TILLING-by-Sequencing+ to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis
Abstract
:1. Introduction
2. Results
2.1. Soybean Mutant Library Construction
2.2. Mutant Retrieval from TILLING by Sequencing+ (TbyS+)
2.3. Characterization of Induced Mutations over 138 Soybean Genes Identified through TbyS+
2.4. TbyS+ for Rescreening the Putative Mutations
2.5. Identification of Novel Alleles of Fatty Acid Biosynthetic Genes Using TbyS+
2.6. Detection of New Conserved Residue within the Fatty Acid Desaturase Genes
2.7. Phylogenetic Analysis of Fatty Acid Desaturases in Soybean
2.8. Gene Structural and Tissue-Specific Expression Profiling of Fatty Acid Desaturases in Soybean
2.9. Chromosomal Distribution and Syntenic Analyses of Fatty Acid Desaturases in Soybean
3. Discussion
4. Materials and Methods
4.1. Plant Materials, Growth, and EMS Mutagenesis
4.2. DNA Extraction and Quantification
4.3. Library Preparation, Probe Design and TbyS+
4.4. Variant Calling for Mutation Detection
4.5. Mutation Validation
4.6. Fatty Acid Analysis of Mutant Seeds
4.7. Identification of Fatty Acid Desaturases from Soybean and Other Plant Species
4.8. Phylogenetic Analysis
4.9. Gene Structure and Expression Analysis
4.10. Chromosomal Distribution and Syntenic Analysis
4.11. In Silico Analysis
4.12. Homology Modeling of GmSACPD-C
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- American Soybean Association. A Reference Guide to Soybean Facts and Figures. Available online: http://soystats.com/2018-soystats/ (accessed on 5 January 2021).
- Clemente, T.E.; Cahoon, E.B. Soybean oil: Genetic approaches for modification of functionality and total content. Plant Physiol. 2009, 151, 1030–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.-D.; Bilyeu, K.D.; Shannon, J.G. Genetics and breeding for modified fatty acid profile in soybean seed oil. J. Crop. Sci. Biotech. 2007, 10, 201–210. [Google Scholar]
- Ohlrogge, J.; Browse, J. Lipid Biosynthesis. Plant Cell 1995, 7, 957–970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilson, R. Seed composition. In Soybeans: Improvement, Production, and Uses; American Society of Agronomy: Madison, WI, USA, 2004; pp. 621–677. [Google Scholar]
- Kris-Etherton, P.M.; Yu, S.; Etherton, T.D.; Morgan, R.; Moriarty, K.; Shaffer, D. Fatty acids and progression of coronary artery disease. Am. J. Clin. Nutr. 1997, 65, 1088–1090. [Google Scholar] [CrossRef]
- Zhang, P.; Burton, J.W.; Upchurch, R.G.; Whittle, E.; Shanklin, J.; Dewey, R.E. Mutations in a Δ9–stearoyl-ACP-desaturase gene are associated with enhanced stearic acid levels in soybean seeds. Crop. Sci. 2008, 48, 2305–2313. [Google Scholar] [CrossRef]
- Boersma, J.G.; Gillman, J.D.; Bilyeu, K.D.; Ablett, G.R.; Grainger, C.; Rajcan, I. New mutations in a delta-9-stearoyl-acyl carrier protein desaturase gene associated with enhanced stearic acid levels in soybean seed. Crop. Sci. 2012, 52, 1736–1742. [Google Scholar] [CrossRef]
- Carrero-Colon, M.; Abshire, N.; Sweeney, D.; Gaskin, E.; Hudson, K. Mutations in SACPD-C result in a range of elevated stearic acid concentration in soybean seed. PLoS ONE 2014, 9, e97891. [Google Scholar] [CrossRef]
- Ruddle, P.; Whetten, R.; Cardinal, A.; Upchurch, R.G.; Miranda, L. Effect of Δ9-stearoyl-ACP-desaturase-C mutants in a high oleic background on soybean seed oil composition. Theor. Appl. Genet. 2014, 127, 349–358. [Google Scholar] [CrossRef]
- Lakhssassi, N.; Colantonio, V.; Flowers, N.D.; Zhou, Z.; Henry, J.; Liu, S.; Meksem, K. Stearoyl-Acyl Carrier Protein Desaturase Mutations Uncover an Impact of Stearic Acid in Leaf and Nodule Structure. Plant Physiol. 2017, 174, 1531–1543. [Google Scholar] [CrossRef] [Green Version]
- Gillman, J.D.; Stacey, M.G.; Cui, Y.; Berg, H.R.; Stacey, G. Deletions of the SACPD-C locus elevate seed stearic acid levels but also result in fatty acid and morphological alterations in nitrogen fixing nodules. BMC Plant Biol. 2014, 14, 143. [Google Scholar] [CrossRef] [Green Version]
- Okuley, J.; Lightner, J.; Feldmann, K.; Yadav, N.; Lark, E.; Browse, J. Arabidopsis FAD2 gene encodes the enzyme that is essential for polyunsaturated lipid synthesis. Plant Cell 1994, 6, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Fehr, W.R. Breeding for modified fatty acid composition in soybean. Crop. Sci. 2007, 47, S-72–S-87. [Google Scholar] [CrossRef]
- Ascherio, A.; Willett, W.C. Health effects of trans fatty acids. Am. J. Clin. Nutr. 1997, 66, 1006S–1010S. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, J.A.; Vasylenko-Sanders, I.F.; Deshpande, S.; Yi, J.; Siegfried, M.; Roe, B.A.; Schlueter, S.D.; Scheffler, B.E.; Shoemaker, R.C. The FAD2 Gene Family of Soybean: Insights into the Structural and Functional Divergence of a Paleopolyploid Genome. Crop. Sci. 2007, 47, S-14–S-26. [Google Scholar] [CrossRef]
- Lakhssassi, N.; Zhou, Z.; Liu, S.; Colantonio, V.; AbuGhazaleh, A.; Meksem, K. Characterization of the FAD2 Gene Family in Soybean Reveals the Limitations of Gel-Based TILLING in Genes with High Copy Number. Front. Plant Sci. 2017, 8, 324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, G.Q.; Novitzky, W.P.; Carol Griffin, H.; Huber, S.C.; Dewey, R.E. Oleate desaturase enzymes of soybean: Evidence of regulation through differential stability and phosphorylation. Plant J. 2005, 44, 433–446. [Google Scholar] [CrossRef]
- Bachlava, E.; Dewey, R.E.; Burton, J.W.; Cardinal, A.J. Mapping and comparison of quantitative trait loci for oleic acid seed content in two segregating soybean populations. Crop. Sci. 2009, 49, 433–442. [Google Scholar] [CrossRef] [Green Version]
- Dierking, E.C.; Bilyeu, K.D. New sources of soybean seed meal and oil composition traits identified through TILLING. BMC Plant Biol. 2009, 9, 89. [Google Scholar] [CrossRef] [Green Version]
- Hoshino, T.; Takagi, Y.; Anai, T. Novel GmFAD2-1b mutant alleles created by reverse genetics induce marked elevation of oleic acid content in soybean seeds in combination with GmFAD2-1a mutant alleles. Breed. Sci. 2010, 60, 419–425. [Google Scholar] [CrossRef] [Green Version]
- Pham, A.-T.; Lee, J.-D.; Shannon, J.G.; Bilyeu, K.D. Mutant alleles of FAD2-1A and FAD2-1B combine to produce soybeans with the high oleic acid seed oil trait. BMC Plant Biol. 2010, 10, 195. [Google Scholar] [CrossRef] [Green Version]
- Pham, A.-T.; Lee, J.-D.; Shannon, J.G.; Bilyeu, K.D. A novel FAD2-1 A allele in a soybean plant introduction offers an alternate means to produce soybean seed oil with 85% oleic acid content. Theor. Appl. Genet. 2011, 123, 793–802. [Google Scholar] [CrossRef]
- Haun, W.; Coffman, A.; Clasen, B.M.; Demorest, Z.L.; Lowy, A.; Ray, E.; Retterath, A.; Stoddard, T.; Juillerat, A.; Cedrone, F.; et al. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnol. J. 2014, 12, 934–940. [Google Scholar] [CrossRef]
- Al Amin, N.; Ahmad, N.; Wu, N.; Pu, X.; Ma, T.; Du, Y.; Bo, X.; Wang, N.; Sharif, R.; Wang, P. CRISPR-Cas9 mediated targeted disruption of FAD2–2 microsomal omega-6 desaturase in soybean (Glycine max. L). BMC Biotechnol. 2019, 19, 9. [Google Scholar] [CrossRef]
- Liu, H.-R.; White, P.J. Oxidative stability of soybean oils with altered fatty acid compositions. J. Am. Oil Chem. Soc. 1992, 69, 528–532. [Google Scholar] [CrossRef]
- Bilyeu, K.D.; Palavalli, L.; Sleper, D.A.; Beuselinck, P.R. Three Microsomal Omega-3 Fatty-acid Desaturase Genes Contribute to Soybean Linolenic Acid Levels. Crop. Sci. 2003, 43, 1833–1838. [Google Scholar] [CrossRef]
- Reinprecht, Y.; Pauls, K.P. Microsomal Omega-3 Fatty Acid Desaturase Genes in Low Linolenic Acid Soybean Line RG10 and Validation of Major Linolenic Acid QTL. Front. Genet. 2016, 7, 38. [Google Scholar] [CrossRef] [Green Version]
- Silva, L.C.C.; Bueno, R.D.; da Matta, L.B.; Pereira, P.H.S.; Mayrink, D.B.; Piovesan, N.D.; Sediyama, C.S.; Fontes, E.P.B.; Cardinal, A.J.; Dal-Bianco, M. Characterization of a new GmFAD3A allele in Brazilian CS303TNKCA soybean cultivar. Appl. Genet. 2018, 131, 1099–1110. [Google Scholar] [CrossRef] [Green Version]
- Thapa, R.; Carrero-Colón, M.; Addo-Quaye, C.; Held, J.; Dilkes, B.; Hudson, K.A. New Alleles of FAD3A Lower the Linolenic Acid Content of Soybean Seeds. Crop. Sci. 2018, 58, 713–718. [Google Scholar] [CrossRef]
- Reinprecht, Y.; Luk-Labey, S.Y.; Larsen, J.; Poysa, V.W.; Yu, K.; Rajcan, I.; Ablett, G.R.; Pauls, K.P. Molecular basis of the low linolenic acid trait in soybean EMS mutant line RG10. Plant Breed. 2009, 128, 253–258. [Google Scholar]
- Hoshino, T.; Watanabe, S.; Takagi, Y.; Anai, T. A novel GmFAD3-2a mutant allele developed through TILLING reduces alpha-linolenic acid content in soybean seed oil. Breed. Sci. 2014, 64, 371–377. [Google Scholar]
- Held, J.P.; Carrero-Colón, M.; Hudson, K.A. Combination of Novel Mutation in FAD3C and FAD3A for Low Linolenic Acid Soybean. Agrosystemsgeosci. Environ. 2019, 2. [Google Scholar] [CrossRef]
- Bilyeu, K.; Palavalli, L.; Sleper, D.A.; Beuselinck, P. Molecular Genetic Resources for Development of 1% Linolenic Acid Soybeans. Crop. Sci. 2006, 46, 1913–1918. [Google Scholar] [CrossRef]
- Bilyeu, K.; Gillman, J.D.; LeRoy, A.R. Novel FAD3 mutant allele combinations produce soybeans containing 1% linolenic acid in the seed oil. Crop. Sci. 2011, 51, 259–264. [Google Scholar] [CrossRef] [Green Version]
- Pham, A.T.; Shannon, J.G.; Bilyeu, K.D. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Appl. Genet. 2012, 125, 503–515. [Google Scholar] [CrossRef]
- Demorest, Z.L.; Coffman, A.; Baltes, N.J.; Stoddard, T.J.; Clasen, B.M.; Luo, S.; Retterath, A.; Yabandith, A.; Gamo, M.E.; Bissen, J. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil. BMC Plant Biol. 2016, 16, 225. [Google Scholar] [CrossRef] [Green Version]
- McCallum, C.M.; Comai, L.; Greene, E.A.; Henikoff, S. Targeted screening for induced mutations. Nat. Biotechnol. 2000, 18, 455. [Google Scholar] [CrossRef]
- McCallum, C.M.; Comai, L.; Greene, E.A.; Henikoff, S. Targeting induced locallesions in genomes (TILLING) for plant functional genomics. Plant Physiol. 2000, 123, 439–442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, J.L.; Till, B.J.; Laport, R.G.; Darlow, M.C.; Kleffner, J.M.; Jamai, A.; El-Mellouki, T.; Liu, S.; Ritchie, R.; Nielsen, N. TILLING to detect induced mutations in soybean. BMC Plant Biol. 2008, 8, 9. [Google Scholar] [CrossRef] [Green Version]
- Rigola, D.; van Oeveren, J.; Janssen, A.; Bonne, A.; Schneiders, H.; van der Poel, H.J.; van Orsouw, N.J.; Hogers, R.C.; de Both, M.T.; van Eijk, M.J. High-throughput detection of induced mutations and natural variation using KeyPoint technology. PLoS ONE 2009, 4, e4761. [Google Scholar] [CrossRef] [Green Version]
- Tsai, H.; Howell, T.; Nitcher, R.; Missirian, V.; Watson, B.; Ngo, K.J.; Lieberman, M.; Fass, J.; Uauy, C.; Tran, R.K. Discovery of rare mutations in populations: TILLING by sequencing. Plant Physiol. 2011, 156, 1257–1268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henry, I.M.; Nagalakshmi, U.; Lieberman, M.C.; Ngo, K.J.; Krasileva, K.V.; Vasquez-Gross, H.; Akhunova, A.; Akhunov, E.; Dubcovsky, J.; Tai, T.H. Efficient genome-wide detection and cataloging of EMS-induced mutations using exome capture and next-generation sequencing. Plant Cell 2014, 26, 1382–1397. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; Salentijn, E.M.; Huang, B.; Denneboom, C.; Qi, W.; Dechesne, A.C.; Krens, F.A.; Visser, R.G.; van Loo, E.N. Detection of induced mutations in Ca FAD 2 genes by next-generation sequencing leading to the production of improved oil composition in Crambe abyssinica. Plant Biotechnol. J. 2015, 13, 471–481. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Abernathy, B.; Zeng, Y.; Ozias-Akins, P. TILLING by sequencing to identify induced mutations in stress resistance genes of peanut (Arachis hypogaea). BMC Genom. 2015, 16, 157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, M.; Kaga, A.; Anai, T.; Shimizu, T.; Sayama, T.; Takagi, K.; Machita, K.; Watanabe, S.; Nishimura, M.; Yamada, N. Construction of a high-density mutant library in soybean and development of a mutant retrieval method using amplicon sequencing. BMC Genom. 2015, 16, 1014. [Google Scholar] [CrossRef] [Green Version]
- Torkamaneh, D.; Laroche, J.; Belzile, F. Genome-wide SNP calling from genotyping by sequencing (GBS) data: A comparison of seven pipelines and two sequencing technologies. PLoS ONE 2016, 11, e0161333. [Google Scholar] [CrossRef] [Green Version]
- Gupta, P.; Reddaiah, B.; Salava, H.; Upadhyaya, P.; Tyagi, K.; Sarma, S.; Datta, S.; Malhotra, B.; Thomas, S.; Sunkum, A. Next—Generation sequencing (NGS)—Based identification of induced mutations in a doubly mutagenized tomato (Solanum lycopersicum) population. Plant J. 2017, 92, 495–508. [Google Scholar] [CrossRef] [Green Version]
- Li, W.-H.; Gojobori, T.; Nei, M. Pseudogenes as a paradigm of neutral evolution. Nature 1981, 292, 237–239. [Google Scholar] [CrossRef]
- Juretic, N.; Hoen, D.R.; Huynh, M.L.; Harrison, P.M.; Bureau, T.E. The evolutionary fate of MULE-mediated duplications of host gene fragments in rice. Genome Res. 2005, 15, 1292–1297. [Google Scholar] [CrossRef] [Green Version]
- Lakhssassi, N.; Zhou, Z.; Liu, S.; Piya, S.; Cullen, M.A.; El Baze, A.; Knizia, D.; Patil, G.B.; Badad, O.; Embaby, M.G.; et al. Soybean TILLING-by-Sequencing + reveals the role of novel GmSACPD members in the unsaturated fatty acid biosynthesis while maintaining healthy nodules. J. Exp. Bot. 2020. [Google Scholar] [CrossRef]
- Garrison, E.; Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 2012, arXiv:1207.3907. [Google Scholar]
- Kandoth, P.K.; Liu, S.; Prenger, E.; Ludwig, A.; Lakhssassi, N.; Heinz, R.; Zhou, Z.; Howland, A.; Gunther, J.; Eidson, S. Systematic mutagenesis of serine hydroxymethyltransferase reveals an essential role in nematode resistance. Plant Physiol. 2017, 175, 1370–1380. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.; Lakhssassi, N.; Kantartzi, S.K.; Meksem, K. Nonhypothesis Analysis of a Mutagenic Soybean (Glycine max [L.]) Population for Protein and Fatty-Acid Composition. J. Am. Oil Chem. Soc. 2018, 95, 461–471. [Google Scholar] [CrossRef]
- Lakhssassi, N.; Patil, G.; Piya, S.; Zhou, Z.; Baharlouei, A.; Kassem, M.A.; Lightfoot, D.A.; Hewezi, T.; Barakat, A.; Nguyen, H.T. Genome reorganization of the GmSHMT gene family in soybean showed a lack of functional redundancy in resistance to soybean cyst nematode. Sci. Rep. 2019, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Lakhssassi, N.; Piya, S.; Knizia, D.; El Baze, A.; Cullen, M.A.; Meksem, J.; Lakhssassi, A.; Hewezi, T.; Meksem, K. Mutations at the Serine Hydroxymethyltransferase Impact Its Interaction with a Soluble NSF Attachment Protein and a Pathogenesis-Related Protein in Soybean. Vaccines 2020, 8, 349. [Google Scholar] [CrossRef] [PubMed]
- Till, B.J.; Cooper, J.; Tai, T.H.; Colowit, P.; Greene, E.A.; Henikoff, S.; Comai, L. Discovery of chemically induced mutations in rice by TILLING. BMC Plant Biol. 2007, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilyeu, K.; Palavalli, L.; Sleper, D.; Beuselinck, P. Mutations in Soybean Microsomal Omega-3 Fatty Acid Desaturase Genes Reduce Linolenic Acid Concentration in Soybean Seeds. Crop. Sci. 2005, 45, 1830–1836. [Google Scholar] [CrossRef]
- Shanklin, J.; Cahoon, E.B. Desaturation and related modifications of fatty acids. Annu. Rev. Plant Biol. 1998, 49, 611–641. [Google Scholar] [CrossRef] [Green Version]
- Kachroo, A.; Fu, D.-Q.; Havens, W.; Navarre, D.; Kachroo, P.; Ghabrial, S.A. An oleic acid–mediated pathway induces constitutive defense signaling and enhanced resistance to multiple pathogens in soybean. Mol. Plant-Microbe Interact. 2008, 21, 564–575. [Google Scholar] [CrossRef] [Green Version]
- Bowers, J.E.; Chapman, B.A.; Rong, J.; Paterson, A.H. Unravelling angiosperm genome evolution by phylogenetic analysis of chromosomal duplication events. Nature 2003, 422, 433–438. [Google Scholar] [CrossRef]
- Eckardt, N.A. Two genomes are better than one: Widespread paleopolyploidy in plants and evolutionary effects. Plant Cell 2004, 16, 1647–1649. [Google Scholar] [CrossRef]
- Kong, H.; Landherr, L.L.; Frohlich, M.W.; Leebens-Mack, J.; Ma, H.; DePamphilis, C.W. Patterns of gene duplication in the plant SKP1 gene family in angiosperms: Evidence for multiple mechanisms of rapid gene birth. Plant J. 2007, 50, 873–885. [Google Scholar] [CrossRef]
- Schmutz, J.; Cannon, S.B.; Schlueter, J.; Ma, J.; Mitros, T.; Nelson, W.; Hyten, D.L.; Song, Q.; Thelen, J.J.; Cheng, J. Genome sequence of the palaeopolyploid soybean. Nature 2010, 463, 178–183. [Google Scholar]
- Young, N.D.; Bharti, A.K. Genome-enabled insights into legume biology. Annu. Rev. Plant Biol. 2012, 63. [Google Scholar] [CrossRef]
- Schmutz, J.; McClean, P.E.; Mamidi, S.; Wu, G.A.; Cannon, S.B.; Grimwood, J.; Jenkins, J.; Shu, S.; Song, Q.; Chavarro, C. A reference genome for common bean and genome-wide analysis of dual domestications. Nat. Genet. 2014, 46, 707. [Google Scholar] [CrossRef] [Green Version]
- Meksem, K.; Liu, S.; Liu, X.H.; Jamai, A.; Mitchum, M.G.; Bendahmane, A.; El-Mellouki, T. TILLING: A reverse genetics and a functional genomics tool in soybean. In The Handbook of Plant Functional Genomics: Concepts and Protocols; Wiley-VCH: Weinheim, Germany, 2008; pp. 251–265. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R.; Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [Green Version]
- Bansal, V. A statistical method for the detection of variants from next-generation resequencing of DNA pools. Bioinformatics 2010, 26, i318–i324. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A.; Abecasis, G.; Albers, C.A.; Banks, E.; DePristo, M.A.; Handsaker, R.E.; Lunter, G.; Marth, G.T.; Sherry, S.T.; et al. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Winckler, W.; Guttman, M.; Lander, E.S.; Getz, G.; Mesirov, J.P. Integrative genomics viewer. Nat. Biotechnol. 2011, 29, 24–26. [Google Scholar] [CrossRef] [Green Version]
- Ruden, D.M.; Cingolani, P.; Patel, V.M.; Coon, M.; Nguyen, T.; Land, S.J.; Lu, X. Using Drosophila melanogaster as a model for genotoxic chemical mutational studies with a new program, SnpSift. Front. Genet. 2012, 3, 35. [Google Scholar]
- McLaren, W.; Gil, L.; Hunt, S.E.; Riat, H.S.; Ritchie, G.R.; Thormann, A.; Flicek, P.; Cunningham, F. The ensembl variant effect predictor. Genome Biol. 2016, 17, 122. [Google Scholar] [CrossRef] [Green Version]
- Koressaar, T.; Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics 2007, 23, 1289–1291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; Team, U. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kramer, J.K.; Fellner, V.; Dugan, M.E.; Sauer, F.D.; Mossoba, M.M.; Yurawecz, M.P. Evaluating acid and base catalysts in the methylation of milk and rumen fatty acids with special emphasis on conjugated dienes and total trans fatty acids. Lipids 1997, 32, 1219–1228. [Google Scholar] [CrossRef] [PubMed]
- Vrinten, P.; Hu, Z.; Munchinsky, M.-A.; Rowland, G.; Qiu, X. Two FAD3 desaturase genes control the level of linolenic acid in flax seed. Plant Physiol. 2005, 139, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Hall, B.G. Building phylogenetic trees from molecular data with MEGA. Mol. Biol. Evol. 2013, 30, 1229–1235. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Hu, B.; Jin, J.; Guo, A.-Y.; Zhang, H.; Luo, J.; Gao, G. GSDS 2.0: An upgraded gene feature visualization server. Bioinformatics 2015, 31, 1296–1297. [Google Scholar] [CrossRef] [Green Version]
- Babicki, S.; Arndt, D.; Marcu, A.; Liang, Y.; Grant, J.R.; Maciejewski, A.; Wishart, D.S. Heatmapper: Web-enabled heat mapping for all. Nucleic Acids Res. 2016, 44, W147–W153. [Google Scholar] [CrossRef]
- Lee, T.-H.; Tang, H.; Wang, X.; Paterson, A.H. PGDD: A database of gene and genome duplication in plants. Nucleic Acids Res. 2012, 41, D1152–D1158. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Chen, Z.; Zhao, H.; Zhao, Y.; Cheng, B.; Xiang, Y. Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS ONE 2014, 9, e87156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Gene ID | Amplicon Size (bp) | Base Changes | Type of Base Changes | Amino Acid Substitutions | Missense Mutations | Nonsense Mutations | Silent Mutations | ||
---|---|---|---|---|---|---|---|---|---|
G > A | C > T | Others | |||||||
GmSACPD-C | 1800 | 45 | 21 | 20 | 4 | 38 | 27 | 0 | 11 |
GmFAD2-1A | 1920 | 42 | 13 | 24 | 5 | 26 | 16 | 0 | 10 |
GmFAD2-1B | 3320 | 62 | 17 | 22 | 23 | 24 | 10 | 1 | 13 |
GmFAD3A | 2480 | 45 | 20 | 15 | 10 | 17 | 12 | 0 | 5 |
GmFAD3B | 2480 | 44 | 23 | 16 | 5 | 22 | 14 | 3 | 5 |
GmFAD3C | 2440 | 36 | 17 | 10 | 9 | 20 | 13 | 1 | 6 |
Gene ID | Plant ID | Nucleotide Change | Amino Acid Substitution | 16:0 | 18:0 | 18:1 | 18:2 | 18:3 |
---|---|---|---|---|---|---|---|---|
GmSACPD-C | F2146 | C322T | R108W | 9.6 | 11.7 | 18.1 | 50.7 | 9.8 |
F186 | G554A | G185E | 9.4 | 5.6 | 23.1 | 53.7 | 6.3 | |
F1202 | G730A | G244R | 10.5 | 6.0 | 20.5 | 52.0 | 8.8 | |
F1320 | G782A | G261D | 10.4 | 5.3 | 23.1 | 54.9 | 4.4 | |
GmFAD2-1A | F1356 | C88T | P30S | 11.0 | 3.7 | 25.0 | 51.2 | 7.4 |
F765 | G116A | G39D | 10.0 | 3.8 | 27.0 | 50.2 | 7.5 | |
F258 | A502C | K168Q | 12.2 | 5.6 | 34.5 | 39.3 | 4.5 | |
F101 | G673A | E225K | 10.6 | 4.6 | 29.6 | 45.9 | 7.7 | |
GmFAD2-1B | F966 | A338C | H113P | 10.7 | 4.1 | 23.0 | 54.1 | 6.6 |
F782 | G505A | V169I | 11.7 | 4.9 | 27.8 | 40.2 | 5.3 | |
F720 | C784T | P262S | 10.7 | 5.1 | 26.2 | 50.2 | 6.2 | |
F36 | C845T | A282V | 10.9 | 4.9 | 27.6 | 46.4 | 8.5 | |
F903 | G1129A | E377K | 12.4 | 5.0 | 25.1 | 45.9 | 7.7 | |
GmFAD3A | F1178 | C511T | P171S | 11.2 | 4.5 | 19.0 | 57.7 | 5.8 |
F180 | G830A | G277D | 17.2 | 5.5 | 20.1 | 45.0 | 5.2 | |
F1012 | C835T | L279F | 10.4 | 3.5 | 34.2 | 45.7 | 4.5 | |
F1428 | G1078A | D360N | 10.1 | 5.1 | 21.1 | 56.1 | 5.6 | |
GmFAD3B | F475 | C461T | P154L | 10.0 | 4.3 | 26.5 | 53.3 | 4.6 |
F560 | G741A | W247 * | 10.4 | 3.3 | 18.9 | 60.5 | 5.5 | |
F728 | G845A | G282D | 12.2 | 4.2 | 25.2 | 52.3 | 4.6 | |
F461 | C916T | H306Y | 12.5 | 4.6 | 17.4 | 53.1 | 4.9 | |
GmFAD3C | F953 | G112A | A38T | 11.2 | 3.2 | 23.2 | 54.9 | 5.7 |
F846 | G383A | G128E | 13.9 | 5.0 | 17.0 | 39.6 | 4.8 | |
F1739 | A998C | Q333P | 9.4 | 4.5 | 37.1 | 41.8 | 5.1 | |
F-WT | 10.8 | 3.8 | 20.0 | 56.2 | 7.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lakhssassi, N.; Zhou, Z.; Cullen, M.A.; Badad, O.; El Baze, A.; Chetto, O.; Embaby, M.G.; Knizia, D.; Liu, S.; Neves, L.G.; et al. TILLING-by-Sequencing+ to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis. Int. J. Mol. Sci. 2021, 22, 4219. https://doi.org/10.3390/ijms22084219
Lakhssassi N, Zhou Z, Cullen MA, Badad O, El Baze A, Chetto O, Embaby MG, Knizia D, Liu S, Neves LG, et al. TILLING-by-Sequencing+ to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis. International Journal of Molecular Sciences. 2021; 22(8):4219. https://doi.org/10.3390/ijms22084219
Chicago/Turabian StyleLakhssassi, Naoufal, Zhou Zhou, Mallory A. Cullen, Oussama Badad, Abdelhalim El Baze, Oumaima Chetto, Mohamed G. Embaby, Dounya Knizia, Shiming Liu, Leandro G. Neves, and et al. 2021. "TILLING-by-Sequencing+ to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis" International Journal of Molecular Sciences 22, no. 8: 4219. https://doi.org/10.3390/ijms22084219
APA StyleLakhssassi, N., Zhou, Z., Cullen, M. A., Badad, O., El Baze, A., Chetto, O., Embaby, M. G., Knizia, D., Liu, S., Neves, L. G., & Meksem, K. (2021). TILLING-by-Sequencing+ to Decipher Oil Biosynthesis Pathway in Soybeans: A New and Effective Platform for High-Throughput Gene Functional Analysis. International Journal of Molecular Sciences, 22(8), 4219. https://doi.org/10.3390/ijms22084219