Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach
Abstract
:1. Introduction
2. Recap the Role of Immune System in PCa and Advanced Stages
3. The Immunoregulation and Inhibition of Immune Checkpoints in PCa
3.1. Cytotoxic T-lymphocyte Antigen 4
3.2. Programmed Cell Death Protein 1
3.3. V-Domain Immunoglobulin Suppressor of T Cell Activation
3.4. Indoleamine 2,3-Dioxygenase (IDO)
3.5. T cell Immunoglobulin Domain and Mucin Domain 3 (TIM-3)
3.6. Lymphocyte-Activation Gene 3 (LAG-3)
3.7. T Cell Immunoreceptor with Ig and ITIM Domains (TIGIT)
3.8. B7 Homolog 3 (B7-H3)
3.9. V-Set Domain-Containing T Cell Activation Inhibitor 1 (VTCN1)
4. Nuclear Medicine: Peptide Receptor Ligand Therapy
5. Evidence-Based Support for Combination of ICIs and PRLT
6. Conclusions
Funding
Conflicts of Interest
Abbreviation
Abbreviation | Full Name |
225Ac | 225Actinium |
213Bi | 213Bismuth |
68Ga | 68Gallium |
177Lu | 177Lutetium |
223Ra | 223Radium |
α | Alpha |
ADT | Androgen deprivation therapy |
AH | Androgen hormone |
AS | Androgen Suppression |
AR-V7 | Androgen Receptor Variant |
B7-H3 | B7 homolog 3 |
BR | Biochemical recurrence |
B7-H4 | B7 Homolog 4 |
CDK12 | Cyclin dependent kinase 12 |
CRP | C-reactive protein |
CTLA4 | Cytotoxic T-lymphocyte antigen 4 |
CT | Combination Chemotherapy |
CTLA4 | Cytotoxic T lymphocyte antigen-4 |
DCs | Dendritic cells |
DLT | Dose limiting toxicity |
DRE | Digital rectal examination |
FFS | Failure-Free Survival |
GAL9 | Galectin-9 |
GBq | Giga Becquerels |
GIT | Gastrointestinal tract |
HMGB1 | High-mobility group box 1 |
HR | Hazard Ratio |
ICs | Inhibitory immune checkpoints |
IDO | Indoleamine 2,3-dioxygenase |
IFN-γ | Interferon-gamma |
LDH | Lactate dehydrogenase |
LT | Long Term |
MSCs | Mesenchymal stem cells |
mHRPC | Metastatic hormone-refractory PCa |
mHSPC | Metastatic hormone-sensitive PCa |
MFS | Metastases free survival |
NCT | Number A unique identification code |
NK | Natural killer cells |
OS | Overall Survival |
QoL | Quality of Life |
PCa | Prostate cancer |
PCWG | Prostate Cancer Clinical Trials Working Group |
PD1 | Programmed Cell Death Protein 1 |
PDL1 | Programmed Death Ligand 1 |
PFS | Progression Free Survival |
PSA | Prostate Specific Antigen |
PSMA | Prostate-specific membrane antigen |
PET | Positron Emission Tomography |
PS | Phosphatidylserine |
PRLT | Peptide receptor ligand therapy |
RPT | Radical prostatectomy |
RFS | recurrence free-survival |
rPFS | Radiological Progressive Disease |
RT | Radiotherapy |
SOC | Standard of Care |
SRT | Salvage radiotherapy |
SPECT | Single Photon Emission Computed Tomography |
SHP1/2 | Src homology 2 (SH2) domain containing phosphatases 1/2 |
TIM-3 | T cell Immunoglobulin Domain and Mucin Domain 3 |
TIGIT | T cell immunoreceptor with Ig and ITIM domains |
TNF-α | Tumour necrosis factor-alpha |
Tregs | Regulatory T cells |
VTCN1 | V-set domain-containing T cell activation inhibitor 1 |
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global Cancer Statistics 2018: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Bostwick, D.G.; Burke, H.B.; Djakiew, D.; Euling, S.; Ho, S.; Landolph, J.; Morrison, H.; Sonawane, B.; Shifflett, T.; Waters, D.J. Human Prostate Cancer Risk Factors. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2004, 101, 2371–2490. [Google Scholar] [CrossRef]
- Perez-Cornago, A.; Key, T.J.; Allen, N.E.; Fensom, G.K.; Bradbury, K.E.; Martin, R.M.; Travis, R.C. Prospective Investigation of Risk Factors for Prostate Cancer in the UK Biobank Cohort Study. Br. J. Cancer 2017, 117, 1562–1571. [Google Scholar] [CrossRef]
- Patel, A.R.; Klein, E.A. Risk Factors for Prostate Cancer. Nat. Clin. Pract. Urol. 2009, 6, 87–95. [Google Scholar] [CrossRef]
- Kgatle, M.M.; Kalla, A.A.; Islam, M.M.; Sathekge, M.; Moorad, R. Prostate Cancer: Epigenetic Alterations, Risk Factors, and Therapy. Prostate Cancer 2016, 2016, 5653862. [Google Scholar] [PubMed] [Green Version]
- Ben-Shlomo, Y.; Evans, S.; Ibrahim, F.; Patel, B.; Anson, K.; Chinegwundoh, F.; Corbishley, C.; Dorling, D.; Thomas, B.; Gillatt, D. The Risk of Prostate Cancer amongst Black Men in the United Kingdom: The PROCESS Cohort Study. Eur. Urol. 2008, 53, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Oehus, A.; Kroeze, S.G.; Schmidt-Hegemann, N.; Vogel, M.M.; Kirste, S.; Becker, J.; Burger, I.A.; Derlin, T.; Bartenstein, P.; Eiber, M. Efficacy of PSMA Ligand PET-Based Radiotherapy for Recurrent Prostate Cancer After Radical Prostatectomy and Salvage Radiotherapy. BMC Cancer 2020, 20, 362. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; Bellmunt, J.; Bolla, M.; Briers, E.; Cumberbatch, M.G.; De Santis, M.; Fossati, N.; Gross, T.; Henry, A.M.; Joniau, S. EAU-ESTRO-SIOG Guidelines on Prostate Cancer. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2017, 71, 618–629. [Google Scholar] [CrossRef]
- Fosså, S.D.; Nilssen, Y.; Kvåle, R.; Hernes, E.; Axcrona, K.; Møller, B. Treatment and 5-Year Survival in Patients with Nonmetastatic Prostate Cancer: The Norwegian Experience. Urology 2014, 83, 146–153. [Google Scholar]
- Cooperberg, M.R.; Cowan, J.; Broering, J.M.; Carroll, P.R. High-Risk Prostate Cancer in the United States, 1990–2007. World J. Urol. 2008, 26, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.Z.; Zhao, X.K. Prostate Cancer: Current Treatment and Prevention Strategies. Iran. Red. Crescent Med. J. 2013, 15, 279–284. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nader, R.; El Amm, J.; Aragon-Ching, J.B. Role of Chemotherapy in Prostate Cancer. Asian J. Androl. 2018, 20, 221–229. [Google Scholar]
- Tannock, I.F.; De Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I. Docetaxel Plus Prednisone or Mitoxantrone Plus Prednisone for Advanced Prostate Cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, X.; Hou, H.; Wang, X.; Liu, S.; Diao, T.; Lai, S.; Hu, M.; Zhang, S.; Liu, M.; Zhang, H. Immune Signature Driven by ADT-Induced Immune Microenvironment Remodeling in Prostate Cancer is Correlated with Recurrence-Free Survival and Immune Infiltration. Cell Death Dis. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Seruga, B.; Ocana, A.; Tannock, I.F. Drug Resistance in Metastatic Castration-Resistant Prostate Cancer. Nat. Rev. Clin. Oncol. 2011, 8, 12–23. [Google Scholar] [PubMed]
- Sweeney, C.J.; Chen, Y.; Carducci, M.; Liu, G.; Jarrard, D.F.; Eisenberger, M.; Wong, Y.; Hahn, N.; Kohli, M.; Cooney, M.M. Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N. Engl. J. Med. 2015, 373, 737–746. [Google Scholar] [CrossRef]
- Parker, C.; Sydes, M.; Mason, M.; Clarke, N.W.; Aebersold, D.; de Bono, J.; Dearnaley, D.; Ritchie, A.; Russell, J.; Thalmann, G. Prostate Radiotherapy for Men with Metastatic Disease: A New Comparison in the STAMPEDE Trial. Clin. Oncol. 2013, 25, 318–320. [Google Scholar] [CrossRef]
- Fizazi, K.; Lesaunier, F.; Delva, R.; Gravis, G.; Rolland, F.; Priou, F.; Ferrero, J.; Houedé, N.; Mourey, L.; Theodore, C. A Phase III Trial of docetaxel–estramustine in High-Risk Localised Prostate Cancer: A Planned Analysis of Response, Toxicity and Quality of Life in the GETUG 12 Trial. Eur. J. Cancer 2012, 48, 209–217. [Google Scholar] [CrossRef]
- Sargos, P.; Chabaud, S.; Latorzeff, I.; Magne, N.; Benyoucef, A.; Supiot, S.; Pasquier, D.; Abdiche, S.; Gilliot, O.; Graff, P. A Phase III Randomized Trial Comparing Adjuvant Versus Early Salvage Radiotherapy, both Combined with Short-Term Androgen Deprivation Therapy, Following a Radical Prostatectomy: Initial Results of the GETUG-AFU 17 Study [NCT00667069]. Int. J. Radiat. Oncol. Biol. Phys. 2020, 108, S17–S18. [Google Scholar] [CrossRef]
- Wilt, T.J.; Brawer, M.K.; Jones, K.M.; Barry, M.J.; Aronson, W.J.; Fox, S.; Gingrich, J.R.; Wei, J.T.; Gilhooly, P.; Grob, B.M. Radical Prostatectomy Versus Observation for Localized Prostate Cancer. N. Engl. J. Med. 2012, 367, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Amato, R.; Stepankiw, M.; Gonzales, P. A Phase II Trial of Androgen Deprivation Therapy (ADT) Plus Chemotherapy as Initial Treatment for Local Failures or Advanced Prostate Cancer. Cancer Chemother. Pharmacol. 2013, 71, 1629–1634. [Google Scholar] [CrossRef] [PubMed]
- Chi, K.N.; Protheroe, A.; Rodríguez-Antolín, A.; Facchini, G.; Suttman, H.; Matsubara, N.; Ye, Z.; Keam, B.; Damião, R.; Li, T. Patient-Reported Outcomes Following Abiraterone Acetate Plus Prednisone Added to Androgen Deprivation Therapy in Patients with Newly Diagnosed Metastatic Castration-Naive Prostate Cancer (LATITUDE): An International, Randomised Phase 3 Trial. Lancet Oncol. 2018, 19, 194–206. [Google Scholar] [CrossRef]
- Armstrong, A.J.; Szmulewitz, R.Z.; Petrylak, D.P.; Holzbeierlein, J.; Villers, A.; Azad, A.; Alcaraz, A.; Alekseev, B.; Iguchi, T.; Shore, N.D. ARCHES: A Randomized, Phase III Study of Androgen Deprivation Therapy with Enzalutamide or Placebo in Men with Metastatic Hormone-Sensitive Prostate Cancer. J. Clin. Oncol. 2019, 37, 2974–2986. [Google Scholar] [CrossRef]
- Fizazi, K.; Kramer, G.; Eymard, J.; Sternberg, C.N.; de Bono, J.; Castellano, D.; Tombal, B.; Wülfing, C.; Liontos, M.; Carles, J. Quality of Life in Patients with Metastatic Prostate Cancer Following Treatment with Cabazitaxel Versus Abiraterone Or Enzalutamide (CARD): An Analysis of a Randomised, Multicentre, Open-Label, Phase 4 Study. Lancet Oncol. 2020, 21, 1513–1525. [Google Scholar] [CrossRef]
- Rosenthal, S.A.; Hunt, D.; Sartor, A.O.; Pienta, K.J.; Gomella, L.; Grignon, D.; Rajan, R.; Kerlin, K.J.; Jones, C.U.; Dobelbower, M. A Phase 3 Trial of 2 Years of Androgen Suppression and Radiation Therapy with or without Adjuvant Chemotherapy for High-Risk Prostate Cancer: Final Results of Radiation Therapy Oncology Group Phase 3 Randomized Trial NRG Oncology RTOG 9902. Int. J. Radiat. Oncol. Biol. Phys. 2015, 93, 294–302. [Google Scholar] [CrossRef] [Green Version]
- Hussain, M.; Carducci, M.A.; Slovin, S.; Cetnar, J.; Qian, J.; McKeegan, E.M.; Refici-Buhr, M.; Chyla, B.; Shepherd, S.P.; Giranda, V.L. Targeting DNA Repair with Combination Veliparib (ABT-888) and Temozolomide in Patients with Metastatic Castration-Resistant Prostate Cancer. Investig. N. Drugs 2014, 32, 904–912. [Google Scholar]
- Graff, J.N.; Beer, T.M.; Alumkal, J.J.; Slottke, R.E.; Redmond, W.L.; Thomas, G.V.; Thompson, R.F.; Wood, M.A.; Koguchi, Y.; Chen, Y.; et al. A Phase II Single-Arm Study of Pembrolizumab with Enzalutamide in Men with Metastatic Castration-Resistant Prostate Cancer Progressing on Enzalutamide Alone. J. Immunother. Cancer 2020, 8, e000642. [Google Scholar] [CrossRef] [PubMed]
- Slovin, S.; Higano, C.; Hamid, O.; Tejwani, S.; Harzstark, A.; Alumkal, J.; Scher, H.; Chin, K.; Gagnier, P.; McHenry, M. Ipilimumab Alone or in Combination with Radiotherapy in Metastatic Castration-Resistant Prostate Cancer: Results from an Open-Label, Multicenter Phase I/II Study. Ann. Oncol. 2013, 24, 1813–1821. [Google Scholar]
- Tollefson, M.; Karnes, R.J.; Thompson, R.H.; Granberg, C.; Hillman, D.; Breau, R.; Allison, J.; Kwon, E.; Blute, M. 668 a Randomized Phase II Study of Ipilimumab with Androgen Ablation Compared with Androgen Ablation Alone in Patients with Advanced Prostate Cancer. J. Urol. 2010, 183, e261. [Google Scholar] [CrossRef]
- McNeel, D.G.; Eickhoff, J.C.; Jeraj, R.; Staab, M.J.; Straus, J.; Rekoske, B.; Liu, G. DNA vaccine with pembrolizumab to elicit antitumor responses in patients with metastatic, castration-resistant prostate cancer (mCRPC). J. Clin. Oncol. 2017, 35, 168. [Google Scholar] [CrossRef]
- Madan, R.A.; Mohebtash, M.; Arlen, P.M.; Vergati, M.; Rauckhorst, M.; Steinberg, S.M.; Tsang, K.Y.; Poole, D.J.; Parnes, H.L.; Wright, J.J. Ipilimumab and a Poxviral Vaccine Targeting Prostate-Specific Antigen in Metastatic Castration-Resistant Prostate Cancer: A Phase 1 Dose-Escalation Trial. Lancet Oncol. 2012, 13, 501–508. [Google Scholar] [CrossRef]
- Kwon, E.D.; Drake, C.G.; Scher, H.I.; Fizazi, K.; Bossi, A.; Van den Eertwegh Alfons, J.M.; Krainer, M.; Houede, N.; Santos, R.; Mahammedi, H. Ipilimumab Versus Placebo After Radiotherapy in Patients with Metastatic Castration-Resistant Prostate Cancer that had Progressed After Docetaxel Chemotherapy (CA184-043): A Multicentre, Randomised, Double-Blind, Phase 3 Trial. Lancet Oncol. 2014, 15, 700–712. [Google Scholar] [CrossRef] [Green Version]
- Iravani, A.; Violet, J.; Azad, A.; Hofman, M.S. Lutetium-177 Prostate-Specific Membrane Antigen (PSMA) Theranostics: Practical Nuances and Intricacies. Prostate Cancer Prostatic Dis. 2020, 23, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.J.; Loriot, Y.; Sweeney, C.J.; Fizazi, K.; Ryan, C.J.; Shevrin, D.H.; Antonarakis, E.S.; Pandit-Taskar, N.; Deandreis, D.; Jacene, H.A. Radium-223 in Combination with Docetaxel in Patients with Castration-Resistant Prostate Cancer and Bone Metastases: A Phase 1 Dose escalation/randomised Phase 2a Trial. Eur. J. Cancer 2019, 114, 107–116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beltran, H.; Beer, T.M.; Carducci, M.A.; De Bono, J.; Gleave, M.; Hussain, M.; Kelly, W.K.; Saad, F.; Sternberg, C.; Tagawa, S.T. New Therapies for Castration-Resistant Prostate Cancer: Efficacy and Safety. Eur. Urol. 2011, 60, 279–290. [Google Scholar] [CrossRef]
- Parker, C.; Nilsson, S.; Heinrich, D.; Helle, S.I.; O’sullivan, J.; Fosså, S.D.; Chodacki, A.; Wiechno, P.; Logue, J.; Seke, M. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2013, 369, 213–223. [Google Scholar] [CrossRef] [Green Version]
- Paganelli, G.; Sarnelli, A.; Severi, S.; Sansovini, M.; Belli, M.L.; Monti, M.; Foca, F.; Celli, M.; Nicolini, S.; Tardelli, E. Dosimetry and Safety of 177 Lu PSMA-617 Along with Polyglutamate Parotid Gland Protector: Preliminary Results in Metastatic Castration-Resistant Prostate Cancer Patients. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3007–3017. [Google Scholar] [CrossRef]
- Afshar-Oromieh, A.; Haberkorn, U.; Zechmann, C.; Armor, T.; Mier, W.; Spohn, F.; Debus, N.; Holland-Letz, T.; Babich, J.; Kratochwil, C. Repeated PSMA-Targeting Radioligand Therapy of Metastatic Prostate Cancer with 131 I-MIP-1095. Eur. J. Nucl. Med. Mol. Imaging 2017, 44, 950–959. [Google Scholar] [CrossRef] [Green Version]
- Kloss, C.C.; Lee, J.; Zhang, A.; Chen, F.; Melenhorst, J.J.; Lacey, S.F.; Maus, M.V.; Fraietta, J.A.; Zhao, Y.; June, C.H. Dominant-Negative TGF-β Receptor Enhances PSMA-Targeted Human CAR T Cell Proliferation and Augments Prostate Cancer Eradication. Mol. Ther. 2018, 26, 1855–1866. [Google Scholar]
- Sathekge, M.; Bruchertseifer, F.; Knoesen, O.; Reyneke, F.; Lawal, I.; Lengana, T.; Davis, C.; Mahapane, J.; Corbett, C.; Vorster, M. 225 Ac-PSMA-617 in Chemotherapy-Naive Patients with Advanced Prostate Cancer: A Pilot Study. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 129–138. [Google Scholar]
- Sheikh, N.A.; Petrylak, D.; Kantoff, P.W.; dela Rosa, C.; Stewart, F.P.; Kuan, L.; Whitmore, J.B.; Trager, J.B.; Poehlein, C.H.; Frohlich, M.W. Sipuleucel-T Immune Parameters Correlate with Survival: An Analysis of the Randomized Phase 3 Clinical Trials in Men with Castration-Resistant Prostate Cancer. Cancer Immunol. Immunother. 2013, 62, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B. Sipuleucel-T Immunotherapy for Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Di Lorenzo, G.; Buonerba, C.; Kantoff, P.W. Immunotherapy for the Treatment of Prostate Cancer. Nat. Rev. Clin. Oncol. 2011, 8, 551–561. [Google Scholar] [CrossRef] [PubMed]
- Holko, P.; Kawalec, P. Economic Evaluation of Sipuleucel-T Immunotherapy in Castration-Resistant Prostate Cancer. Expert Rev. Anticancer Ther. 2014, 14, 63–73. [Google Scholar] [CrossRef]
- Mahal, B.; Chen, Y.; Muralidhar, V.; Mahal, A.R.; Choueiri, T.K.; Hoffman, K.E.; Hu, J.C.; Sweeney, C.; Yu, J.; Feng, F. Racial Disparities in Prostate Cancer Outcome among Prostate-Specific Antigen Screening Eligible Populations in the United States. Ann. Oncol. 2017, 28, 1098–1104. [Google Scholar] [CrossRef]
- De Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical Roles of the Immune System during Cancer Development. Nat. Rev. Cancer 2006, 6, 24–37. [Google Scholar] [CrossRef] [PubMed]
- Drake, C.G. Prostate Cancer as a Model for Tumour Immunotherapy. Nat. Rev. Immunol. 2010, 10, 580–593. [Google Scholar] [CrossRef] [Green Version]
- Platz, E.A.; Kulac, I.; Barber, J.R.; Drake, C.G.; Joshu, C.E.; Nelson, W.G.; Lucia, M.S.; Klein, E.A.; Lippman, S.M.; Parnes, H.L.; et al. A Prospective Study of Chronic Inflammation in Benign Prostate Tissue and Risk of Prostate Cancer: Linked PCPT and SELECT Cohorts. Cancer Epidemiol. Biomark. Prev. 2017, 26, 1549–1557. [Google Scholar] [CrossRef] [Green Version]
- Ammirante, M.; Luo, J.; Grivennikov, S.; Nedospasov, S.; Karin, M. B-Cell-Derived Lymphotoxin Promotes Castration-Resistant Prostate Cancer. Nature 2010, 464, 302–305. [Google Scholar] [CrossRef] [Green Version]
- De Marzo, A.M.; Platz, E.A.; Sutcliffe, S.; Xu, J.; Grönberg, H.; Drake, C.G.; Nakai, Y.; Isaacs, W.B.; Nelson, W.G. Inflammation in Prostate Carcinogenesis. Nat. Rev. Cancer 2007, 7, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Fox, S.B.; Launchbury, R.; Bates, G.J.; Han, C.; Shaida, N.; Malone, P.R.; Harris, A.L.; Banham, A.H. The Number of Regulatory T Cells in Prostate Cancer is Associated with the Androgen Receptor and hypoxia-inducible Factor (HIF)-2α but Not HIF-1. Prostate 2007, 67, 623–629. [Google Scholar] [CrossRef]
- Miller, A.M.; Lundberg, K.; Ozenci, V.; Banham, A.H.; Hellstrom, M.; Egevad, L.; Pisa, P. CD4+CD25high T Cells are Enriched in the Tumor and Peripheral Blood of Prostate Cancer Patients. J. Immunol. 2006, 177, 7398–7405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sfanos, K.S.; Bruno, T.C.; Maris, C.H.; Xu, L.; Thoburn, C.J.; DeMarzo, A.M.; Meeker, A.K.; Isaacs, W.B.; Drake, C.G. Phenotypic Analysis of Prostate-Infiltrating Lymphocytes Reveals TH17 and Treg Skewing. Clin. Cancer Res. 2008, 14, 3254–3261. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, T.F.; Schreiber, H.; Fu, Y. Innate and Adaptive Immune Cells in the Tumor Microenvironment. Nat. Immunol. 2013, 14, 1014–1022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moynihan, K.D.; Opel, C.F.; Szeto, G.L.; Tzeng, A.; Zhu, E.F.; Engreitz, J.M.; Williams, R.T.; Rakhra, K.; Zhang, M.H.; Rothschilds, A.M. Eradication of Large Established Tumors in Mice by Combination Immunotherapy that Engages Innate and Adaptive Immune Responses. Nat. Med. 2016, 22, 1402–1410. [Google Scholar] [CrossRef]
- Avrameas, S.; Selmi, C. Natural Autoantibodies in the Physiology and Pathophysiology of the Immune System. J. Autoimmun. 2013, 41, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Sojka, D.K.; Huang, Y.; Fowell, D.J. Mechanisms of Regulatory T-cell suppression—A Diverse Arsenal for a Moving Target. Immunology 2008, 124, 13–22. [Google Scholar]
- Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune Checkpoint Blockade in Cancer Therapy. J. Clin. Oncol. 2015, 33, 1974–1982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Allison, J.P. Immune Checkpoint Targeting in Cancer Therapy: Toward Combination Strategies with Curative Potential. Cell 2015, 161, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Topalian, S.L.; Drake, C.G.; Pardoll, D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell 2015, 27, 450–461. [Google Scholar] [CrossRef] [Green Version]
- Byun, D.J.; Wolchok, J.D.; Rosenberg, L.M.; Girotra, M. Cancer immunotherapy—Immune Checkpoint Blockade and Associated Endocrinopathies. Nat. Rev. Endocrinol. 2017, 13, 195–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pardoll, D.M. The Blockade of Immune Checkpoints in Cancer Immunotherapy. Nat. Rev. Cancer 2012, 12, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Rescigno, P.; de Bono, J.S. Immunotherapy for Lethal Prostate Cancer. Nat. Rev. Urol. 2019, 16, 69–70. [Google Scholar] [CrossRef] [PubMed]
- Sedhom, R.; Antonarakis, E.S. Clinical Implications of Mismatch Repair Deficiency in Prostate Cancer. Future Oncol. 2019, 15, 2395–2411. [Google Scholar] [CrossRef] [PubMed]
- Ihle, C.L.; Owens, P. Integrating the Immune Microenvironment of Prostate Cancer Induced Bone Disease. Mol. Carcinog. 2020, 59, 822–829. [Google Scholar] [CrossRef] [PubMed]
- Bilusic, M.; Madan, R.A.; Gulley, J.L. Immunotherapy of Prostate Cancer: Facts and Hopes. Clin. Cancer Res. 2017, 23, 6764–6770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slovin, S.F. Immunotherapy for Castration-Resistant Prostate Cancer: Has its Time Arrived? Expert Opin. Biol. Ther. 2020, 20, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.J.; Koo, K.C. Current Status and Future Perspectives of Checkpoint Inhibitor Immunotherapy for Prostate Cancer: A Comprehensive Review. Int. J. Mol. Sci. 2020, 21, 5484. [Google Scholar] [CrossRef]
- Alegre, M.; Frauwirth, K.A.; Thompson, C.B. T-Cell Regulation by CD28 and CTLA-4. Nat. Rev. Immunol. 2001, 1, 220–228. [Google Scholar] [CrossRef]
- Qureshi, O.S.; Zheng, Y.; Nakamura, K.; Attridge, K.; Manzotti, C.; Schmidt, E.M.; Baker, J.; Jeffery, L.E.; Kaur, S.; Briggs, Z.; et al. Trans-Endocytosis of CD80 and CD86: A Molecular Basis for the Cell-Extrinsic Function of CTLA-4. Science 2011, 332, 600–603. [Google Scholar] [CrossRef] [Green Version]
- Vandenborre, K.; Van Gool, S.; Kasran, A.; Ceuppens, J.; Boogaerts, M.; Vandenberghe, P. Interaction of CTLA-4 (CD152) with CD80 Or CD86 Inhibits Human T-cell Activation. Immunology 1999, 98, 413–421. [Google Scholar] [CrossRef]
- Rowshanravan, B.; Halliday, N.; Sansom, D.M. CTLA-4: A Moving Target in Immunotherapy. Blood J. Am. Soc. Hematol. 2018, 131, 58–67. [Google Scholar] [CrossRef]
- Small, E.J.; Tchekmedyian, N.S.; Rini, B.I.; Fong, L.; Lowy, I.; Allison, J.P. A Pilot Trial of CTLA-4 Blockade with Human Anti-CTLA-4 in Patients with Hormone-Refractory Prostate Cancer. Clin. Cancer Res. 2007, 13, 1810–1815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDermott, D.; Haanen, J.; Chen, T.; Lorigan, P.; O’day, S.; MDX010-20 Investigators. Efficacy and Safety of Ipilimumab in Metastatic Melanoma Patients Surviving More than 2 Years Following Treatment in a Phase III Trial (MDX010-20). Ann. Oncol. 2013, 24, 2694–2698. [Google Scholar] [CrossRef]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C. Improved Survival with Ipilimumab in Patients with Metastatic Melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Blansfield, J.A.; Beck, K.E.; Tran, K.; Yang, J.C.; Hughes, M.S.; Kammula, U.S.; Royal, R.E.; Topalian, S.L.; Haworth, L.R.; Levy, C.; et al. Cytotoxic T-Lymphocyte-Associated Antigen-4 Blockage can Induce Autoimmune Hypophysitis in Patients with Metastatic Melanoma and Renal Cancer. J. Immunother. 2005, 28, 593–598. [Google Scholar] [CrossRef]
- Beer, T.M.; Kwon, E.D.; Drake, C.G.; Fizazi, K.; Logothetis, C.; Gravis, G.; Ganju, V.; Polikoff, J.; Saad, F.; Humanski, P.; et al. Randomized, Double-Blind, Phase III Trial of Ipilimumab Versus Placebo in Asymptomatic or Minimally Symptomatic Patients with Metastatic Chemotherapy-Naive Castration-Resistant Prostate Cancer. J. Clin. Oncol. 2017, 35, 40–47. [Google Scholar] [CrossRef]
- Fong, L.; Kwek, S.S.; O’Brien, S.; Kavanagh, B.; McNeel, D.G.; Weinberg, V.; Lin, A.M.; Rosenberg, J.; Ryan, C.J.; Rini, B.I.; et al. Potentiating Endogenous Antitumor Immunity to Prostate Cancer through Combination Immunotherapy with CTLA4 Blockade and GM-CSF. Cancer Res. 2009, 69, 609–615. [Google Scholar] [CrossRef] [Green Version]
- Jochems, C.; Tucker, J.A.; Tsang, K.; Madan, R.A.; Dahut, W.L.; Liewehr, D.J.; Steinberg, S.M.; Gulley, J.L.; Schlom, J. A Combination Trial of Vaccine Plus Ipilimumab in Metastatic Castration-Resistant Prostate Cancer Patients: Immune Correlates. Cancer Immunol. Immunother. 2014, 63, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Van den Eertwegh, A.J.M.; Versluis, J.; Van den Berg, H.P.; Santegoets, S.J.A.M.; Van Moorselaar, R.J.A.V.; Van der Sluis, T.M.; Gall, H.E.; Harding, T.C.; Jooss, K.; Lowy, I.; et al. Combined Immunotherapy with Granulocyte-Macrophage Colony-Stimulating Factor-Transduced Allogeneic Prostate Cancer Cells and Ipilimumab in Patients with Metastatic Castration-Resistant Prostate Cancer: A Phase 1 Dose-Escalation Trial. Lancet Oncol. 2012, 13, 509–517. [Google Scholar] [CrossRef]
- McNeel, D.G.; Smith, H.A.; Eickhoff, J.C.; Lang, J.M.; Staab, M.J.; Wilding, G.; Liu, G. Phase I Trial of Tremelimumab in Combination with Short-Term Androgen Deprivation in Patients with PSA-Recurrent Prostate Cancer. Cancer Immunol. Immunother. 2012, 61, 1137–1147. [Google Scholar] [CrossRef]
- Sharma, P.; Pachynski, R.K.; Narayan, V.; Fléchon, A.; Gravis, G.; Galsky, M.D.; Mahammedi, H.; Patnaik, A.; Subudhi, S.K.; Ciprotti, M. Nivolumab Plus Ipilimumab for Metastatic Castration-Resistant Prostate Cancer: Preliminary Analysis of Patients in the CheckMate 650 Trial. Cancer Cell 2020, 38, 489–499.e3. [Google Scholar] [CrossRef]
- Sharpe, A.H.; Pauken, K.E. The Diverse Functions of the PD1 Inhibitory Pathway. Nat. Rev. Immunol. 2018, 18, 153. [Google Scholar] [CrossRef]
- Nishimura, H.; Nose, M.; Hiai, H.; Minato, N.; Honjo, T. Development of Lupus-Like Autoimmune Diseases by Disruption of the PD-1 Gene Encoding an ITIM Motif-Carrying Immunoreceptor. Immunity 1999, 11, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Scimeca, M.; Bonfiglio, R.; Urbano, N.; Cerroni, C.; Anemona, L.; Montanaro, M.; Fazi, S.; Schillaci, O.; Mauriello, A.; Bonanno, E. Programmed Death Ligand 1 Expression in Prostate Cancer Cells is Associated with Deep Changes of the Tumor Inflammatory Infiltrate Composition. Urol. Oncol. Semin. Orig. Inv. 2019, 37, 297.e19–297.e31. [Google Scholar] [CrossRef]
- Syn, N.L.; Teng, M.W.; Mok, T.S.; Soo, R.A. De-Novo and Acquired Resistance to Immune Checkpoint Targeting. Lancet Oncol. 2017, 18, e731–e741. [Google Scholar] [CrossRef]
- Mouw, K.W.; Konstantinopoulos, P.A. From checkpoint to checkpoint: DNA damage ATR/Chk1 checkpoint signalling elicits PD-L1 immune checkpoint activation. Br. J. Cancer 2018, 118, 933–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McNeel, D.G.; Eickhoff, J.C.; Wargowski, E.; Zahm, C.; Staab, M.J.; Straus, J.; Liu, G. Concurrent, but Not Sequential, PD-1 Blockade with a DNA Vaccine Elicits Anti-Tumor Responses in Patients with Metastatic, Castration-Resistant Prostate Cancer. Oncotarget 2018, 9, 25586–25596. [Google Scholar] [CrossRef] [Green Version]
- Rescigno, P.; Gurel, B.; Pereira, R.; Crespo, M.; Rekowski, J.; Rediti, M.; Barrero, M.; Mateo, J.; Bianchini, D.; Messina, C.; et al. Characterizing CDK12-Mutated Prostate Cancers. Clin. Cancer Res. 2020, 27, 566–574. [Google Scholar] [CrossRef]
- Schwab, R.; Petak, I.; Kollar, M.; Pinter, F.; Varkondi, E.; Kohanka, A.; Barti-Juhasz, H.; Schönleber, J.; Brauswetter, D.; Kopper, L. Major Partial Response to Crizotinib, a Dual MET/ALK Inhibitor, in a Squamous Cell Lung (SCC) Carcinoma Patient with De Novo c-MET Amplification in the Absence of ALK Rearrangement. Lung Cancer 2014, 83, 109–111. [Google Scholar] [CrossRef]
- Du, X.; Shao, Y.; Qin, H.; Tai, Y.; Gao, H. ALK-rearrangement in non-small-cell Lung Cancer (NSCLC). Thorac. Cancer 2018, 9, 423–430. [Google Scholar] [CrossRef]
- Markowski, M.C.; Shenderov, E.; Eisenberger, M.A.; Kachhap, S.; Pardoll, D.M.; Denmeade, S.R.; Antonarakis, E.S. Extreme Responses to Immune Checkpoint Blockade Following Bipolar Androgen Therapy and Enzalutamide in Patients with Metastatic Castration Resistant Prostate Cancer. Prostate 2020, 80, 407–411. [Google Scholar] [CrossRef]
- Sena, L.A.; Fountain, J.; Isaacsson Velho, P.; Lim, S.J.; Wang, H.; Nizialek, E.; Rathi, N.; Nussenzveig, R.; Maughan, B.L.; Velez, M.G. Tumor Frameshift Mutation Proportion Predicts Response to Immunotherapy in Mismatch repair-deficient Prostate Cancer. Oncologist 2020, 26, e270–e278. [Google Scholar]
- Schalken, J.; Fitzpatrick, J.M. Enzalutamide: Targeting the Androgen Signalling Pathway in Metastatic castration-resistant Prostate Cancer. BJU Int. 2016, 117, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Graff, J.N.; Alumkal, J.J.; Drake, C.G.; Thomas, G.V.; Redmond, W.L.; Farhad, M.; Cetnar, J.P.; Ey, F.S.; Bergan, R.C.; Slottke, R.; et al. Early Evidence of Anti-PD-1 Activity in Enzalutamide-Resistant Prostate Cancer. Oncotarget 2016, 7, 52810–52817. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, A.; Massard, C.; Ott, P.; Haas, N.; Lopez, J.; Ejadi, S.; Wallmark, J.; Keam, B.; Delord, J.; Aggarwal, R. Pembrolizumab for Advanced Prostate Adenocarcinoma: Findings of the KEYNOTE-028 Study. Ann. Oncol. 2018, 29, 1807–1813. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, X.; Li, E.; Zhang, G.; Wang, X.; Tang, T.; Bai, X.; Liang, T. VISTA: An Immune Regulatory Protein Checking Tumor and Immune Cells in Cancer Immunotherapy. J. Hematol. Oncol. 2020, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Borggrewe, M.; Grit, C.; Den Dunnen, W.F.; Burm, S.M.; Bajramovic, J.J.; Noelle, R.J.; Eggen, B.J.; Laman, J.D. VISTA Expression by Microglia Decreases during Inflammation and is Differentially Regulated in CNS Diseases. Glia 2018, 66, 2645–2658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ElTanbouly, M.A.; Croteau, W.; Noelle, R.J.; Lines, J.L. VISTA: A Novel Immunotherapy Target for Normalizing Innate and Adaptive Immunity. Semin. Immunol. 2019, 42, 101308. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ward, J.F.; Pettaway, C.A.; Shi, L.Z.; Subudhi, S.K.; Vence, L.M.; Zhao, H.; Chen, J.; Chen, H.; Efstathiou, E. VISTA is an Inhibitory Immune Checkpoint that is Increased After Ipilimumab Therapy in Patients with Prostate Cancer. Nat. Med. 2017, 23, 551. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Yang, K.; Zhang, Q.; Yu, Y.; Meng, Q.; Mo, N.; Zhou, Y.; Yi, X.; Ma, C.; Lei, A. The Role of Mesenchymal Stem Cells in Promoting the Transformation of Androgen-Dependent Human Prostate Cancer Cells into Androgen-Independent Manner. Sci. Rep. 2016, 6, 16993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, P.; Civini, S.; Zhao, Y.; De Giorgi, V.; Ren, J.; Sabatino, M.; Jin, J.; Wang, H.; Bedognetti, D.; Marincola, F. Direct T cell–tumour Interaction Triggers TH 1 Phenotype Activation through the Modification of the Mesenchymal Stromal Cells Transcriptional Programme. Br. J. Cancer 2014, 110, 2955–2964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, P.; Zhao, Y.; Liu, H.; Chen, J.; Ren, J.; Jin, J.; Bedognetti, D.; Liu, S.; Wang, E.; Marincola, F. Interferon-γ and Tumor Necrosis Factor-α Polarize Bone Marrow Stromal Cells Uniformly to a Th1 Phenotype. Sci. Rep. 2016, 6, 26345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feder-Mengus, C.; Wyler, S.; Hudolin, T.; Ruszat, R.; Bubendorf, L.; Chiarugi, A.; Pittelli, M.; Weber, W.P.; Bachmann, A.; Gasser, T.C. High Expression of Indoleamine 2, 3-Dioxygenase Gene in Prostate Cancer. Eur. J. Cancer 2008, 44, 2266–2275. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; Steel, J.C.; Zhang, M.; Morris, J.C.; Waldmann, T.A. Simultaneous Blockade of Multiple Immune System Inhibitory Checkpoints Enhances Antitumor Activity Mediated by Interleukin-15 in a Murine Metastatic Colon Carcinoma Model. Clin. Cancer Res. 2010, 16, 6019–6028. [Google Scholar] [CrossRef] [Green Version]
- Piao, Y.; Jin, X. Analysis of Tim-3 as a Therapeutic Target in Prostate Cancer. Tumor Biol. 2017, 39. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Lin, G.; Zhu, Y.; Zhang, H.; Shi, G.; Shen, Y.; Zhu, Y.; Dai, B.; Ye, D. Low TIM3 Expression Indicates Poor Prognosis of Metastatic Prostate Cancer and Acts as an Independent Predictor of Castration Resistant Status. Sci. Rep. 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Chen, H.; Li, G.; Zhou, X.; Shi, Y.; Zou, F.; Chen, Y.; Gao, J.; Yang, S.; Wu, S. Increased Tim-3 Expression on TILs during Treatment with the Anchored GM-CSF Vaccine and Anti-PD-1 Antibodies is Inversely Correlated with Response in Prostate Cancer. J. Cancer 2020, 11, 648. [Google Scholar] [CrossRef] [Green Version]
- Fourcade, J.; Sun, Z.; Pagliano, O.; Chauvin, J.M.; Sander, C.; Janjic, B.; Tarhini, A.A.; Tawbi, H.A.; Kirkwood, J.M.; Moschos, S.; et al. PD-1 and Tim-3 Regulate the Expansion of Tumor Antigen-Specific CD8(+) T Cells Induced by Melanoma Vaccines. Cancer Res. 2014, 74, 1045–1055. [Google Scholar] [CrossRef] [Green Version]
- Fourcade, J.; Sun, Z.; Benallaoua, M.; Guillaume, P.; Luescher, I.F.; Sander, C.; Kirkwood, J.M.; Kuchroo, V.; Zarour, H.M. Upregulation of Tim-3 and PD-1 Expression is Associated with Tumor antigen–specific CD8 T Cell Dysfunction in Melanoma Patients. J. Exp. Med. 2010, 207, 2175–2186. [Google Scholar] [CrossRef]
- Acharya, N.; Sabatos-Peyton, C.; Anderson, A.C. Tim-3 Finds its Place in the Cancer Immunotherapy Landscape. J. Immunother. Cancer. 2020, 8, e000911. [Google Scholar] [CrossRef]
- Li, H.; Wu, K.; Tao, K.; Chen, L.; Zheng, Q.; Lu, X.; Liu, J.; Shi, L.; Liu, C.; Wang, G. Tim-3/galectin-9 Signaling Pathway Mediates T-cell Dysfunction and Predicts Poor Prognosis in Patients with Hepatitis B virus-associated Hepatocellular Carcinoma. Hepatology 2012, 56, 1342–1351. [Google Scholar] [CrossRef] [PubMed]
- Itoh, A.; Nonaka, Y.; Ogawa, T.; Nakamura, T.; Nishi, N. Galectin-9 Induces Atypical Ubiquitination Leading to Cell Death in PC-3 Prostate Cancer Cells. Glycobiology 2019, 29, 22–35. [Google Scholar] [CrossRef]
- Andrews, L.P.; Yano, H.; Vignali, D.A. Inhibitory Receptors and Ligands Beyond PD-1, PD-L1 and CTLA-4: Breakthroughs or Backups. Nat. Immunol. 2019, 20, 1425–1434. [Google Scholar] [CrossRef]
- Birge, R.; Boeltz, S.; Kumar, S.; Carlson, J.; Wanderley, J.; Calianese, D.; Barcinski, M.; Brekken, R.; Huang, X.; Hutchins, J. Phosphatidylserine is a Global Immunosuppressive Signal in Efferocytosis, Infectious Disease, and Cancer. Cell Death Differ. 2016, 23, 962–978. [Google Scholar] [CrossRef] [Green Version]
- Burugu, S.; Gao, D.; Leung, S.; Chia, S.; Nielsen, T. LAG-3 Tumor Infiltrating Lymphocytes in Breast Cancer: Clinical Correlates and Association with PD-1/PD-L1 Tumors. Ann. Oncol. 2017, 28, 2977–2984. [Google Scholar] [CrossRef]
- Foy, S.P.; Sennino, B.; dela Cruz, T.; Cote, J.J.; Gordon, E.J.; Kemp, F.; Xavier, V.; Franzusoff, A.; Rountree, R.B.; Mandl, S.J. Poxvirus-Based Active Immunotherapy with PD-1 and LAG-3 Dual Immune Checkpoint Inhibition Overcomes Compensatory Immune Regulation, Yielding Complete Tumor Regression in Mice. PLoS ONE 2016, 11, e0150084. [Google Scholar] [CrossRef]
- Huang, R.Y.; Eppolito, C.; Lele, S.; Shrikant, P.; Matsuzaki, J.; Odunsi, K. LAG3 and PD1 Co-Inhibitory Molecules Collaborate to Limit CD8+ T Cell Signaling and Dampen Antitumor Immunity in a Murine Ovarian Cancer Model. Oncotarget 2015, 6, 27359–27377. [Google Scholar] [CrossRef]
- Jing, W.; Gershan, J.A.; Weber, J.; Tlomak, D.; McOlash, L.; Sabatos-Peyton, C.; Johnson, B.D. Combined Immune Checkpoint Protein Blockade and Low Dose Whole Body Irradiation as Immunotherapy for Myeloma. J. Immunother. Cancer 2015, 3, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsuzaki, J.; Gnjatic, S.; Mhawech-Fauceglia, P.; Beck, A.; Miller, A.; Tsuji, T.; Eppolito, C.; Qian, F.; Lele, S.; Shrikant, P.; et al. Tumor-Infiltrating NY-ESO-1-Specific CD8+ T Cells are Negatively Regulated by LAG-3 and PD-1 in Human Ovarian Cancer. Proc. Natl. Acad. Sci. USA 2010, 107, 7875–7880. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, S.R.; Turnis, M.E.; Goldberg, M.V.; Bankoti, J.; Selby, M.; Nirschl, C.J.; Bettini, M.L.; Gravano, D.M.; Vogel, P.; Liu, C.L.; et al. Immune Inhibitory Molecules LAG-3 and PD-1 Synergistically Regulate T-Cell Function to Promote Tumoral Immune Escape. Cancer Res. 2012, 72, 917–927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davidsson, S.; Andren, O.; Ohlson, A.; Carlsson, J.; Andersson, S.; Giunchi, F.; Rider, J.R.; Fiorentino, M. FOXP3 Regulatory T Cells in Normal Prostate Tissue, Postatrophic Hyperplasia, Prostatic Intraepithelial Neoplasia, and Tumor Histological Lesions in Men with and without Prostate Cancer. Prostate 2018, 78, 40–47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grosso, J.F.; Kelleher, C.C.; Harris, T.J.; Maris, C.H.; Hipkiss, E.L.; De Marzo, A.; Anders, R.; Netto, G.; Getnet, D.; Bruno, T.C.; et al. LAG-3 Regulates CD8+ T Cell Accumulation and Effector Function in Murine Self- and Tumor-Tolerance Systems. J. Clin. Investig. 2007, 117, 3383–3392. [Google Scholar] [CrossRef] [Green Version]
- Califice, S.; Castronovo, V.; Bracke, M.; van den Brûle, F. Dual Activities of Galectin-3 in Human Prostate Cancer: Tumor Suppression of Nuclear Galectin-3 Vs Tumor Promotion of Cytoplasmic Galectin-3. Oncogene 2004, 23, 7527–7536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, H.; Banerjee, P.P.; Vasta, G.R. Differential Expression of Galectins in Normal, Benign and Malignant Prostate Epithelial Cells: Silencing of Galectin-3 Expression in Prostate Cancer by its Promoter Methylation. Biochem. Biophys. Res. Commun. 2007, 358, 241–246. [Google Scholar] [CrossRef]
- Dondoo, T.; Fukumori, T.; Daizumoto, K.; Fukawa, T.; Kohzuki, M.; Kowada, M.; Kusuhara, Y.; Mori, H.; Nakatsuji, H.; Takahashi, M. Galectin-3 is Implicated in Tumor Progression and Resistance to Anti-Androgen Drug through Regulation of Androgen Receptor Signaling in Prostate Cancer. Anticancer Res. 2017, 37, 125–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guha, P.; Kaptan, E.; Bandyopadhyaya, G.; Kaczanowska, S.; Davila, E.; Thompson, K.; Martin, S.S.; Kalvakolanu, D.V.; Vasta, G.R.; Ahmed, H. Cod Glycopeptide with Picomolar Affinity to Galectin-3 Suppresses T-Cell Apoptosis and Prostate Cancer Metastasis. Proc. Natl. Acad. Sci. USA 2013, 110, 5052–5057. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Bosch, N.; Rodriguez-Vida, A.; Juanpere, N.; Lloreta, J.; Rovira, A.; Albanell, J.; Bellmunt, J.; Navarro, P. Galectins in Prostate and Bladder Cancer: Tumorigenic Roles and Clinical Opportunities. Nat. Rev. Urol. 2019, 16, 433–445. [Google Scholar] [CrossRef]
- Wang, Y.; Nangia-Makker, P.; Tait, L.; Balan, V.; Hogan, V.; Pienta, K.J.; Raz, A. Regulation of Prostate Cancer Progression by Galectin-3. Am. J. Pathol. 2009, 174, 1515–1523. [Google Scholar] [CrossRef] [Green Version]
- Ochieng, J.; Fridman, R.; Nangia-Makker, P.; Kleiner, D.E.; Liotta, L.A.; Stetler-Stevenson, W.G.; Raz, A. Galectin-3 is a Novel Substrate for Human Matrix Metalloproteinases-2 and-9. Biochemistry 1994, 33, 14109–14114. [Google Scholar] [CrossRef]
- Joller, N.; Hafler, J.P.; Brynedal, B.; Kassam, N.; Spoerl, S.; Levin, S.D.; Sharpe, A.H.; Kuchroo, V.K. Cutting Edge: TIGIT has T Cell-Intrinsic Inhibitory Functions. J. Immunol. 2011, 186, 1338–1342. [Google Scholar] [CrossRef] [Green Version]
- Reches, A.; Ophir, Y.; Stein, N.; Kol, I.; Isaacson, B.; Amikam, Y.C.; Elnekave, A.; Tsukerman, P.; Brlic, P.K.; Lenac, T. Nectin4 is a Novel TIGIT Ligand which Combines Checkpoint Inhibition and Tumor Specificity. J. Immuno Ther. Cancer 2020, 8, e000266. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Harden, K.; Gonzalez, L.C.; Francesco, M.; Chiang, E.; Irving, B.; Tom, I.; Ivelja, S.; Refino, C.J.; Clark, H. The Surface Protein TIGIT Suppresses T Cell Activation by Promoting the Generation of Mature Immunoregulatory Dendritic Cells. Nat. Immunol. 2009, 10, 48. [Google Scholar] [CrossRef]
- Chauvin, J.M.; Ka, M.; Pagliano, O.; Menna, C.; Ding, Q.; DeBlasio, R.; Sanders, C.; Hou, J.; Li, X.Y.; Ferrone, S.; et al. IL15 Stimulation with TIGIT Blockade Reverses CD155-Mediated NK-Cell Dysfunction in Melanoma. Clin. Cancer Res. 2020, 26, 5520–5533. [Google Scholar]
- Papanicolau-Sengos, A.; Yang, Y.; Pabla, S.; Lenzo, F.L.; Kato, S.; Kurzrock, R.; DePietro, P.; Nesline, M.; Conroy, J.; Glenn, S. Identification of Targets for Prostate Cancer Immunotherapy. Prostate 2019, 79, 498–505. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Richards, S.; Prasad, D.V.; Mai, X.M.; Rudensky, A.; Dong, C. Characterization of Mouse and Human B7-H3 Genes. J. Immunol. 2002, 168, 6294–6297. [Google Scholar] [CrossRef] [PubMed]
- Ling, V.; Wu, P.W.; Spaulding, V.; Kieleczawa, J.; Luxenberg, D.; Carreno, B.M.; Collins, M. Duplication of Primate and Rodent B7-H3 Immunoglobulin V-and C-Like Domains: Divergent History of Functional Redundancy and Exon Loss. Genomics 2003, 82, 365–377. [Google Scholar] [CrossRef]
- Chapoval, A.I.; Ni, J.; Lau, J.S.; Wilcox, R.A.; Flies, D.B.; Liu, D.; Dong, H.; Sica, G.L.; Zhu, G.; Tamada, K. B7-H3: A Costimulatory Molecule for T Cell Activation and IFN-γ Production. Nat. Immunol. 2001, 2, 269–274. [Google Scholar] [CrossRef]
- Bonk, S.; Tasdelen, P.; Kluth, M.; Hube-Magg, C.; Makrypidi-Fraune, G.; Möller, K.; Höflmayer, D.; Dwertmann Rico, S.; Büscheck, F.; Minner, S. High B7-H3 Expression is Linked to Increased Risk of Prostate Cancer Progression. Pathol. Int. 2020, 70, 733–742. [Google Scholar] [CrossRef]
- Chavin, G.; Sheinin, Y.; Crispen, P.L.; Boorjian, S.A.; Roth, T.J.; Rangel, L.; Blute, M.L.; Sebo, T.J.; Tindall, D.J.; Kwon, E.D.; et al. Expression of Immunosuppresive B7-H3 Ligand by Hormone-Treated Prostate Cancer Tumors and Metastases. Clin. Cancer Res. 2009, 15, 2174–2180. [Google Scholar] [CrossRef] [Green Version]
- Roth, T.J.; Sheinin, Y.; Lohse, C.M.; Kuntz, S.M.; Frigola, X.; Inman, B.A.; Krambeck, A.E.; McKenney, M.E.; Karnes, R.J.; Blute, M.L.; et al. B7-H3 Ligand Expression by Prostate Cancer: A Novel Marker of Prognosis and Potential Target for Therapy. Cancer Res. 2007, 67, 7893–7900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zang, X.; Thompson, R.H.; Al-Ahmadie, H.A.; Serio, A.M.; Reuter, V.E.; Eastham, J.A.; Scardino, P.T.; Sharma, P.; Allison, J.P. B7-H3 and B7x are Highly Expressed in Human Prostate Cancer and Associated with Disease Spread and Poor Outcome. Proc. Natl. Acad. Sci. USA 2007, 104, 19458–19463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benzon, B.; Zhao, S.; Haffner, M.; Takhar, M.; Erho, N.; Yousefi, K.; Hurley, P.; Bishop, J.; Tosoian, J.; Ghabili, K. Correlation of B7-H3 with Androgen Receptor, Immune Pathways and Poor Outcome in Prostate Cancer: An Expression-Based Analysis. Prostate Cancer Prostatic Dis. 2017, 20, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Shenderov, E.; Demarzo, A.; Boudadi, K.; Allaf, M.; Wang, H.; Chapman, C.; Pavlovich, C.; Bivalacqua, T.; O’Neal, T.S.; Harb, R. Phase II Neoadjuvant and Immunologic Study of B7-H3 Targeting with Enoblituzumab in Localized Intermediate-and High-Risk Prostate Cancer. J. Clin. Oncol. 2018, 36, TPS5099. [Google Scholar] [CrossRef]
- Shankar, S.; Spira, A.I.; Strauss, J.; Liu, L.; La Motte-Mohs, R.; Wu, T.; Johnson, S.; Bonvini, E.; Moore, P.A.; Wigginton, J.M. A phase 1, open label, dose escalation study of MGD009, a humanized B7-H3 x CD3 DART protein, in combination with MGA012, an anti-PD-1 antibody, in patients with relapsed or refractory B7-H3-expressing tumors. J. Clin. Oncol. 2018, 36. [Google Scholar] [CrossRef] [Green Version]
- Uemura, N.; Kondo, T. Current Advances in Esophageal Cancer Proteomics. Biochim. Biophys. Acta (BBA) Proteins Proteom. 2015, 1854, 687–695. [Google Scholar] [CrossRef] [PubMed]
- Xie, N.; Cai, J.; Zhang, L.; Zhang, P.; Shen, Y.; Yang, X.; Lu, J.; Gao, D.; Kang, Q.; Liu, L. Upregulation of B7-H4 Promotes Tumor Progression of Intrahepatic Cholangiocarcinoma. Cell Death Dis. 2017, 8, 1–13. [Google Scholar] [CrossRef]
- Dong, L.; Xie, L.; Li, M.; Dai, H.; Wang, X.; Wang, P.; Zhang, Q.; Liu, W.; Hu, X.; Zhao, M. Downregulation of B7-H4 Suppresses Tumor Progression of Hepatocellular Carcinoma. Sci. Rep. 2019, 9, 1–12. [Google Scholar]
- Li, H.; Piao, L.; Liu, S.; Cui, Y.; Xuan, Y. B7-H4 is a Potential Prognostic Biomarker of Prostate Cancer. Exp. Mol. Pathol. 2020, 114, 104406. [Google Scholar] [CrossRef]
- Qian, Y.; Yao, H.P.; Shen, L.; Cheng, L.F.; Zhang, L.H. Expression of B7-H4 in Prostate Cancer and its Clinical Significance. Zhejiang Da Xue Xue Bao Yi Xue Ban 2010, 39, 345–349. [Google Scholar]
- Clarke, M.F.; Dick, J.E.; Dirks, P.B.; Eaves, C.J.; Jamieson, C.H.; Jones, D.L.; Visvader, J.; Weissman, I.L.; Wahl, G.M. Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res. 2006, 66, 9339–9344. [Google Scholar] [CrossRef] [Green Version]
- Santer, F.R.; Erb, H.H.; McNeill, R.V. Therapy Escape Mechanisms in the Malignant Prostate. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2015; pp. 133–144. [Google Scholar]
- Ye, X.Z.; Xu, S.L.; Xin, Y.H.; Yu, S.C.; Ping, Y.F.; Chen, L.; Xiao, H.L.; Wang, B.; Yi, L.; Wang, Q.L.; et al. Tumor-Associated microglia/macrophages Enhance the Invasion of Glioma Stem-Like Cells Via TGF-beta1 Signaling Pathway. J. Immunol. 2012, 189, 444–453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krambeck, A.E.; Thompson, R.H.; Dong, H.; Lohse, C.M.; Park, E.S.; Kuntz, S.M.; Leibovich, B.C.; Blute, M.L.; Cheville, J.C.; Kwon, E.D. B7-H4 Expression in Renal Cell Carcinoma and Tumor Vasculature: Associations with Cancer Progression and Survival. Proc. Natl. Acad. Sci. USA 2006, 103, 10391–10396. [Google Scholar] [CrossRef] [Green Version]
- Dangaj, D.; Lanitis, E.; Zhao, A.; Joshi, S.; Cheng, Y.; Sandaltzopoulos, R.; Ra, H.J.; Danet-Desnoyers, G.; Powell, D.J., Jr.; Scholler, N. Novel Recombinant Human b7-h4 Antibodies Overcome Tumoral Immune Escape to Potentiate T-Cell Antitumor Responses. Cancer Res. 2013, 73, 4820–4829. [Google Scholar] [CrossRef] [Green Version]
- Jeon, H.; Vigdorovich, V.; Garrett-Thomson, S.C.; Janakiram, M.; Ramagopal, U.A.; Abadi, Y.M.; Lee, J.S.; Scandiuzzi, L.; Ohaegbulam, K.C.; Chinai, J.M. Structure and Cancer Immunotherapy of the B7 Family Member B7x. Cell Rep. 2014, 9, 1089–1098. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorsen, L.; Courneya, K.S.; Stevinson, C.; Fosså, S.D. A Systematic Review of Physical Activity in Prostate Cancer Survivors: Outcomes, Prevalence, and Determinants. Support. Care Cancer 2008, 16, 987–997. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G.; Allen, B.; Back, T.; Brill, A.; Fisher, D.; Hobbs, R. MIRD Monograph: Radiobiology and Dosimetry for Radiopharmaceutical Therapy with Alpha-Particle Emitters. J. Nucl. Med. Technol. 2015, 44, 216. [Google Scholar]
- Gill, M.R.; Falzone, N.; Du, Y.; Vallis, K.A. Targeted Radionuclide Therapy in Combined-Modality Regimens. Lancet Oncol. 2017, 18, e414–e423. [Google Scholar]
- Cihoric, N.; Badra, E.V.; Tsikkinis, A.; Prasad, V.; Kroeze, S.; Igrutinovic, I.; Jeremic, B.; Beck, M.; Zschaeck, S.; Wust, P. Clinical Trials Involving Positron Emission Tomography and Prostate Cancer: An Analysis of the ClinicalTrials. Gov Database. Radiat. Oncol. 2018, 13, 113. [Google Scholar] [CrossRef] [Green Version]
- Bach-Gansmo, T.; Nanni, C.; Nieh, P.T.; Zanoni, L.; Bogsrud, T.V.; Sletten, H.; Korsan, K.A.; Kieboom, J.; Tade, F.I.; Odewole, O. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine (18F) Positron Emission tomography/computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J. Urol. 2017, 197, 676–683. [Google Scholar] [CrossRef] [Green Version]
- Murphy, G.P.; Greene, T.G.; Tino, W.T.; Boynton, A.L.; Tino, W.T. Isolation and Characterization of Monoclonal Antibodies Specific for the Extracellular Domain of Prostate Specific Membrane Antigen. J. Urol. 1998, 160, 2396–2401. [Google Scholar] [CrossRef]
- Rawlings, N.D.; Barrett, A.J. Structure of Membrane Glutamate Carboxypeptidase. Biochim. Biophys. Acta (BBA) Protein Struct. Mol. Enzymol. 1997, 1339, 247–252. [Google Scholar] [CrossRef]
- Chang, S.S. Overview of Prostate-Specific Membrane Antigen. Rev. Urol. 2004, 6, S13–S18. [Google Scholar]
- Hofman, M.S.; Murphy, D.G.; Williams, S.G.; Nzenza, T.; Herschtal, A.; Lourenco, R.D.A.; Bailey, D.L.; Budd, R.; Hicks, R.J.; Francis, R.J. A Prospective Randomized Multicentre Study of the Impact of gallium-68 prostate-specific Membrane Antigen (PSMA) PET/CT Imaging for Staging high-risk Prostate Cancer Prior to curative-intent Surgery or Radiotherapy (proPSMA Study): Clinical Trial Protocol. BJU Int. 2018, 122, 783–793. [Google Scholar] [CrossRef]
- Lengana, T.; Lawal, I.O.; Boshomane, T.G.; Popoola, G.O.; Mokoala, K.M.; Moshokoa, E.; Maes, A.; Mokgoro, N.P.; Van de Wiele, C.; Vorster, M. 68Ga-PSMA PET/CT Replacing Bone Scan in the Initial Staging of Skeletal Metastasis in Prostate Cancer: A Fait Accompli? Clin. Genitourin. Cancer 2018, 16, 392–401. [Google Scholar] [CrossRef]
- Farolfi, A.; Ceci, F.; Castellucci, P.; Graziani, T.; Siepe, G.; Lambertini, A.; Schiavina, R.; Lodi, F.; Morganti, A.G.; Fanti, S. 68 Ga-PSMA-11 PET/CT in Prostate Cancer Patients with Biochemical Recurrence After Radical Prostatectomy and PSA < 0.5 ng/mL. Efficacy and Impact on Treatment Strategy. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 11–19. [Google Scholar] [PubMed]
- Calais, J.; Czernin, J.; Fendler, W.P.; Elashoff, D.; Nickols, N.G. Randomized Prospective Phase III Trial of 68 Ga-PSMA-11 PET/CT Molecular Imaging for Prostate Cancer Salvage Radiotherapy Planning [PSMA-SRT]. BMC Cancer 2019, 19, 18. [Google Scholar]
- Park, S.Y.; Zacharias, C.; Harrison, C.; Fan, R.E.; Kunder, C.; Hatami, N.; Giesel, F.; Ghanouni, P.; Daniel, B.; Loening, A.M. Gallium 68 PSMA-11 PET/MR Imaging in Patients with Intermediate-Or High-Risk Prostate Cancer. Radiology 2018, 288, 495–505. [Google Scholar] [CrossRef] [Green Version]
- Müller, C.; Singh, A.; Umbricht, C.A.; Kulkarni, H.R.; Johnston, K.; Benešová, M.; Senftleben, S.; Müller, D.; Vermeulen, C.; Schibli, R. Preclinical Investigations and First-in-Human Application of 152 Tb-PSMA-617 for PET/CT Imaging of Prostate Cancer. EJNMMI Res. 2019, 9, 68. [Google Scholar] [CrossRef] [PubMed]
- Baum, R.P.; Kulkarni, H.R.; Schuchardt, C.; Singh, A.; Wirtz, M.; Wiessalla, S.; Schottelius, M.; Mueller, D.; Klette, I.; Wester, H.J. 177Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. J. Nucl. Med. 2016, 57, 1006–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadzadehfar, H.; Rahbar, K.; Baum, R.P.; Seifert, R.; Kessel, K.; Bögemann, M.; Kulkarni, H.R.; Zhang, J.; Gerke, C.; Fimmers, R. Prior Therapies as Prognostic Factors of overall Survival in Metastatic Castration-Resistant Prostate Cancer Patients Treated with [177 Lu] Lu-PSMA-617. A WARMTH Multicenter Study (the 617 Trial). Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 113–122. [Google Scholar] [CrossRef]
- Von Eyben, F.E.; Roviello, G.; Kiljunen, T.; Uprimny, C.; Virgolini, I.; Kairemo, K.; Joensuu, T. Third-Line Treatment and 177 Lu-PSMA Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: A Systematic Review. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 496–508. [Google Scholar] [CrossRef] [Green Version]
- Yadav, M.P.; Ballal, S.; Sahoo, R.K.; Dwivedi, S.N.; Bal, C. Radioligand Therapy with 177Lu-PSMA for Metastatic Castration-Resistant Prostate Cancer: A Systematic Review and Meta-Analysis. Am. J. Roentgenol. 2019, 213, 275–285. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandus, J.; Eppard, E.; Gaertner, F.C.; Kurpig, S.; Fimmers, R.; Yordanova, A.; Hauser, S.; Feldmann, G.; Essler, M.; Ahmadzadehfar, H. Predictors of Response to Radioligand Therapy of Metastatic Castrate-Resistant Prostate Cancer with 177Lu-PSMA-617. J. Nucl. Med. 2017, 58, 312–319. [Google Scholar] [CrossRef] [PubMed]
- Lawal, I.O.; Bruchertseifer, F.; Vorster, M.; Morgenstern, A.; Sathekge, M.M. Prostate-Specific Membrane Antigen-Targeted Endoradiotherapy in Metastatic Prostate Cancer. Curr. Opin. Urol. 2020, 30, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Afshar-Oromieh, A.; Babich, J.W.; Kratochwil, C.; Giesel, F.L.; Eisenhut, M.; Kopka, K.; Haberkorn, U. The Rise of PSMA Ligands for Diagnosis and Therapy of Prostate Cancer. J. Nucl. Med. 2016, 57, 79S–89S. [Google Scholar] [CrossRef] [Green Version]
- Kratochwil, C.; Giesel, F.L.; Eder, M.; Afshar-Oromieh, A.; Benesova, M.; Mier, W.; Kopka, K.; Haberkorn, U. [177Lu]Lutetium-Labelled PSMA Ligand-Induced Remission in a Patient with Metastatic Prostate Cancer. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 987–988. [Google Scholar] [CrossRef] [PubMed]
- Morgenstern, A.; Apostolidis, C.; Kratochwil, C.; Sathekge, M.; Krolicki, L.; Bruchertseifer, F. An Overview of Targeted Alpha Therapy with 225Actinium and 213Bismuth. Curr. Radiopharm. 2018, 11, 200–208. [Google Scholar] [CrossRef] [PubMed]
- Müller, C.; Vermeulen, C.; Köster, U.; Johnston, K.; Türler, A.; Schibli, R.; van der Meulen, N.P. Alpha-PET with Terbium-149: Evidence and Perspectives for Radiotheragnostics. EJNMMI Radiopharm. Chem. 2017, 1, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Parker, C.C.; Tombal, B. The Case Against the European Medicines Agency’s Change to the Label for Radium-223 for the Treatment of Metastatic Castration-Resistant Prostate Cancer. Eur. Urol. 2019, 75, e51–e52. [Google Scholar]
- Pacilio, M.; Ventroni, G.; De Vincentis, G.; Cassano, B.; Pellegrini, R.; Di Castro, E.; Frantellizzi, V.; Follacchio, G.A.; Garkavaya, T.; Lorenzon, L. Dosimetry of Bone Metastases in Targeted Radionuclide Therapy with Alpha-Emitting 223 Ra-Dichloride. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Paganelli, G.; Procopio, G.; Cabria, M.; Cortesi, E.; Tucci, M.; Farnesi, A.; Mango, L.; Baldari, S.; Hamzaj, A.; Caffo, O. B7Radium-223 with Concomitant Bone-Targeting Agents in Metastatic Castration-Resistant Prostate Cancer (CRPC) Patients Treated in an International Early Access Program (EAP). Ann. Oncol. 2017, 28, 243–265. [Google Scholar] [CrossRef]
- Procopio, G.; Paganelli, G.; Cabria, M.; Cortesi, E.; Tucci, M.; Farnesi, A.; Mango, L.; Baldari, S.; Hamzaj, A.; Caffo, O. B8Changes in Alkaline Phosphatase (ALP) Dynamics and overall Survival (OS) in Metastatic Castration-Resistant Prostate Cancer (mCRPC) Patients Treated with Radium-223 in an International Early Access Program (EAP). Ann. Oncol. 2017. [Google Scholar] [CrossRef]
- Heidenreich, A.; Bastian, P.J.; Bellmunt, J.; Bolla, M.; Joniau, S.; Mason, M.; Matveev, V.; Mottet, N.; Van der Kwast, T.; Wiegel, T. Guidelines on Prostate Cancer. Eur.n Assoc. Urol. 2012, 45. [Google Scholar]
- Glode, L.M.; Tangen, C.M.; Hussain, M.; Swanson, G.P.; Wood, D.P.; Sakr, W.; Dawson, N.A.; Haas, N.B.; Flaig, T.W.; Dorff, T.B. Adjuvant androgen deprivation (ADT) versus mitoxantrone plus prednisone (MP) plus ADT in high-risk prostate cancer (PCa) patients following radical prostatectomy: A phase III intergroup trial (SWOG S9921) NCT00004124. J. Clin. Oncol. 2017, 35. [Google Scholar] [CrossRef]
- Schumacher, T.N.; Schreiber, R.D. Neoantigens in Cancer Immunotherapy. Science 2015, 348, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravi Kumar, A.S.; Hofman, M.S. Mechanistic Insights for Optimizing PSMA Radioligand Therapy. Clin. Cancer Res. 2020, 26, 2774–2776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Czernin, J.; Current, K.; Mona, C.E.; Nyiranshuti, L.; Hikmat, F.; Radu, C.G.; Lueckerath, K. Immune-Checkpoint Blockade Enhances 225Ac-PSMA617 Efficacy in a Mouse Model of Prostate Cancer. J. Nucl. Med. 2020, 62, 228–231. [Google Scholar] [CrossRef]
- Miyahira, A.K.; Sharp, A.; Ellis, L.; Jones, J.; Kaochar, S.; Larman, H.B.; Quigley, D.A.; Ye, H.; Simons, J.W.; Pienta, K.J. Prostate Cancer Research: The Next Generation; Report from the 2019 Coffey-Holden Prostate Cancer Academy Meeting. Prostate 2020, 80, 113–132. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska, M.; Bilewicz, A.; Kruszewski, M.; Wegierek-Ciuk, A.; Lankoff, A. Targeted Radionuclide Therapy of Prostate Cancer-From Basic Research to Clinical Perspectives. Molecules. 2020, 25, 1743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trial Names | Design | Results/Endpoints | Complication/S | Comment |
---|---|---|---|---|
ADT ALONE OR IN COMBINATION | ||||
NCT00309985 (CHAARTED) [16] | Interventional: Clinical Trial (Randomised) Prospective | • OS • Rate of PSA level less than 0.2 ng per millilitre | • Fatigue, neutropenia and allergic reactions were noted in patients combination therapy | • 6 cycles of docetaxel + ADT vs. ADT alone • 13.6 months increase in group on combination therapy (docetaxel + ADT) • Rate of complications was higher in combination group, i.e., 6.2% vs. 0.5% |
NCT00268476 STAMPEDE [17] | nct00007644 Prospective | • OS + FFS | • Cardiovascular and renal toxicities | • Highlighted importance of combination therapies and prospective trials |
NCT00055731 GETUG-12 [18] | Interventional: Clinical Trial (Randomised) Prospective | • Relapse-Free Survival • OS | • Cardiovascular disease | • ADT alone vs. supported combination therapies of ADT + radiotherapy + estramustine |
NCT00667069 GETUG-AFU 17 [19] | Interventional: Clinical Trial (Randomised; Multi-centre) | • OS • MFS + • Acute/chronic toxicity • QoL | • Genitourinary toxicity and erectile dysfunction (ED) | • Phase III; Efficacy of triptorelin (ADT) + RT soon after surgery compared to surgery in localised PCa • GETUG-AFU 17 show that a RT significantly increased the risk of late toxicity • Randomised Phase 3 trial, Ongoing, to be completed in 2022 |
SASCRO/SASMO CONFERENCE ORAL PRESENTATION (BOSHOMANE ET AL., 2016-UNPUBLISHED DATA) | Prospective | • Response & safety | • No side-effects & adverse presented | • Demonstrated favourable response, i.e., no lesions and also a decrease in sPSA levels. |
NCT00007644 PIVOT [20] | Interventional: Clinical Trial (Randomised) Prospective | • All-cause mortality & PCa related mortality | • Adverse events presented (one fatality) | • Radical prostatectomy/surgery did not reduce PCa related mortality rates, i.e., disease still progressed |
REGISTRY NUMBER 12615000912583 NEW ZEALAND TRIAL [21] | Prospective | • Response to therapy according to PCWG criteria and QoL | • Used 7.5 GBq mean dose per cycle, reported mainly xerostomia | • Phase II trial in mHRPC in patients who progressed on ADT and chemotherapy |
NCT01715285 LATITUDE TRIAL [22] | Interventional: Clinical Trial (Randomised) | • OS and radiographic disease progression | • Grade 3 adverse events were more in the abiraterone group | • Exclusively enrolled men with high-risk mHSPC and excluded previous chemotherapy •Addition of abiraterone acetate and prednisone to ADT significantly increased OS and rPFS in men with newly diagnosed, metastatic and castration-sensitive prostate cancer |
NCT02677896 ARCHES TRIAL [23] | Interventional: Clinical Trial | • OS • Enzalutamide (second-generation nonsteroidal antiandrogen) + ADT (AR inhibition) significantly reduced risk of metastatic progression or death overtime vs. placebo plus ADT in men with mHSPC. | • Endocrine disorders • Gastrointestinal | • Enzalutamide + ADT may be considered in men with mHSPC (with low-volume disease) or who received prior docetaxel |
NCT02485691 CARD CLINICAL TRIAL [24] | Interventional (Clinical Trial) | • Measurement of rPFS (2 years-time frame) • Radiographical PFS as defined from randomisation time from the occurrence of death due to any cause | • Adverse event (Grade 3) were more in the cabazitaxel arm than the androgen-signalling-targeted inhibitor | • Preference may be given on cabazitaxel rather than the addition of another novel androgen receptor pathway inhibitor • Patients with mHRPC may benefit from PARP inhibition • Phase IV (4) |
RADIOTHERAPY | ||||
RTOG 9902 (RADIOTHERAPY) [25] | Interventional: Clinical trial (Randomised, Phase III) | • Hypothesis—addition of combination chemotherapy to RT would increase OS | • Cardiovascular events • Trial stopped early because of thromboembolic toxicities | • Chemotherapy toxicity evident • No significant differences in OS, biochemical failure, local progression, distant metastases or disease-free survival with addition of adjuvant CT to LT AS + RT. • Long follow-up period ~10 years |
PARP-INHIBITORS | ||||
NCT01085422 [26] | Interventional | • Pilot study combining an oral PARP with temozolomide in men with mHRPC | • Adverse events: thrombocytopenia, anaemia, fatigue, neutropenia | • Phase I (ABT-888, i.e., veliparib PHASE 1) |
IMMUNE CHECKPOINTS | ||||
NCT03834493 (KEYNOTE-641) | Interventional: Clinical Trial (Randomized) | • OS • rPFS | • N/A | • Phase III, Pembrolizumab with Enzalutamide vs. Placebo with Enzalutamide in mHRPC patients • Trial is currently active and will be completed in 2023 |
NCT03040791 | Interventional: Clinical Trial | • PSA response rate | • N/A | • Phase II, Nivolumab in PCa with DNA Repair Defects (ImmunoProst) • Trial is currently active and will be completed in 2021 |
NCT03248570 | Interventional: Clinical Trial (Non-Randomized) | • ORR | • N/A | • Phase II, Pembrolizumab in mHRPC with or without DNA Damage Repair Defects • Trial is currently active and will be completed in 2023 |
NCT03061539 | Interventional: Clinical Trial | • Radiological response • PSA response ≥50% • Conversion of CTCs from ≥5 to <5 cells/7.5 mL | • N/A | • Phase II, Nivolumab with ipilimumab in PCa with an immunogenic signature • Trial is currently active and will be completed in 2025 |
NCT03570619 (IMPACT) | Interventional: Clinical Trial (Non-Randomized) | • ORR | • N/A | • Phase II, Nivolumab with ipilimumab in mHRPC with CDK12 Mutations • Trial is currently active and will be completed in 2021 |
NCT03834493 | Interventional: Clinical Trial (Randomized) | • OSr • PFS | • N/A | • Phase III, Pembrolizumab with enzalutamide vs. placebo with enzalutamide in mHRPC patients (KEYNOTE-641) • Trial is currently active and will be completed in 2024 |
NCT02601014 (STARVE-PC) | Interventional: Clinical Trial (Randomized) | • PSA decline >50% • Safety & Tolerability | • N/A | • Phase II, Nivolumab & Ipilimumab targeting AR-V7 in mHRPC • Trial is currently active and will be completed in 2022 |
NCT02312557 [27] | Interventional: Clinical Trial | • Efficacy of pembrolizumab in men with mHRPC • Active, not recruiting | • Grade 2–5 toxicity: myositis, GIT and endocrine complications. | • Phase II • Pembrolizumab and Enzalutamide • Responders (18%) showed a decline of sPSA > 50%; |
NCT00323882 [28] | Interventional (Prospective) | • Completed | • GIT, liver, skin, eyes and endocrine glands. | • Phase I/II, • MDX-010 ± RT; Ipilimumab monotherapy & with RT • FINAL DATA PENDING |
NCT01498978 [29] | Interventional: Clinical Trial | • Completed | • No evidence of toxicity | • Phase II, Ipilimumab monotherapy and with ADT |
NCT00702923 [30] | Interventional Unregistered (sponsored) | • Terminated due to slow accrual | • Gastrointestinal | • Phase I • Tremelimumab monotherapy and with ADT (bicalutamide) • Three of 11 experienced delayed PSA doubling time |
NCT00113984 [31] | Interventional: Clinical Trial | • Safety and tolerability of combination of fixed dose of vaccine & vaccine & anti-CTLA4 | • No immune-related adverse effects noted | • Phase I; PSA-targeted vaccine that enhances co-stimulation of the immune system did not seem to exacerbate the immune-related adverse events associated with ipilimumab |
NCT00861614 [32] | Interventional: Clinical Trial | • PFS & OS • Primary end points not met. | • GIT (Diarrhea, vomiting, nausea, reduced haemoglobin, headaches and dizziness. | • Phase III • Ipilimumab following RT • OS (10 months vs. 11.2 months), PFS (4 vs. 3.1 months with HR 0.70; p < 0.0001 |
PEPTIDE RECEPTOR LIGAND THERAPY | ||||
NCT03392428 (ANZUP PROTOCOL 1603) [33] | Interventional: Clinical Trial (Randomized) | • Primary endpoints: PSA response rate, PFS, QoL | • Data not published yet | • Phase II; • 177Lutetium-PSMA-617 vs. Cabazitaxel in mHRPC • Ongoing—Estimated completion date January 2021 and the results are eagerly awaited |
NCT01106352 ALSYMPCA TRIAL [34] | Interventional: Clinical Trial (Randomized) Prospective | • OS improved | • Febrile neutropenia | • Phase III trial using alpha radiation particles • 50k Bq/kg intravenous 4 cycles • Comparison with SOC (chemotherapy, e.g., docetaxel) |
REVIEW ARTICLE [35] | Review article | • Safety & Efficacy, OS, PFS, FFS and QoL | • Grade ¾ hematologic toxicities; thrombocytopenia; anemia, pyrexia, back pain, fatique, etc. | • All available therapeutic agents • Change of landscape in PCa management |
NCT00699751 [36] | Interventional: Clinical Trial (Randomized) | • OS significantly improved | • GIT disorders, blood and lymphatic system disorders, nasopharyngitis, urinary tract infections, etc. | • Phase III trial using Radium-223 dichloride • 50k Bq/kg intravenously of body weight intravenously 4 cycles • Comparison with placebo |
NCT03511664 VISION TRIAL | Interventional: Clinical Trial (Randomized) | • OS & rPFS | • No data yet posted | • 177Lu-617 in addition to best SOC • Estimated completion date December 2021 |
REGISTRY NUMBER 12615000912583 LUPSMA TRIAL | Interventional: Clinical Trial (Randomized) | • OS • rPFS • Safety & tolerability | • Grade 1 dry mouth, grade ½ transient nausea, grade ½ fatigue and grade ¾ thrombocytopenia | • Phase 3 trial using 177Lu-PSMA-617 in progressive PSMA-positive mHRPC in combination with SOC • Comparison with SOC • No data yet as the study will be completed by December 2021 |
NCT03454750 [37] | Interventional: Clinical Trial | • Disease control rate • Toxicity | • No data posted | • Radiometabolic therapy with 177Lu-PSMA-617 in HRPC (Lu-PSMA) • 7 GBq/cycle of 177Lu-PSMA-617 was safe & produced early biochemical & imaging responses • Dosimetry of salivary glands suggested that the co- administration of polyglutamate tablets may reduce salivary gland uptake |
NCT03403595 | Interventional: Clinical Trial | • Standardized uptake value of 177Lu-EB-PSMA-617 in normal organs & mHRPC | • Grade1/2 leucocyte reduction | • Phase I; 177Lu-EB-PSMA-617 in patients with mHRPC • The study was completed in December 2018 |
NCT03828838 | Interventional: Clinical Trial | • Cancer Dose delivered to tumor and organs at risk | • No data posted | • Phase I/II; 177Lu-PSMA-617 in low-volume mHRPC • The study was completed in November 2019 |
NCT03042468 | Interventional: Clinical Trial | • DLT • Recommended phase 2 dose | • Data not yet available | • Phase I Dose-escalation study of fractionated 177Lu-PSMA-617 for progressive mHRPC • Estimated completion date September 2022 |
NCT03490838 | Interventional: Clinical Trial (Non-Randomised) | • DLT • PSA50 response rate | • Data not yet posted | • Phase I/II; 177Lu-PSMA-R2 in patients with PSMA-PET positive mHRPC • Estimated completion date June 2022 |
NCT03276572 | Interventional: Clinical Trial | • Safety • DLT | • Low Gr temporary fatigue, nausea and xerostomia | • Phase I trial of 225Ac−J591 in Patients with mHRPC • Estimated completion date July 2024 |
NCT03939689 [38] | Interventional: Clinical Trial | • PSA response rate | • The second and third therapies were less effective and presented with more frequent and more intense side effects, especially hematologic toxicities and xerostomia. | • Phase II study of 131I-PSMA-1095 radiotherapy in combination with enzalutamide in mHRPC patients who are chemo-naive and progress on abiraterone significantly reduced the tumor burden with low side effects. • The study is still ongoing and will be completed in June 2024 |
NCT03792841 | Interventional: Clinical Trial | • Safety • DLT | • Data not yet published | • Phase I/II • Safety, tolerability, pharmacokinetics, and efficacy of AMG 160 in subjects with mHRPC • Estimated completion date November 2024 |
NCT04053062 | Interventional: Clinical Trial | • Incidence of toxicity | • Data not yet published | • Phase I/II • PSMA-CAR T in treating patients with refractory mHRPC • Estimated completion date December 2022 |
NCT03089203 [39] | Interventional: Clinical Trial (Non-Randomised) | • Incidence of toxicity | • Data not yet published | • Phase I • PSMA-TGFβRDN CAR T Cells for HRPC • Increased proliferation of lymphocytes, enhanced cytokine secretion, resistance to exhaustion, long-term in vivo persistence & the induction of tumor eradication was observed. • The study is ongoing & will be completed in September 2021 |
NCT03577028 | Interventional: Clinical Trial | • DLT | • Data not yet published | • Phase I • Study of HPN424 in patients with advanced PCa • The study has been completed in December 2020 |
NCT03545165 | Interventional: Clinical Trial | • DLT • Cumulative maximum tolerated dose • PSA response | • Data not yet published (Reporting date is July 2021) | • Phase I/II • 177Lu-J591 and 177Lu-PSMA-617 combination for mHRPC • The study has been completed in July 2020 |
NCT00859781 | Interventional: Clinical Trial (Randomised) | • Proportion free of radiographic metastasis | • Data not yet published | • Phase II • 177Lu radiolabeled monoclonal antibody HuJ591 (177Lu-J591) and ketoconazole in patients with PCa • Estimated completion date December 2022 |
NCT03093428 | Interventional: Clinical Trial (Randomized) | • Immune response evaluation • OS • rPFS • Safety & tolerability | • Data not yet published | • Phase II • Radium-223 + pembrolizumab (PD1). Radium-223 will be administered intravenously every 4 weeks at a pre-determined dose • The study is still ongoing and will be completed in 2024 |
NCT02814669 | Interventional: Clinical Trial (Randomized) | • DLT assessment • OR | • No data published | • Phase I • Radium-223 + atezolizumab (PD-L1) • 840 mg intravenously infusion on days 1 & 15 of each 28-day cycle • Study completed but no data |
NCT02463799 | Interventional: Clinical Trial (Randomized) | • Immune response evaluation | • No data yet | • Phase II; Radium-223 with or without sipuleucel-T immunotherapy mHRPC • 50 kbq injected intravenously over 1 min per kg body weight per SOC every 4 weeks at weeks 0, 4, 8, 12, 16, and 20 • 6 infusions of radium-223 with 3 infusions of sipuleucel-T starting after second dose of radium-223 • 3 infusions of sipuleucel-T alone • The study will be completed in May 2021 |
NOT REGISTERED [40] | Prospective (Endotherapy) | • PSA Decline and stage | • Xerostomia | • Larger cohort required • Demonstrated the clinical impact of 225Actium-PSMA in managing patients with advanced PCa. • OS & PFS not endpoint |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kgatle, M.M.; Boshomane, T.M.G.; Lawal, I.O.; Mokoala, K.M.G.; Mokgoro, N.P.; Lourens, N.; Kairemo, K.; Zeevaart, J.R.; Vorster, M.; Sathekge, M.M. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. Int. J. Mol. Sci. 2021, 22, 4109. https://doi.org/10.3390/ijms22084109
Kgatle MM, Boshomane TMG, Lawal IO, Mokoala KMG, Mokgoro NP, Lourens N, Kairemo K, Zeevaart JR, Vorster M, Sathekge MM. Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. International Journal of Molecular Sciences. 2021; 22(8):4109. https://doi.org/10.3390/ijms22084109
Chicago/Turabian StyleKgatle, Mankgopo M., Tebatso M. G. Boshomane, Ismaheel O. Lawal, Kgomotso M. G. Mokoala, Neo P. Mokgoro, Nico Lourens, Kalevo Kairemo, Jan Rijn Zeevaart, Mariza Vorster, and Mike M. Sathekge. 2021. "Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach" International Journal of Molecular Sciences 22, no. 8: 4109. https://doi.org/10.3390/ijms22084109
APA StyleKgatle, M. M., Boshomane, T. M. G., Lawal, I. O., Mokoala, K. M. G., Mokgoro, N. P., Lourens, N., Kairemo, K., Zeevaart, J. R., Vorster, M., & Sathekge, M. M. (2021). Immune Checkpoints, Inhibitors and Radionuclides in Prostate Cancer: Promising Combinatorial Therapy Approach. International Journal of Molecular Sciences, 22(8), 4109. https://doi.org/10.3390/ijms22084109