Obesity, Nutrition and Heart Rate Variability
Abstract
:1. Introduction
2. Parameters of Heart Rate Variability
2.1. Heart Rate Variability and the Autonomic Nervous System
2.2. Heart Rate Variability Domains
3. Heart Rate Variability in Individuals with Obesity
3.1. Glucose Levels and Insulin Resistance
3.2. Body Fat
3.3. Binge Eating Disorders
3.4. Exercise Training in Individuals with Obesity
4. Effects of Diet on Heart Rate Variability
4.1. Energy and Macronutrient Intake
4.1.1. Macronutrient Intake
4.1.2. Caloric Restriction and Energy Expenditure
4.2. Fatty Acids
4.3. Micronutrients
4.4. Sodium
4.5. General Antiarrhythmic Effects of Nutrition
4.6. General Nutrition Recommendation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jayedi, A.; Soltani, S.; Zargar, M.S.; Khan, T.A.; Shab-Bidar, S. Central fatness and risk of all cause mortality: Systematic review and dose-response meta-analysis of 72 prospective cohort studies. BMJ 2020, 370, m3324. [Google Scholar] [CrossRef] [PubMed]
- Farooq, M.A.; Parkinson, K.N.; Adamson, A.J.; Pearce, M.S.; Reilly, J.K.; Hughes, A.R.; Janssen, X.; Basterfield, L.; Reilly, J.J. Timing of the decline in physical activity in childhood and adolescence: Gateshead Millennium Cohort Study. Br. J. Sports Med. 2018, 52, 1002–1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nyberg, S.T.; Batty, G.D.; Pentti, J.; Virtanen, M.; Alfredsson, L.; Fransson, E.I.; Goldberg, M.; Heikkila, K.; Jokela, M.; Knutsson, A.; et al. Obesity and loss of disease-free years owing to major non-communicable diseases: A multicohort study. Lancet Public Health 2018, 3, e490–e497. [Google Scholar] [CrossRef] [Green Version]
- Viana, A.; Dias, D.D.S.; Nascimento, M.C.; Dos Santos, F.; Lanza, F.C.; Irigoyen, M.C.; De Angelis, K. Impact of overweight in mens with family history of hypertension: Early heart rate variability and oxidative stress disarrangements. Oxidative Med. Cell. Longev. 2020, 2020, 3049831. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, R.; Kumar, R.; Malik, S.; Raj, T.; Kumar, P. Analysis of heart rate variability and implication of different factors on heart rate varriability. Curr. Cardiol. Rev. 2020. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.D.; Ryan, D.H.; Apovian, C.M.; Ard, J.D.; Comuzzie, A.G.; Donato, K.A.; Hu, F.B.; Hubbard, V.S.; Jakicic, J.M.; Kushner, R.F.; et al. 2013 AHA/ACC/TOS guideline for the management of overweight and obesity in adults: A report of the American College of Cardiology/American Heart Association task force on practice guidelines and The Obesity Society. J. Am. Coll. Cardiol. 2014, 63, 2985–3023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanian, P.; Hall, D.; Subramanian, M. Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. Geroscience 2019, 41, 13–24. [Google Scholar] [CrossRef]
- Harris, P.R.; Stein, P.K.; Fung, G.L.; Drew, B.J. Heart rate variability measured early in patients with evolving acute coronary syndrome and 1-year outcomes of rehospitalization and mortality. Vasc. Health Risk Manag. 2014, 10, 451–464. [Google Scholar] [CrossRef] [Green Version]
- Nicoll, R.; Henein, M.Y. Caloric Restriction and its effect on blood pressure, heart rate variability and arterial stiffness and dilatation: A review of the evidence. Int. J. Mol. Sci. 2018, 19, 751. [Google Scholar] [CrossRef] [Green Version]
- Sekaninova, N.; Olexova, L.B.; Visnovcova, Z.; Ondrejka, I.; Tonhajzerova, I. Role of neuroendocrine, immune, and autonomic nervous system in anorexia nervosa-linked cardiovascular diseases. Int. J. Mol. Sci. 2020, 21, 7302. [Google Scholar] [CrossRef]
- Giovinazzo, S.; Sukkar, S.G.; Rosa, G.M.; Zappi, A.; Bezante, G.P.; Balbi, M.; Brunelli, C. Anorexia nervosa and heart disease: A systematic review. Eat. Weight Disord. 2019, 24, 199–207. [Google Scholar] [CrossRef]
- Zhang, J.B.; Tamboli, R.A.; Albaugh, V.L.; Williams, D.B.; Kilkelly, D.M.; Grijalva, C.G.; Shibao, C.A. The incidence of orthostatic intolerance after bariatric surgery. Obes. Sci. Pract. 2020, 6, 76–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godfrey, K.M.; Juarascio, A.; Manasse, S.; Minassian, A.; Risbrough, V.; Afari, N. Heart rate variability and emotion regulation among individuals with obesity and loss of control eating. Physiol. Behav. 2019, 199, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Fohr, T.; Pietila, J.; Helander, E.; Myllymaki, T.; Lindholm, H.; Rusko, H.; Kujala, U.M. Physical activity, body mass index and heart rate variability-based stress and recovery in 16 275 Finnish employees: A cross-sectional study. BMC Public Health 2016, 16, 701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandran, D.S.; Ali, N.; Jaryal, A.K.; Jyotsna, V.P.; Deepak, K.K. Decreased autonomic modulation of heart rate and altered cardiac sympathovagal balance in patients with Cushing’s syndrome: Role of endogenous hypercortisolism. Neuroendocrinology 2013, 97, 309–317. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An overview of heart rate variability metrics and norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [Green Version]
- Perkiomaki, J.S.; Zareba, W.; Badilini, F.; Moss, A.J. Influence of atropine on fractal and complexity measures of heart rate variability. Ann. Noninvasive Electrocardiol. 2002, 7, 326–331. [Google Scholar] [CrossRef]
- Benarroch, E.E. The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clin. Proc. 1993, 68, 988–1001. [Google Scholar] [CrossRef]
- Blons, E.; Arsac, L.M.; Grivel, E.; Lespinet-Najib, V.; Deschodt-Arsac, V. Physiological resonance in empathic stress: Insights from nonlinear dynamics of heart rate variability. Int. J. Environ. Res. Public Health 2021, 18, 2081. [Google Scholar] [CrossRef]
- Pulopulos, M.M.; Vanderhasselt, M.A.; De Raedt, R. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response. Psychoneuroendocrinology 2018, 94, 63–71. [Google Scholar] [CrossRef] [Green Version]
- Spitoni, G.F.; Ottaviani, C.; Petta, A.M.; Zingaretti, P.; Aragona, M.; Sarnicola, A.; Antonucci, G. Obesity is associated with lack of inhibitory control and impaired heart rate variability reactivity and recovery in response to food stimuli. Int. J. Psychophysiol. 2017, 116, 77–84. [Google Scholar] [CrossRef]
- Hamilton, J.L.; Alloy, L.B. Atypical reactivity of heart rate variability to stress and depression across development: Systematic review of the literature and directions for future research. Clin. Psychol. Rev. 2016, 50, 67–79. [Google Scholar] [CrossRef] [Green Version]
- Young, H.A.; Benton, D. Heart-rate variability: A biomarker to study the influence of nutrition on physiological and psychological health? Behav. Pharmacol. 2018, 29, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Mietus, J.E.; Peng, C.K.; Henry, I.; Goldsmith, R.L.; Goldberger, A.L. The pNNx files: Re-examining a widely used heart rate variability measure. Heart 2002, 88, 378–380. [Google Scholar] [CrossRef] [Green Version]
- Camm, A.J.; Malik, M.; Bigger, J.T.; Breithardt, G.; Cerutti, S.; Cohen, R.J.; Coumel, P.; Fallen, E.L.; Kennedy, H.L.; Kleiger, R.E.; et al. Heart rate variability: Standards of measurement, physiological interpretation and clinical use. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Circulation 1996, 93, 1043–1065. [Google Scholar]
- Eckberg, D.L. Sympathovagal balance: A critical appraisal. Circulation 1997, 96, 3224–3232. [Google Scholar] [CrossRef] [PubMed]
- Phoemsapthawee, J.; Prasertsri, P.; Leelayuwat, N. Heart rate variability responses to a combined exercise training program: Correlation with adiposity and cardiorespiratory fitness changes in obese young men. J. Exerc. Rehabil. 2019, 15, 114–122. [Google Scholar] [CrossRef] [Green Version]
- Gutin, B.; Howe, C.; Johnson, M.H.; Humphries, M.C.; Snieder, H.; Barbeau, P. Heart rate variability in adolescents: Relations to physical activity, fitness, and adiposity. Med. Sci. Sports Exerc. 2005, 37, 1856–1863. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, C.; He, Z.; Hong, P.; Zhao, J. Autonomic function responses to training: Correlation with body composition changes. Physiol. Behav. 2015, 151, 308–313. [Google Scholar] [CrossRef]
- Kangas, P.; Tikkakoski, A.; Uitto, M.; Viik, J.; Bouquin, H.; Niemela, O.; Mustonen, J.; Porsti, I. Metabolic syndrome is associated with decreased heart rate variability in a sex-dependent manner: A comparison between 252 men and 249 women. Clin. Physiol. Funct. Imaging 2019, 39, 160–167. [Google Scholar] [CrossRef]
- Poon, A.K.; Whitsel, E.A.; Heiss, G.; Soliman, E.Z.; Wagenknecht, L.E.; Suzuki, T.; Loehr, L. Insulin resistance and reduced cardiac autonomic function in older adults: The Atherosclerosis risk in communities study. BMC Cardiovasc. Disord. 2020, 20, 217. [Google Scholar] [CrossRef]
- Albarado-Ibanez, A.; Arroyo-Carmona, R.E.; Sanchez-Hernandez, R.; Ramos-Ortiz, G.; Frank, A.; Garcia-Gudino, D.; Torres-Jacome, J. The role of the autonomic nervous system on cardiac rhythm during the evolution of diabetes mellitus using heart rate variability as a biomarker. J. Diabetes Res. 2019, 2019, 5157024. [Google Scholar] [CrossRef]
- Silva, L.; Zamuner, A.R.; Gentil, P.; Alves, F.M.; Leal, A.G.F.; Soares, V.; Silva, M.S.; Vieira, M.F.; Simoes, K.; Pedrino, G.R.; et al. Cardiac autonomic modulation and the kinetics of heart rate responses in the on- and off-transient during exercise in women with metabolic syndrome. Front. Physiol. 2017, 8, 542. [Google Scholar] [CrossRef]
- Kiviniemi, A.M.; Perkiomaki, N.; Auvinen, J.; Niemela, M.; Tammelin, T.; Puukka, K.; Ruokonen, A.; Keinanen-Kiukaanniemi, S.; Tulppo, M.P.; Jarvelin, M.R.; et al. Fitness, fatness, physical activity, and autonomic function in midlife. Med. Sci. Sports Exerc. 2017, 49, 2459–2468. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, C.; Silveira, E.A.; Rosa, L.; Santos, A.; Rodrigues, A.P.; Mendonca, C.; Silva, L.; Gentil, P.; Rebelo, A.C. Risk factors associated with cardiac autonomic modulation in obese individuals. J. Obes. 2020, 2020, 7185249. [Google Scholar] [CrossRef]
- Kaikkonen, K.M.; Korpelainen, R.I.; Tulppo, M.P.; Kaikkonen, H.S.; Vanhala, M.L.; Kallio, M.A.; Keinanen-Kiukaanniemi, S.M.; Korpelainen, J.T. Physical activity and aerobic fitness are positively associated with heart rate variability in obese adults. J. Phys. Act. Health 2014, 11, 1614–1621. [Google Scholar] [CrossRef]
- Franz, R.; Maturana, M.A.; Magalhaes, J.A.; Moraes, R.S.; Spritzer, P.M. Central adiposity and decreased heart rate variability in postmenopause: A cross-sectional study. Climacteric 2013, 16, 576–583. [Google Scholar] [CrossRef]
- Koenig, J.; Windham, B.G.; Ferrucci, L.; Sonntag, D.; Fischer, J.E.; Thayer, J.F.; Jarczok, M.N. Association strength of three adiposity measures with autonomic nervous system function in apparently healthy employees. J. Nutr. Health Aging 2015, 19, 879–882. [Google Scholar] [CrossRef]
- Chintala, K.K.; Krishna, B.H.; Reddy, N.M. Heart rate variability in overweight health care students: Correlation with visceral fat. J. Clin. Diagn. Res. 2015, 9, CC06-8. [Google Scholar] [CrossRef]
- Antelmi, I.; de Paula, R.S.; Shinzato, A.R.; Peres, C.A.; Mansur, A.J.; Grupi, C.J. Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am. J. Cardiol. 2004, 93, 381–385. [Google Scholar] [CrossRef]
- Dietrich, D.F.; Ackermann-Liebrich, U.; Schindler, C.; Barthelemy, J.C.; Brandli, O.; Gold, D.R.; Knopfli, B.; Probst-Hensch, N.M.; Roche, F.; Tschopp, J.M.; et al. Effect of physical activity on heart rate variability in normal weight, overweight and obese subjects: Results from the SAPALDIA study. Eur. J. Appl. Physiol. 2008, 104, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Dias, A.R.L.; de Souza, K.A.; Dos Santos, K.M.; de Miranda, R.M.; Serra, A.J.; Pecanha, T.; Ferreira, J.C.; Cambri, L.T.; Arsa, G. Ambulatory heart rate variability in overweight and obese men after high-intensity interval exercise versus moderate-intensity continuous exercise. Eur. J. Sport Sci. 2021, 29, 1–9. [Google Scholar] [CrossRef]
- Facchini, M.; Malfatto, G.; Sala, L.; Silvestri, G.; Fontana, P.; Lafortuna, C.; Sartorio, A. Changes of autonomic cardiac profile after a 3-week integrated body weight reduction program in severely obese patients. J. Endocrinol. Investig. 2003, 26, 138–142. [Google Scholar] [CrossRef]
- Ito, H.; Ohshima, A.; Tsuzuki, M.; Ohto, N.; Yanagawa, M.; Maruyama, T.; Kaji, Y.; Kanaya, S.; Nishioka, K. Effects of increased physical activity and mild calorie restriction on heart rate variability in obese women. Jpn. Heart J. 2001, 42, 459–469. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.Y.; Zmora, R.; Duval, S.; Chow, L.S.; Lloyd-Jones, D.M.; Schreiner, P.J. Cardiorespiratory fitness, adiposity, and heart rate variability: The coronary artery risk development in young adults study. Med. Sci. Sports Exerc. 2019, 51, 509–514. [Google Scholar] [CrossRef]
- Tentolouris, N.; Tsigos, C.; Perea, D.; Koukou, E.; Kyriaki, D.; Kitsou, E.; Daskas, S.; Daifotis, Z.; Makrilakis, K.; Raptis, S.A.; et al. Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women. Metabolism 2003, 52, 1426–1432. [Google Scholar] [CrossRef]
- Oliveira, C.M.; Ghezzi, A.C.; Cambri, L.T. Higher blood glucose impairs cardiac autonomic modulation in fasting and after carbohydrate overload in adults. Appl. Physiol. Nutr. Metab. 2021, 46, 221–228. [Google Scholar] [CrossRef]
- Cao, L.; Graham, S.L.; Pilowsky, P.M. Carbohydrate ingestion induces sex-specific cardiac vagal inhibition, but not vascular sympathetic modulation, in healthy older women. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 311, R49–R56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lima-Silva, A.E.; Bertuzzi, R.; Dalquano, E.; Nogueira, M.; Casarini, D.; Kiss, M.A.; Ugrinowitsch, C.; Pires, F.O. Influence of high- and low-carbohydrate diet following glycogen-depleting exercise on heart rate variability and plasma catecholamines. Appl. Physiol. Nutr. Metab. 2010, 35, 541–547. [Google Scholar] [CrossRef]
- Sjoberg, N.; Brinkworth, G.D.; Wycherley, T.P.; Noakes, M.; Saint, D.A. Moderate weight loss improves heart rate variability in overweight and obese adults with type 2 diabetes. J. Appl. Physiol. 2011, 110, 1060–1064. [Google Scholar] [CrossRef] [Green Version]
- de Jonge, L.; Moreira, E.A.; Martin, C.K.; Ravussin, E.; Pennington, C.T. Impact of 6-month caloric restriction on autonomic nervous system activity in healthy, overweight, individuals. Obesity 2010, 18, 414–416. [Google Scholar] [CrossRef] [PubMed]
- Poirier, P.; Hernandez, T.L.; Weil, K.M.; Shepard, T.J.; Eckel, R.H. Impact of diet-induced weight loss on the cardiac autonomic nervous system in severe obesity. Obes. Res. 2003, 11, 1040–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, P.K.; Soare, A.; Meyer, T.E.; Cangemi, R.; Holloszy, J.O.; Fontana, L. Caloric restriction may reverse age-related autonomic decline in humans. Aging Cell 2012, 11, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Sauder, K.A.; Skulas-Ray, A.C.; Campbell, T.S.; Johnson, J.A.; Kris-Etherton, P.M.; West, S.G. Effects of omega-3 fatty acid supplementation on heart rate variability at rest and during acute stress in adults with moderate hypertriglyceridemia. Psychosom. Med. 2013, 75, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Baumann, C.; Rakowski, U.; Buchhorn, R. Omega-3 fatty acid supplementation improves heart rate variability in obese children. Int. J. Pediatr. 2018, 2018, 8789604. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Schmidt, E.B. Autonomic nervous system, heart rate variability and n-3 fatty acids. J. Cardiovasc. Med. 2007, 8, S19–S22. [Google Scholar] [CrossRef]
- Billman, G.E. The effects of omega-3 polyunsaturated fatty acids on cardiac rhythm: A critical reassessment. Pharmacol. Ther. 2013, 140, 53–80. [Google Scholar] [CrossRef] [PubMed]
- Celik, S.F.; Celik, E. Subclinical atherosclerosis and impaired cardiac autonomic control in pediatric patients with Vitamin B12 deficiency. Niger. J. Clin. Pract. 2018, 21, 1012–1016. [Google Scholar]
- Wienecke, E.; Nolden, C. Long-term HRV analysis shows stress reduction by magnesium intake. MMW Fortschr. Med. 2016, 158, 2–16. [Google Scholar]
- Lopresti, A.L. Association between micronutrients and heart rate variability: A review of human studies. Adv. Nutr. 2020, 11, 559–575. [Google Scholar] [CrossRef]
- Buchholz, K.; Schachinger, H.; Wagner, M.; Sharma, A.M.; Deter, H.C. Reduced vagal activity in salt-sensitive subjects during mental challenge. Am. J. Hypertens. 2003, 16, 531–536. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.P.; Aggarwal, K.K.; Zhang, P.Y. Omega-3 fatty acids and cardiovascular disease. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 441–445. [Google Scholar] [PubMed]
- Reginato, E.; Azzolina, D.; Folino, F.; Valentini, R.; Bendinelli, C.; Gafare, C.E.; Cainelli, E.; Vedovelli, L.; Iliceto, S.; Gregori, D.; et al. Dietary and lifestyle patterns are associated with heart rate variability. J. Clin. Med. 2020, 9, 1121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singer, P.; Wirth, M. Can n-3 PUFA reduce cardiac arrhythmias? Results of a clinical trial. Prostaglandins Leukot. Essent. Fat. Acids 2004, 71, 153–159. [Google Scholar] [CrossRef]
- Gogolashvili, N.G.; Litvinenko, M.V.; Pochikaeva, T.N.; Vavitova, E.S.; Polikarpov, L.S.; Novgorodtseva, N. Possibilities of a preparation omega-3 polyunsaturated fatty acids in the treatment of patients with ventricular arrhythmias and myocardial infarction. Kardiologiia 2011, 51, 28–31. [Google Scholar] [PubMed]
- Christensen, J.H. N-3 fatty acids and the risk of sudden cardiac death. Emphasis on heart rate variability. Dan. Med. Bull. 2003, 50, 347–367. [Google Scholar] [PubMed]
- Karpyak, V.M.; Romanowicz, M.; Schmidt, J.E.; Lewis, K.A.; Bostwick, J.M. Characteristics of heart rate variability in alcohol-dependent subjects and nondependent chronic alcohol users. Alcohol. Clin. Exp. Res. 2014, 38, 9–26. [Google Scholar] [CrossRef]
- Voskoboinik, A.; Prabhu, S.; Ling, L.H.; Kalman, J.M.; Kistler, P.M. Alcohol and atrial fibrillation: A sobering review. J. Am. Coll. Cardiol. 2016, 68, 2567–2576. [Google Scholar] [CrossRef]
- Brunner, S.; Herbel, R.; Drobesch, C.; Peters, A.; Massberg, S.; Kaab, S.; Sinner, M.F. Alcohol consumption, sinus tachycardia, and cardiac arrhythmias at the Munich Octoberfest: Results from the Munich Beer Related Electrocardiogram Workup Study (MunichBREW). Eur. Heart J. 2017, 38, 2100–2106. [Google Scholar] [CrossRef] [Green Version]
- Spaak, J.; Tomlinson, G.; McGowan, C.L.; Soleas, G.J.; Morris, B.L.; Picton, P.; Notarius, C.F.; Floras, J.S. Dose-related effects of red wine and alcohol on heart rate variability. Am. J. Physiol. Heart Circ. Physiol. 2010, 298, H2226–2231. [Google Scholar] [CrossRef] [Green Version]
- Aparici, M.; Fernandez-Gonzalez, A.L.; Peteiro, J. 24-hour ambulatory electrocardiographic registry: Differences between smokers and non-smokers and habit breaking effects. Med. Clin. 1993, 100, 125–127. [Google Scholar]
- Hung, D.Z.; Yang, H.J.; Li, Y.F.; Lin, C.L.; Chang, S.Y.; Sung, F.C.; Tai, S.C. The Long-term effects of organophosphates poisoning as a risk factor of CVDs: A nationwide population-based cohort study. PLoS ONE 2015, 10, e0137632. [Google Scholar] [CrossRef] [Green Version]
- Reiffel, J.A.; McDonald, A. Antiarrhythmic effects of omega-3 fatty acids. Am. J. Cardiol. 2006, 98, 50i–60i. [Google Scholar] [CrossRef]
- Park, S.K.; Tucker, K.L.; O’Neill, M.S.; Sparrow, D.; Vokonas, P.S.; Hu, H.; Schwartz, J. Fruit, vegetable, and fish consumption and heart rate variability: The Veterans Administration Normative Aging Study. Am. J. Clin. Nutr. 2009, 89, 778–786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the primary prevention of cardiovascular disease: A report of the American College of Cardiology/American Heart Association task force on clinical practice guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef] [PubMed]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Muller, M.J.; Oberritter, H.; Schulze, M.; et al. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr 2012, 51, 637–663. [Google Scholar] [CrossRef] [Green Version]
- Elmadfa, I.; Meyer, A.; Nowak, V.; Hasenegger, V.; Putz, P.; Verstraeten, R.; Remaut-DeWinter, A.M.; Kolsteren, P.; Dostalova, J.; Dlouhy, P.; et al. European nutrition and health report 2009. Ann. Nutr. Metab. 2009, 62, 1–40. [Google Scholar]
- Moreno, L.A.; Gonzalez-Gross, M.; Kersting, M.; Molnar, D.; de Henauw, S.; Beghin, L.; Sjostrom, M.; Hagstromer, M.; Manios, Y.; Gilbert, C.C.; et al. Assessing, understanding and modifying nutritional status, eating habits and physical activity in European adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) Study. Public Health Nutr. 2008, 11, 288–299. [Google Scholar] [CrossRef] [Green Version]
- Moreno, L.A.; Gottrand, F.; Huybrechts, I.; Ruiz, J.R.; Gonzalez-Gross, M.; DeHenauw, S.; Group, H.S. Nutrition and lifestyle in european adolescents: The HELENA (Healthy Lifestyle in Europe by Nutrition in Adolescence) study. Adv. Nutr. 2014, 5, 615S–623S. [Google Scholar] [CrossRef] [Green Version]
Method | Variability Measure | Measurement Unit | Definition and Explanation | Indicator of … | Assignment as Part of the Autonomic Nervous System | Recommendation for Reporting Time |
---|---|---|---|---|---|---|
Statistical | SDNN | ms | Standard deviation of NN intervals | Total variability | No clear assignment | |
Statistical | RMSSD | ms | Root mean square of successive differences of all consecutive NN intervals | Short-term variability | PSY | |
Statistical | pNN50 | ms | Percentage of mean number of successive normal sinus (NN) consecutive RR-Intervals exceeding 50 ms | Total variability | PSY | |
FFT and autoregressive model | VLF | ms2 | Very low frequency power: power spectral density in the frequency range from 0.003 to 0.04 Hz | No clear assignment | SY | |
FFT and autoregressive model | LF | ms2 | Low frequency power: power spectral density in the frequency range from 0.04 to 0.15 Hz | No clear assignment | SY > PSY | ≥5 min |
FFT and autoregressive model | HF | ms2 | High frequency power: power spectral density in the frequency range from 0.15 to 0.40 Hz | No clear assignment | PSY | ≥5 min |
FFT and autoregressive model | LF/HF | k. E. | Ratio of sympatho-vagal balance; measurement of interaction between SNS and PNS | No clear assignment | SY and PSY | ≥5 min |
References | Sample | Design | Outcome |
---|---|---|---|
Godfrey 2019 | 28 persons with obesity | HRV and emotion regulation in binge eating disordered with BMI ≥ 30 kg/m2 | Statistically significant association between SDNN, resting low and high frequency domain and overeating, association between resting RMSSD and binge eating -> HRV as a feasible marker of emotion regulation |
Chen 2019 | 2316 middle-aged persons with obesity | BMI, HRV und graded exercise test duration at randomization and after 20 years | Higher waist circumference and higher measures of adiposity as well as lower level of cardiorespiratory fitness leading to lower RMSSD, higher waist circumference meaning lower SDNN |
Oliveira 2020 | 64 middle-aged persons with obesity | Risk Factors influencing cardiac autonomic function in persons with obesity | Insulin resistance and waist circumference showed the greatest influence on cardiac autonomic modulation of obese as negatively associated with high frequency power, representing the parasympathetic activity |
Jonge 2010 | 48 persons with over-weight | Life extending effect of caloric restriction (CR) | Randomization in 3 groups: control group, CR group with 25% decrease in energy intake, calory restriction and energy expeniture (CREX) group with 12.5% CR plus 12.5% increase in energy expenditure (EX), or low calory diet (LCD) group aiming 15% weight reduction. After six months heart rate (HR) and sympathetic nervous systeme (SNS) index decreased and parasympathetic nervous systeme (PNS) index increased in all intervention groups but reached significance only in CREX. Heart rate and SNS index increased and PNS index decreased after having meal in all intervention groups. Conclusion: weight loss improved SNS/PNS balance especially when CR is combined with exercise |
Chintala 2015 | 40 controls, 40 persons with over-weight | Correlation visceral fat and HRV | Overweight individuals had sympathovagal imbalance due to increased sympathetic activity associated with visceral fat |
Poirier 2003 | 17 severe overweight women (BMI > 40 kg/m2) | Effect of diet induced on HRV in severe obese women | An average weight loss of 10 percent showed a significant reduction in mean heart rate (HR) and notable increase in several parasympathic parameters (HF, LF, VLF power, SDNN, RMSSD and pNN50) within three months |
Stein 2012 | 22 adult caloric restriction individuals, 20 controls eating Western diets | Association between HRV and caloric restriction (CR) | After 7 years of CR, lower HR and higher HRV—comparable to the norm for those 20 years younger—occured. Conclusion: weight gain adversely influences HRV, although this effect may be reversible with weight loss and/or dietary restriction. |
No. | General Nutrition Recommendation of DGE, DAG and AHA |
---|---|
1. | Varied, mainly plant based food |
2. | 5 portions of fruit/vegetables per day |
3. | Predominantly whole grain products, fewer simple carbohydrates |
4. | Daily intake of milk products, fish meal once to twice per week, meat as little as possible, maximum 300–600 g per week |
5. | Preferably polyunsaturated fatty acids instead of animal fats |
6. | Salt mainly replaced by herbs, Sugar as little as possible |
7. | 1.5 L of plain water per day |
8. | Gently cooking |
9. | Meals taken in in peace |
10. | Regular physical exercise |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Strüven, A.; Holzapfel, C.; Stremmel, C.; Brunner, S. Obesity, Nutrition and Heart Rate Variability. Int. J. Mol. Sci. 2021, 22, 4215. https://doi.org/10.3390/ijms22084215
Strüven A, Holzapfel C, Stremmel C, Brunner S. Obesity, Nutrition and Heart Rate Variability. International Journal of Molecular Sciences. 2021; 22(8):4215. https://doi.org/10.3390/ijms22084215
Chicago/Turabian StyleStrüven, Anna, Christina Holzapfel, Christopher Stremmel, and Stefan Brunner. 2021. "Obesity, Nutrition and Heart Rate Variability" International Journal of Molecular Sciences 22, no. 8: 4215. https://doi.org/10.3390/ijms22084215
APA StyleStrüven, A., Holzapfel, C., Stremmel, C., & Brunner, S. (2021). Obesity, Nutrition and Heart Rate Variability. International Journal of Molecular Sciences, 22(8), 4215. https://doi.org/10.3390/ijms22084215