.; McKeith, I.G.; Katona, C.L. Differentiation of dementia with Lewy bodies from Alzheimer’s disease using a dopaminergic presynaptic ligand. J. Neurol. Neurosurg. Psychiatry 2002, 73, 134–140. [Google Scholar] [CrossRef] [Green Version]
- O’Brien, J.T.; Colloby, S.; Fenwick, J.; Williams, E.D.; Firbank, M.; Burn, D.; Aarsland, D.; McKeith, I.G. Dopamine transporter loss visualized with FP-CIT SPECT in the differential diagnosis of dementia with Lewy bodies. Arch. Neurol. 2004, 61, 919–925. [Google Scholar] [CrossRef] [Green Version]
- Treglia, G.; Cason, E.; Cortelli, P.; Gabellini, A.; Liguori, R.; Bagnato, A.; Giordano, A.; Fagioli, G. Iodine-123 metaiodobenzylguanidine scintigraphy and iodine-123 ioflupane single photon emission computed tomography in Lewy body diseases: Complementary or alternative techniques? J. Neuroimaging 2014, 24, 149–154. [Google Scholar] [CrossRef]
- Tiraboschi, P.; Corso, A.; Guerra, U.P.; Nobili, F.; Piccardo, A.; Calcagni, M.L.; Volterrani, D.; Cecchin, D.; Tettamanti, M.; Antelmi, L.; et al. (123) I-2β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl) nortropane single photon emission computed tomography and (123) I-metaiodobenzylguanidine myocardial scintigraphy in differentiating dementia with lewy bodies from other dementias: A comparative study. Ann. Neurol. 2016, 80, 368–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakamoto, F.; Shiraishi, S.; Ogasawara, K.; Tsuda, N.; Nakagawa, M.; Tomiguchi, S.; Yamashita, Y. A diagnostic strategy for Lewy body disease using DAT-SPECT, MIBG and Combined index. Ann. Nucl. Med. 2020, 34, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Horvath, J.; Herrmann, F.R.; Burkhard, P.R.; Bouras, C.; Kövari, E. Neuropathology of dementia in a large cohort of patients with Parkinson’s disease. Park. Relat. Disord. 2013, 19, 864–868. [Google Scholar] [CrossRef]
- Kotzbauer, P.T.; Cairns, N.J.; Campbell, M.C.; Willis, A.W.; Racette, B.A.; Tabbal, S.D.; Perlmutter, J.S. Pathologic accumulation of α-synuclein and Aβ in Parkinson disease patients with dementia. Arch. Neurol. 2012, 69, 1326–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Isla, T.; Growdon, W.B.; McNamara, M.; Newell, K.; Gómez-Tortosa, E.; Hedley-Whyte, E.T.; Hyman, B.T. Clinicopathologic correlates in temporal cortex in dementia with Lewy bodies. Neurology 1999, 53, 2003–2009. [Google Scholar] [CrossRef] [PubMed]
- Schneider, J.A.; Aggarwal, N.T.; Barnes, L.; Boyle, P.; Bennett, D.A. The neuropathology of older persons with and without dementia from community versus clinic cohorts. J. Alzheimers Dis. 2009, 18, 691–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halliday, G.M.; Holton, J.L.; Revesz, T.; Dickson, D.W. Neuropathology underlying clinical variability in patients with synucleinopathies. Acta Neuropathol. 2011, 122, 187–204. [Google Scholar] [CrossRef] [PubMed]
- Dugger, B.N.; Adler, C.H.; Shill, H.A.; Caviness, J.; Jacobson, S.; Driver-Dunckley, E.; Beach, T.G.; Consortium, A.P.s.D. Concomitant pathologies among a spectrum of parkinsonian disorders. Park. Relat. Disord. 2014, 20, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Sierra, M.; Gelpi, E.; Martí, M.J.; Compta, Y. Lewy- and Alzheimer-type pathologies in midbrain and cerebellum across the Lewy body disorders spectrum. Neuropathol. Appl. Neurobiol. 2016, 42, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Kantarci, K.; Lowe, V.J.; Chen, Q.; Przybelski, S.A.; Lesnick, T.G.; Schwarz, C.G.; Senjem, M.L.; Gunter, J.L.; Jack, C.R.; Graff-Radford, J.; et al. β-Amyloid PET and neuropathology in dementia with Lewy bodies. Neurology 2020, 94, e282–e291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ossenkoppele, R.; Jansen, W.J.; Rabinovici, G.D.; Knol, D.L.; van der Flier, W.M.; van Berckel, B.N.; Scheltens, P.; Visser, P.J.; Verfaillie, S.C.; Zwan, M.D.; et al. Prevalence of amyloid PET positivity in dementia syndromes: A meta-analysis. JAMA 2015, 313, 1939–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomperts, S.N.; Rentz, D.M.; Moran, E.; Becker, J.A.; Locascio, J.J.; Klunk, W.E.; Mathis, C.A.; Elmaleh, D.R.; Shoup, T.; Fischman, A.J.; et al. Imaging amyloid deposition in Lewy body diseases. Neurology 2008, 71, 903–910. [Google Scholar] [CrossRef]
- Nedelska, Z.; Ferman, T.J.; Boeve, B.F.; Przybelski, S.A.; Lesnick, T.G.; Murray, M.E.; Gunter, J.L.; Senjem, M.L.; Vemuri, P.; Smith, G.E.; et al. Pattern of brain atrophy rates in autopsy-confirmed dementia with Lewy bodies. Neurobiol. Aging 2015, 36, 452–461. [Google Scholar] [CrossRef] [Green Version]
- Nelson, P.T.; Kryscio, R.J.; Jicha, G.A.; Abner, E.L.; Schmitt, F.A.; Xu, L.O.; Cooper, G.; Smith, C.D.; Markesbery, W.R. Relative preservation of MMSE scores in autopsy-proven dementia with Lewy bodies. Neurology 2009, 73, 1127–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarro, L.; Senjem, M.L.; Lundt, E.S.; Przybelski, S.A.; Lesnick, T.G.; Graff-Radford, J.; Boeve, B.F.; Lowe, V.J.; Ferman, T.J.; Knopman, D.S.; et al. Amyloid-β deposition and regional grey matter atrophy rates in dementia with Lewy bodies. Brain 2016, 139, 2740–2750. [Google Scholar] [CrossRef]
- Blanc, F.; Mahmoudi, R.; Jonveaux, T.; Galmiche, J.; Chopard, G.; Cretin, B.; Demuynck, C.; Martin-Hunyadi, C.; Philippi, N.; Sellal, F.; et al. Long-term cognitive outcome of Alzheimer’s disease and dementia with Lewy bodies: Dual disease is worse. Alzheimers Res. Ther 2017, 9, 47. [Google Scholar] [CrossRef] [PubMed]
- Donaghy, P.; Thomas, A.J.; O’Brien, J.T. Amyloid PET Imaging in Lewy body disorders. Am. J. Geriatr. Psychiatry 2015, 23, 23–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, H.; Shinotoh, H.; Hirano, S.; Miyoshi, M.; Sato, K.; Tanaka, N.; Ota, T.; Fukushi, K.; Irie, T.; Ito, H.; et al. β-Amyloid in Lewy body disease is related to Alzheimer’s disease-like atrophy. Mov. Disord. 2013, 28, 169–175. [Google Scholar] [CrossRef]
- Irwin, D.J.; Hurtig, H.I. The Contribution of Tau, Amyloid-Beta and Alpha-Synuclein Pathology to Dementia in Lewy Body Disorders. J. Alzheimers Dis. Park. 2018, 8. [Google Scholar] [CrossRef]
- Mak, E.; Donaghy, P.C.; McKiernan, E.; Firbank, M.J.; Lloyd, J.; Petrides, G.S.; Thomas, A.J.; O’Brien, J.T. Beta amyloid deposition maps onto hippocampal and subiculum atrophy in dementia with Lewy bodies. Neurobiol. Aging 2019, 73, 74–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nedelska, Z.; Schwarz, C.G.; Lesnick, T.G.; Boeve, B.F.; Przybelski, S.A.; Lowe, V.J.; Kremers, W.K.; Gunter, J.L.; Senjem, M.L.; Graff-Radford, J.; et al. Association of Longitudinal β-Amyloid Accumulation Determined by Positron Emission Tomography With Clinical and Cognitive Decline in Adults With Probable Lewy Body Dementia. JAMA Netw. Open 2019, 2, e1916439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, E.J.; Mukaetova-Ladinska, E.B.; Perry, R.H.; Jaros, E.; Barber, R.; O’Brien, J.T. Neuropathological correlates of volumetric MRI in autopsy-confirmed Lewy body dementia. Neurobiol. Aging 2012, 33, 1228–1236. [Google Scholar] [CrossRef] [PubMed]
- Sander, K.; Lashley, T.; Gami, P.; Gendron, T.; Lythgoe, M.F.; Rohrer, J.D.; Schott, J.M.; Revesz, T.; Fox, N.C.; Årstad, E. Characterization of tau positron emission tomography tracer. Alzheimers Dement. 2016, 12, 1116–1124. [Google Scholar] [CrossRef]
- Ferreira, D.; Przybelski, S.A.; Lesnick, T.G.; Lemstra, A.W.; Londos, E.; Blanc, F.; Nedelska, Z.; Schwarz, C.G.; Graff-Radford, J.; Senjem, M.L.; et al. β-Amyloid and tau biomarkers and clinical phenotype in dementia with Lewy bodies. Neurology 2020, 95, e3257–e3268. [Google Scholar] [CrossRef]
- Burton, E.J.; Barber, R.; Mukaetova-Ladinska, E.B.; Robson, J.; Perry, R.H.; Jaros, E.; Kalaria, R.N.; O’Brien, J.T. Medial temporal lobe atrophy on MRI differentiates Alzheimer’s disease from dementia with Lewy bodies and vascular cognitive impairment: A prospective study with pathological verification of diagnosis. Brain 2009, 132, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Coughlin, D.G.; Phillips, J.S.; Roll, E.; Peterson, C.; Lobrovich, R.; Rascovsky, K.; Ungrady, M.; Wolk, D.A.; Das, S.; Weintraub, D.; et al. Multimodal in vivo and postmortem assessments of tau in Lewy body disorders. Neurobiol. Aging 2020, 96, 137–147. [Google Scholar] [CrossRef]
- Lee, S.H.; Cho, H.; Choi, J.Y.; Lee, J.H.; Ryu, Y.H.; Lee, M.S.; Lyoo, C.H. Distinct patterns of amyloid-dependent tau accumulation in Lewy body diseases. Mov. Disord. 2018, 33, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.; Schöll, M.; Londos, E.; Ohlsson, T.; Hansson, O. F-AV-1451 in Parkinson’s Disease with and without dementia and in Dementia with Lewy Bodies. Sci. Rep. 2018, 8, 4717. [Google Scholar] [CrossRef] [PubMed]
- Kantarci, K.; Lowe, V.J.; Boeve, B.F.; Senjem, M.L.; Tosakulwong, N.; Lesnick, T.G.; Spychalla, A.J.; Gunter, J.L.; Fields, J.A.; Graff-Radford, J.; et al. AV-1451 tau and β-amyloid positron emission tomography imaging in dementia with Lewy bodies. Ann. Neurol. 2017, 81, 58–67. [Google Scholar] [CrossRef]
- Gomperts, S.N.; Marquie, M.; Locascio, J.J.; Bayer, S.; Johnson, K.A.; Growdon, J.H. PET Radioligands Reveal the Basis of Dementia in Parkinson’s Disease and Dementia with Lewy Bodies. Neurodegener. Dis. 2016, 16, 118–124. [Google Scholar] [CrossRef] [Green Version]
- Mak, E.; Nicastro, N.; Malpetti, M.; Savulich, G.; Surendranathan, A.; Holland, N.; Passamonti, L.; Jones, P.S.; Carter, S.F.; Su, L.; et al. Imaging tau burden in dementia with Lewy bodies using. Neurobiol. Aging 2020, 101, 172–180. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour, C.; Ferreira, D.; Oppedal, K.; Cavallin, L.; Bousiges, O.; Wahlund, L.O.; Hort, J.; Nedelska, Z.; Padovani, A.; Pilotto, A.; et al. The combined effect of amyloid-β and tau biomarkers on brain atrophy in dementia with Lewy bodies. Neuroimage Clin. 2020, 27, 102333. [Google Scholar] [CrossRef] [PubMed]
- Merdes, A.R.; Hansen, L.A.; Jeste, D.V.; Galasko, D.; Hofstetter, C.R.; Ho, G.J.; Thal, L.J.; Corey-Bloom, J. Influence of Alzheimer pathology on clinical diagnostic accuracy in dementia with Lewy bodies. Neurology 2003, 60, 1586–1590. [Google Scholar] [CrossRef] [PubMed]
- Del Ser, T.; Hachinski, V.; Merskey, H.; Munoz, D.G. Clinical and pathologic features of two groups of patients with dementia with Lewy bodies: Effect of coexisting Alzheimer-type lesion load. Alzheimer Dis. Assoc. Disord. 2001, 15, 31–44. [Google Scholar] [CrossRef]
- Tiraboschi, P.; Attems, J.; Thomas, A.; Brown, A.; Jaros, E.; Lett, D.J.; Ossola, M.; Perry, R.H.; Ramsay, L.; Walker, L.; et al. Clinicians’ ability to diagnose dementia with Lewy bodies is not affected by β-amyloid load. Neurology 2015, 84, 496–499. [Google Scholar] [CrossRef] [Green Version]
- Compta, Y.; Parkkinen, L.; Kempster, P.; Selikhova, M.; Lashley, T.; Holton, J.L.; Lees, A.J.; Revesz, T. The significance of α-synuclein, amyloid-β and tau pathologies in Parkinson’s disease progression and related dementia. Neurodegener. Dis. 2014, 13, 154–156. [Google Scholar] [CrossRef] [PubMed]
- Murray, M.E.; Ferman, T.J.; Boeve, B.F.; Przybelski, S.A.; Lesnick, T.G.; Liesinger, A.M.; Senjem, M.L.; Gunter, J.L.; Preboske, G.M.; Lowe, V.J.; et al. MRI and pathology of REM sleep behavior disorder in dementia with Lewy bodies. Neurology 2013, 81, 1681–1689. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, D. Structural imaging in dementia with Lewy bodies: The potential of multivariate data analysis. Psychiatry Res. Neuroimaging 2020, 306, 111180. [Google Scholar] [CrossRef]
- Whitwell, J.L.; Weigand, S.D.; Shiung, M.M.; Boeve, B.F.; Ferman, T.J.; Smith, G.E.; Knopman, D.S.; Petersen, R.C.; Benarroch, E.E.; Josephs, K.A.; et al. Focal atrophy in dementia with Lewy bodies on MRI: A distinct pattern from Alzheimer’s disease. Brain 2007, 130, 708–719. [Google Scholar] [CrossRef] [Green Version]
- Marcus, C.; Mena, E.; Subramaniam, R.M. Brain PET in the diagnosis of Alzheimer’s disease. Clin. Nucl. Med. 2014, 39, e413–e422. [Google Scholar] [CrossRef] [Green Version]
- Mosconi, L. Glucose metabolism in normal aging and Alzheimer’s disease: Methodological and physiological considerations for PET studies. Clin. Transl. Imaging 2013, 1. [Google Scholar] [CrossRef] [Green Version]
- Minoshima, S.; Foster, N.L.; Sima, A.A.; Frey, K.A.; Albin, R.L.; Kuhl, D.E. Alzheimer’s disease versus dementia with Lewy bodies: Cerebral metabolic distinction with autopsy confirmation. Ann. Neurol. 2001, 50, 358–365. [Google Scholar] [CrossRef] [Green Version]
- Lobotesis, K.; Fenwick, J.D.; Phipps, A.; Ryman, A.; Swann, A.; Ballard, C.; McKeith, I.G.; O’Brien, J.T. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not AD. Neurology 2001, 56, 643–649. [Google Scholar] [CrossRef]
- Higuchi, M.; Tashiro, M.; Arai, H.; Okamura, N.; Hara, S.; Higuchi, S.; Itoh, M.; Shin, R.W.; Trojanowski, J.Q.; Sasaki, H. Glucose hypometabolism and neuropathological correlates in brains of dementia with Lewy bodies. Exp. Neurol. 2000, 162, 247–256. [Google Scholar] [CrossRef] [PubMed]
- Graff-Radford, J.; Lesnick, T.G.; Savica, R.; Chen, Q.; Ferman, T.J.; Przybelski, S.A.; Jones, D.T.; Senjem, M.L.; Gunter, J.L.; Kremers, W.K.; et al. F-fluorodeoxyglucose positron emission tomography in dementia with Lewy bodies. Brain Commun. 2020, 2, fcaa040. [Google Scholar] [CrossRef] [Green Version]
- Iizuka, T.; Kameyama, M. Cingulate island sign on FDG-PET is associated with medial temporal lobe atrophy in dementia with Lewy bodies. Ann. Nucl. Med. 2016, 30, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Yousaf, T.; Dervenoulas, G.; Valkimadi, P.E.; Politis, M. Neuroimaging in Lewy body dementia. J. Neurol. 2019, 266, 1–26. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.M.; Katsifis, A.; Villemagne, V.L.; Best, R.; Jones, G.; Saling, M.; Bradshaw, J.; Merory, J.; Woodward, M.; Hopwood, M.; et al. The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J. Nucl. Med. 2009, 50, 1638–1645. [Google Scholar] [CrossRef] [Green Version]
- Morbelli, S.; Chincarini, A.; Brendel, M.; Rominger, A.; Bruffaerts, R.; Vandenberghe, R.; Kramberger, M.G.; Trost, M.; Garibotto, V.; Nicastro, N.; et al. Metabolic patterns across core features in dementia with lewy bodies. Ann. Neurol. 2019, 85, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Vogels, T.; Murgoci, A.N.; Hromádka, T. Intersection of pathological tau and microglia at the synapse. Acta Neuropathol. Commun. 2019, 7, 109. [Google Scholar] [CrossRef]
- Nicastro, N.; Mak, E.; Williams, G.B.; Surendranathan, A.; Bevan-Jones, W.R.; Passamonti, L.; Vàzquez Rodrìguez, P.; Su, L.; Arnold, R.; Fryer, T.D.; et al. Correlation of microglial activation with white matter changes in dementia with Lewy bodies. Neuroimage Clin. 2020, 25, 102200. [Google Scholar] [CrossRef] [PubMed]
- Surendranathan, A.; Su, L.; Mak, E.; Passamonti, L.; Hong, Y.T.; Arnold, R.; Vázquez Rodríguez, P.; Bevan-Jones, W.R.; Brain, S.A.E.; Fryer, T.D.; et al. Early microglial activation and peripheral inflammation in dementia with Lewy bodies. Brain 2018, 141, 3415–3427. [Google Scholar] [CrossRef] [PubMed]
- Moors, T.E.; Paciotti, S.; Ingrassia, A.; Quadri, M.; Breedveld, G.; Tasegian, A.; Chiasserini, D.; Eusebi, P.; Duran-Pacheco, G.; Kremer, T.; et al. Characterization of Brain Lysosomal Activities in GBA-Related and Sporadic Parkinson’s Disease and Dementia with Lewy Bodies. Mol. Neurobiol. 2019, 56, 1344–1355. [Google Scholar] [CrossRef] [Green Version]
Gene | Detected Variants/ Haplotype | Study/ Inheritance | References | |
---|---|---|---|---|
APOE | p.Cys130Arg/ε4/rs429358 | GWAS | [14,18,46] | |
Well-established genes | p.Arg176Cys | |||
APP | p.Glu599Lys p.Glu674Lys p.Val717Ile Duplication | Rare variants | [20,39,56] | |
GBA | p.Arg87Gln p.Asp140His p.Arg296Gln p.Glu326Lys p.Glu365 Lys p.Asp448His p.Asn409Ser rs35749011 | GWAS | [14,19,41,44] | |
MAPT | H1G haplotype H2 haplotype p.Gly86Ser p.Ala152Thr p.Arg221Gln | Mendelian | [20,52,53,54,55] | |
PSEN1 | p.Ala79Val p.Gly206Ala p.Glu318Gly | Rare variants | [39,49] | |
PSEN2 | p.Arg71Trp p.Ala85Val p.Val191Glu p.Asp439Ala | Mendelian | [18,49,59] | |
SNCA | p.Glu46Lys p.Ala53Thr rs7681440 rs356182 | GWAS and Mendelian | [14,18,22,60] | |
Additional genes | ADGRG7, TFG | chr3:100,357,671–100,439,759 | CNV case/controls analysis | [61] |
ASH1L | rs12734374 | GWAS | [62] | |
BCHE | K variant | Association study | [63] | |
BCL7C/STX1B | rs897984 | GWAS | [14] | |
CHCHD2 | p.Gly4Arg | Rare variant | [20] | |
CHMP2B | p.Ile29Val | Mendelian | [46] | |
CHRFAM7A | 2 bp del at 497-498 in exon 6 | Association study | [64] | |
CNTN1 | rs7314908 | GWAS | [14] | |
CSF1R | p.Ile794Thr | Mendelian | [65] | |
CSMD1 | chr8:4,033,908–4,126,540 | CNV-candidate CNV approach | [61] | |
DCNT1 | p.Ile780Thr | Rare variant | [20] | |
DDX11, OVOS2 | chr12:31,249,834–31,407,303 | CNV-candidate CNV approach | [61] | |
EIF4G1 | p.Ala502Val p.Gly686Cys p.Met1134Val | Mendelian | [46] | |
GABRB3 | rs1426210 | GWAS | [14] | |
GIGYF2 | p.Ser66Thr p.Ser1029Cys | Mendelian | [46] | |
GRN | p.Cys105Arg p.Ala276Val p.Arg493 * | Rare variants | [20,49,66] | |
LAPTM4B | chr8:98755,434–98,800,334 | CNV case/controls analysis | [61] | |
LPR10 | p.Gly603Arg 1424+5 G→A | Mendelian | [67] | |
LRRK2 | p.Gly2019Ser | Rare variant | [68] | |
MSR1 | chr8:15948,235–16,021,468 | CNV case/controls analysis | [61] | |
mtDNA | Haplogroup H | Association study | [69] | |
NOS2 | (CCTTT)n | Association study | [70] | |
NME1,NME1-NME2,SPAG9 | chr17:49,177,096–49,231,786 | CNV case/controls analysis | [61] | |
NOTCH3 | p.Arg578Cys p.Arg578His p.Arg607His | Rare variants | [20] | |
PARK2 | P.Pro37Leu p.Ala46Ser p.Arg275Trp p.Gly430Asp | Rare variants | [46,49] | |
PDZD2 | chr5:32101,400–32,106,628 | CNV case/controls analysis | [61] | |
PINK1 | p.Pro138Leu p.Met318Leu p.Ser499Cys | Rare variants | [49] | |
PRKN | p.Arg275Trp p.Gly430Asp | Mendelian | [46] | |
PRNP | p.Met232Arg | Rare variant | [71] | |
SCARB2 | rs6812193 | GWAS | [18] | |
SNCB | p.Val70Met p.Pro123HIs | Mendelian | [29,72] | |
SORL1 | p.Asp140Asn p.Arg1799Gln | Mendelian | [73] | |
SQSTM1 | p.Pro27Leu p.Ala33Val | Mendelian | [46] | |
TBK1 | p.Arg384Trp p.Arg384Gln | Rare variant | [20] | |
TIA1 | p.Pro362Leu | Rare variant | [20] | |
TREM2 | p.Ar62His | Rare variant | [66] | |
ZFPM1 | rs12926163 | GWAS | [62] |
Biomarkers Target | Imaging Tool | Assessment | Findings in DLB Patients |
---|---|---|---|
NEURAL DAMAGE | |||
α-synuclein Aggregates | |||
Direct Biomarkers | [18F]BF227 [18F]WC-58 | α-synuclein aggregates load in the brain tissues | High affinity for amyloid low affinity for synuclein Promising affinity for synthetic synuclein fibrils, slow clearance |
Indirect Biomarkers | |||
-Noradrenergic System | Cardiac [123I]- MIBG Scintigraphy | Postganglionic presynaptic cardiac sympathetic nerve endings integrity | Cardiac noradrenergic post-ganglionic denervation, expressed as reduced H/R ratio in DLB compared to AD and control subjects |
-Dopaminergic System | [123I]-FP-CIT-SPECT | Presynaptic nigrostriatal projection pathway integrity | Dopaminergic neuron degeneration detected as a reduction of radiotracer specific uptake |
-β-Amyloid aggregates | [11C]PiB PET | Insoluble β-amyloid plaques | Faster temporal lobar atrophy with a pattern of distribution and atrophy resembling that occurring in AD |
-Tau aggregates | [18F]AV-1451-PET | Intracellular tau in neurofibrillary tangles and neurites | High burden of tau in specific regions including occipital and posterior temporoparietal regions in DLB compared to healthy controls, but less than that observed in AD |
BRAIN TISSUE DAMAGE | |||
-Structural Damage | MULTIVARIATE DATA ANALYSIS | Atrophy in brain structures/areas | Brain pattern involved the posterior brain areas and subcortical grey matter structures, but mostly sparing the hippocampus |
-Functional Damage | [18F]-Fludeoxyglucose-PET | Metabolic neuronal activity of specific structures/areas in the brain | Hypometabolism most pronounced in the visual association cortex in DLB compared AD: Cingulate island sign in presence of the coexisting AD-type pathology in DLB |
NEUROINFLAMMATION | |||
-Microglia Activation | [11C]PK1195-PET | Translocator protein mitochondrial membrane protein in reactive microglia | Higher tracer binding especially in the parietal cortices in early stage of DLB neurodegeneration |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Combi, R.; Salsone, M.; Villa, C.; Ferini-Strambi, L. Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. Int. J. Mol. Sci. 2021, 22, 3960. https://doi.org/10.3390/ijms22083960
Combi R, Salsone M, Villa C, Ferini-Strambi L. Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. International Journal of Molecular Sciences. 2021; 22(8):3960. https://doi.org/10.3390/ijms22083960
Chicago/Turabian StyleCombi, Romina, Maria Salsone, Chiara Villa, and Luigi Ferini-Strambi. 2021. "Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges" International Journal of Molecular Sciences 22, no. 8: 3960. https://doi.org/10.3390/ijms22083960
APA StyleCombi, R., Salsone, M., Villa, C., & Ferini-Strambi, L. (2021). Genetic Architecture and Molecular, Imaging and Prodromic Markers in Dementia with Lewy Bodies: State of the Art, Opportunities and Challenges. International Journal of Molecular Sciences, 22(8), 3960. https://doi.org/10.3390/ijms22083960