Botulinum Toxin: From Poison to Possible Treatment for Spasticity in Spinal Cord Injury
Abstract
:1. From Poison to Remedy
2. Botulinum Toxin
2.1. Botulinum Toxin Structure
2.2. Serotypes
2.3. Mechanism of Action
2.4. Duration of the Effect
3. Therapeutic Use for Botulinum Neurotoxins
3.1. Current Botulinum Neurotoxin Formulations
3.2. Clinical Applications
3.3. Adverse Effects and Other Considerations
4. Treatment of Spasticity in Spinal Cord Injury with Botulinum Toxin
4.1. Botulinum Toxin for Spasticity
4.2. Spasticity in Spinal Cord Injury
4.3. Indications for Botulinum Toxin in Spinal Cord Injury Spasticity
- -
- Adjuvant therapy. When spasticity is too severe and diffuse and cannot be controlled with physical therapy and various oral drugs, toxin treatment can be completed. In these cases, unlike the two previous indications, we start with the idea that we cannot achieve any objective since we cannot exceed the maximum dose of toxin that would be necessary to treat all affected muscles.
4.4. Assessment of Spasticity
4.5. Technical Aspects of Injection and Recommendations
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ADL | Activities of daily living |
SCI | Spinal cord injury |
BoNT | Botulinum neurotoxin |
ABO | Abobotulinumtoxin A |
ONA | Onabotulinumtoxin A |
INC | Incobotulinumtoxin A |
CNS | Central Nervous System |
CP | Cerebral palsy |
MAS | Modified Ashworth Scale |
References
- Horga de la Parte, J.F.; Pareés Moreno, I. Toxina botulínica: Origen, estructura, actividad farmacológica y cinética. In Toxina botulínica. Aplicaciones Terapéuticas en el Siglo XXI, 2nd ed.; López del Val, L.J., Castor García, A., Eds.; Elsevier España: Barcelona, Spain, 2010; pp. 3–17. [Google Scholar]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef]
- Wissel, J.; Ward, A.B.; Erztgaard, P.; Bensmail, D.; Hecht, M.J.; Lejeune, T.M.; Schnider, P.; Altavista, M.C.; Cavazza, S.; Deltombe, T.; et al. European consensus table on the use of botulinum toxin type A in adult spasticity. J. Rehabil. Med. 2009, 41, 13–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brook, I. Botulism: The challenge of diagnosis and treatment. Rev. Neurol Dis. 2006, 3, 182–189. [Google Scholar] [PubMed]
- Rasetti-Escargueil, C.; Lemichez, E.; Popoff, M.R. Toxemia in human naturally acquired botulism. Toxins 2020, 12, 716. [Google Scholar] [CrossRef] [PubMed]
- Brunt, J.; van Vliet, A.H.M.; Carter, A.T.; Stringer, S.C.; Amar, C.; Grant, K.A.; Godbole, G.; Peck, M.W. Diversity of the Genomes and Neurotoxins of StrainsofClostridium botulinumGroup I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins 2020, 12, 586. [Google Scholar] [CrossRef]
- Ergbuth, F.J. Historical notes on Botulism, Clostridium botulinum, botulinum toxin, and the idea of the therapeutic use of the toxin. Mov. Disord. 2004, 19. [Google Scholar] [CrossRef]
- Kreyden, O.P.; Geiges, M.L.; Böni, R.; Burg, G. Botulinumtoxin: Vom Gift zum Medikament. Hautartzt 2000, 51, 733–737. [Google Scholar] [CrossRef]
- Devriese, P.P. On the discovery of Clostridium botulinum. J. Hist. Neurosci. 1999, 8, 43–50. [Google Scholar] [CrossRef]
- Burke, G.S. The occurrence of Bacillus botulinus in nature. J. Bacteriol. 1919, 4, 541–553. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J.; Hill, K.K.; Raphael, B.H. Historical and current perspectives on Clostridium botulinum diversity. Res. Microbiol. 2015, 166, 290–302. [Google Scholar] [CrossRef]
- Winslow, C.-E.A.; Broadhurst, J.; Buchanan, R.E.; Krumwiede, C., Jr.; Rogers, L.A.; Smith, G.H. The families and genera of the bacteria. Preliminary report of the Committee of the Society of American Bacteriologists on characterization and classification of bacterial types. J. Bacteriol. 1917, 2, 505–566. [Google Scholar] [CrossRef] [Green Version]
- Fleck- Derderian, S.; Shankar, M.; Rao, A.K.; Chatham- Stevens, K.; Adjei, S.; Sobel, J.; Metzel, M.I.; Meaney- Delman, D.; Pillai, S.K. The Epidemiology of Foodborne Botulism Outbreaks: A Systematic Review. Clin. Infect Dis. 2018, 66, S73–S81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burgen, A.S.V.; Dickens, F.; Zatman, L.J. The action of botulinum toxin on the neuro- muscular junction. J. Physiol. 1949, 109, 10–24. [Google Scholar] [CrossRef]
- Scott, A.B.; Rosenbaum, A.; Collins, C.C. Pharmacolgic weakening of extraocular muscles. Investig. Ophtalmol. 1973, 12, 924–927. [Google Scholar]
- Pirazzini, M.; Rossetto, O.; Eleopra, R.; Montecucco, C. Botulinum neurotoxins: Biology, pharmacology, and toxicology. Pharmacol. Rev. 2017, 69, 200–235. [Google Scholar] [CrossRef]
- Reichel, G. Therapy Guide Spasticity-Dystonia, 1st ed.; Uni-med Science: Bremen, Germany, 2005; pp. 12–65. [Google Scholar]
- Brunger, A.T.; Rummel, A. Receptor and substrate interactions in clostridial neurotoxins. Toxicon 2009, 54, 550–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Binz, T.; Rummel, A. Cell entry strategy of clostridial neurotoxins. J. Neurochem. 2009, 109, 1584–1595. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Rossetto, O.; Santucci, A.; DasGupta, B.R.; Montecucco, C. Botulinum neurotoxins are zinc proteins. J. Biol. Chem. 1992, 267, 23479–23483. [Google Scholar] [CrossRef]
- Berg, L.; Stern, D.; Pauly, D.; Mahrhold, S.; Weinemann, J.; Jentsch, L.; Handbauer, E.M.; Müller, C.; Avondet, M.A.; Dorner, M.B.; et al. Functional detection of botulinum neurotoxin serotypes A to F by monoclonal neoepitope-specifc antibodies and suspension array technology. Sci. Rep. 2019, 9, 5531. [Google Scholar] [CrossRef] [Green Version]
- Lam, K.H.; Jin, R. Architecture of the botulinum neurotoxin complex: A molecular machine for protection and delivery. Curr. Opin. Struct. Biol. 2015, 31, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Bakheit, A.M.O. Botulinum Toxins Treatment of Muscle Spasticity, 1st ed.; Blackhall Publishing: Dublin, Ireland, 2001; pp. 36–70. [Google Scholar]
- Meunier, F.A.; Schiavo, G.; Molgó, J. Botulinum neurotoxins: From paralysis to recovery of functional neuromuscular transmission. J. Physiol. Paris 2002, 96, 105–113. [Google Scholar] [CrossRef]
- Kaji, R. Clinical differences between A1 and A2 botulinum toxin subtypes. Toxicon 2015, 107, 85–88. [Google Scholar] [CrossRef]
- Sesardic, T. Bioassays for evaluation of medical products derived from bacterial toxins. Curr. Opin. Microbiol. 2012, 15, 310–316. [Google Scholar] [CrossRef]
- Misra, V.P.; Danchenko, N.; Maisonobe, P.; Lundkvist, J.; Hunger, M. Economic evaluation of AbobotulinumtoxinA vs. OnabotulinumtoxinA in real- life clinical management of cervical dystonia. J. Clin. Mov. Disord. 2020, 11, 7. [Google Scholar] [CrossRef]
- Field, M.; Splevins, A.; Picaut, P.; van der Schans, M.; Langenberg, J.; Noort, D.; Foster, K. AbobotulinumtoxinA (Dysport®), OnabotulinumtoxinA (Botox®), and IncobotulinumtoxinA (Xeomin®) Neurotoxin Content and Potential Implications for Duration of Response in Patients. Toxins 2018, 10, 535. [Google Scholar] [CrossRef] [Green Version]
- Hallett, M.; Albanese, A.; Dressler, D.; Segal, K.R.; Simpson, D.M.; Truong, D.; Jankovic, J. Evidence-based review and assessment of botulinum neurotoxin for the treatment of movement disorders. Toxicon 2013, 67, 94–114. [Google Scholar] [CrossRef]
- Pandyan, A.D.; Gregoric, M.; Barnes, M.P.; Wood, D.; Van Wijck, F.; Burridge, J.; Hermens, H.J.; Johnson, G.R. Spasticity: Clinical perceptions, neurological realities and meaningful measurement. Disabil. Rehabil. 2005, 27, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Turner-Stokes, L.; Ward, A. Botulinum toxin in the management of spasticity in adults. Clin. Med. 2002, 2, 128–130. [Google Scholar] [CrossRef] [PubMed]
- Ward, A.B. Spasticity treatment with Botulinum toxins. J. Neural. Transm. 2008, 115, 607–616. [Google Scholar] [CrossRef]
- Rawicki, B.; Sheean, G.; Fung, V.S.C.; Goldsmith, S.; Morgan, C.; Novak, I. Botulinum toxin assessment, intervention, and aftercare for paediatric and adult niche indications including pain: International consensus statement. Eur. J. Neurol. 2010, 17, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Fried, G.W.; Fried, K.M. Spinal cord injury and the use of botulinum toxin in reducing spasticity. Phys. Med. Rehabil. Clin. N. Am. 2003, 14, 901–910. [Google Scholar] [CrossRef]
- Matak, I. Evidence for central antispastic effect of botulinum toxin type A. Br. J. Pharmacol. 2020, 177, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Linsenmeyer, T.A. Use of botulinum toxin in individuals with neurogenic detrusor overactivity: State of the art review. J. Spinal Cord Med. 2013, 36, 402–419. [Google Scholar] [CrossRef] [Green Version]
- Palazón-García, R.; Berrocal-Sánchez, I.; Cabañas-Elías, J. Tratamiento del bruxismo con toxina botulínica. Rehabilitación 2001, 35, 253–255. [Google Scholar] [CrossRef]
- Naumann, M.; Dressler, D.; Hallett, M.; Jankovic, J.; Schiavo, G.; Segal, K.R.; Truong, D. Evidence-based review and assessment of botulinum neurotoxin for the treatment of secretory disorders. Toxicon 2013, 67, 141–152. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Q.; Wu, Q.; Chen, Y.; Wu, P. Intravesical botulinum toxin a injections for bladder pain syndrome/interstitial cystitis: A systematic review and meta-analysis of controlled studies. Med. Sci. Monit. 2016, 22, 3257–3267. [Google Scholar] [CrossRef] [Green Version]
- Kuo, H.C. Botulinum A toxin urethral sphincter injection for neurogenic or non-neurogenic voiding dysfunction. Tzu. Chi. Med. J. 2016, 28, 89–93. [Google Scholar] [CrossRef]
- Moraleda, S.; Abdel-Muti García, E. Tratamiento rehabilitador de la parálisis facial. In Tratamiento Integral de la Parálisis Facial, 2nd ed.; Lassaletta, L., Gavilán, J., Eds.; Gaes Médica: Barcelona, Spain, 2020; pp. 195–210. [Google Scholar]
- Martinelli, D.; Arceri, S.; Tronconi, L.; Tassorelli, C. Chronic migraine and Botulinum Toxin Type A: Where do paths cross? Toxicon 2020, 178, 69–76. [Google Scholar] [CrossRef]
- Buonocore, M.; Demartini, L.; Mandrini, S.; Dall’Angelo, A.; Dalla Toffola, E. Effect of Botulinum toxin on disabling neuropathic pain: A case presentation suggesting a new therapeutic strategy. PM R 2017, 9, 200–203. [Google Scholar] [CrossRef]
- Wheeler, A.; Smith, H.S. Botulinum toxins: Mechanisms of action, antinociception and clinical applications. Toxicology 2013, 306, 124–146. [Google Scholar] [CrossRef]
- Ramirez-Castaneda, J.; Jankovic, J.; Comella, C.; Dashtipour, K.; Fernández, H.H.; Mari, Z. Diffusion, spread, and migration of Botulinum toxin. Mov. Disord. 2013, 28, 1775–1783. [Google Scholar] [CrossRef]
- Alcobendas-Maestro, M.; Palazón-García, R.; Vargas-Baquero, E.; Esclarín-de Ruz, A. Guía de práctica clínica para el tratamiento de la espasticidad espinal con toxina botulínica. Rehabilitación 2015, 49, 38–44. [Google Scholar] [CrossRef]
- Naumann, M.; Jankovic, J. Safety of botulinum toxin type A: A systematic review and meta-analysis. Curr. Med. Res. Opin. 2004, 20, 981–990. [Google Scholar] [CrossRef]
- Naumann, M.; Boo, L.M.; Ackerman, A.H.; Gallagher, C.J. Immunogenicity of botulinum toxins. J. Neural Transm 2013, 120, 275–290. [Google Scholar] [CrossRef] [Green Version]
- Francisco, G.E.; Jost, W.H.; Bavikatte, G.; Bandari, D.S.; Tang, S.F.T.; Munin, M.C.; Largent, J.; Adams, A.M.; Zuzek, A.; Esquenazi, A. Individualized OnabotulinumtoxinA Treatment for Upper Limb Spasticity Resulted in High Clinician- and Patient-Reported Satisfaction: Long-Term Observational Results from the ASPIRE Study. PM R. 2020, 12, 1120–1133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Traini, C.; Vannucchi, M.G. The Botulinum Treatment of Neurogenic Detrusor Overactivity: The Double-Face of the Neurotoxin. Toxins 2019, 11, 614. [Google Scholar] [CrossRef] [Green Version]
- Simpson, D.M.; Gracies, J.M.; Graham, H.K.; Miyasaki, J.M.; Naumann, M.; Rusman, B.; Simpson, L.L.; So, Y. Assessment: Botulinum toxin for the treatment of spasticity (an evidence-based review). Neurology 2008, 70, 1691–1698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palazón-García, R. Espasticidad: Manifestaciones clínicas y tratamiento. In Lesión Medular: Enfoque Multidisciplinario, 2nd ed.; Esclarin-de Ruz, A., Ed.; Editorial Médica Panamericana: Madrid, Spain, 2020; pp. 221–226. [Google Scholar]
- Little, J.W.; Micklesen, P.; Umlauf, R.; Brittell, C. Lower extremity manifestations of spasticity in chronic spinal cord injury. Am. J. Phys. Med. Rehabil. 1989, 68, 32–36. [Google Scholar] [CrossRef]
- Adams, M.M.; Hicks, A.L. Spasticity after spinal cord injury. Spinal Cord 2005, 43, 577–586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burns, A.S.; Lanig, I.; Grabljevec, K.; New, P.N.; Bensmail, D.; Ertzgaard, P.; Nene, A.V. Optimizing the management of disabling spasticity following spinal cord damage: The Ability Network- an international initiative. Arch. Phys. Med. Rehabil. 2016, 97, 2222–2228. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Lan, J.; Liu, Y.; Miao, J. Efficacy and Safety of Botulinum Toxin Type A in Spasticity Caused by Spinal Cord Injury: A Randomized, Controlled Trial. Med. Sci. Monit. 2018, 24, 8160–8171. [Google Scholar] [CrossRef]
- BenSmail, D.; Denys, P.; Bussel, B. Toxin botulique et paraplégie. Ann. Readapt. Med. Phys. 2003, 46, 296–298. [Google Scholar] [CrossRef]
- Palazón-García, R.; Alcobendas-Maestro, M.; Esclarín-de Ruz, A.; Benavente-Valdepeñas, A.M. Treatment of spasticity in spinal cord injury with botulinum toxin. J. Spinal Cord Med. 2019, 42, 281–287. [Google Scholar] [CrossRef] [PubMed]
- Lui, J.; Sarai, M.; Mills, P.B. Chemodenervation for treatment of limb spasticity following spinal cord injury: A systematic review. Spinal Cord 2015, 53, 252–264. [Google Scholar] [CrossRef] [Green Version]
- Marcinak, C.; Rader, L.; Gagnon, C. The use of botulinum toxin for spasticity after spinal cord injury. Am. J. Phys. Med. Rehabil. 2008, 87, 312–317. [Google Scholar] [CrossRef]
- Hecht, M.J.; Stolze, H.; Auf Dem Brinke, M.; Giess, R.; Trig, T.; Winterholler, M.; Wissel, J.; German Spasticity Education Group. Botulinum neurotoxin type A injections reduce spasticity in mild to moderate hereditary spastic paraplegia report of 19 cases. Mov. Disord. 2008, 23, 228–233. [Google Scholar] [CrossRef] [PubMed]
- Bernuz, B.; Genet, F.; Terrat, P.; Pradon, D.; Barbot, F.; Bussel, B.; Bensmail, D. Botulinum toxin effect on voluntary and stretch reflex- related torque produced by the quadriceps: An isokinetic pilot study. Neurorehabil. Neural. Repair. 2012, 26, 542–547. [Google Scholar] [CrossRef]
- Bohlega, S.; Chaud, P.; Jacob, P.C. Botulinum toxin A in the treatment of lower limb spasticity in hereditary spastic paraplegia. Mov. Disord. 1995, 10, 399. [Google Scholar]
- Béseler, M.R.; Grao, C.M.; Gil, A.; Martínez- Lozano, M.D. Valoración de la marcha mediante plantillas instrumentadas en pacientes con espasticidad de miembros inferiores tras infiltración con toxina botulínica. Neurología 2012, 27, 519–530. [Google Scholar] [CrossRef]
- Al- Khodairy, A.T.; Gobelet, C.; Rossier, A.B. Has botulinum toxin type A a place in the treatment of spasticity in spinal cord injury patients? Spinal Cord 1998, 36, 854–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richardson, D.; Edwards, S.; Sheean, G.L.; Greenwood, R.J.; Thompson, A.J. The effect of botulinum toxin on hand function after incomplete spinal cord injury at the level of C5-6: A case report. Clin. Rehabil. 1997, 11, 288–292. [Google Scholar] [CrossRef] [PubMed]
- Santamato, A.; Panza, F.; Ranieri, M.; Amoruso, M.T.; Amoruso, L.; Frisardi, V.; Solfrizzi, V.; Flore, P. Effect of intratecal baclofen, botulinum toxin type A and a rehabilitation programme on locomotor function after spinal cord injury: A case report. J. Rehabil. Med. 2010, 42, 891–894. [Google Scholar] [CrossRef] [Green Version]
- Naicker, A.S.; Roohi, S.A.; Chan, J.L.L. Botulinum toxin type A for rehabilitation after a spinal cord injury: A case report. J. Orthop. Surg. 2009, 17, 96–99. [Google Scholar] [CrossRef] [Green Version]
- Nene, A.V.; Campos, A.R.; Grabljevec, K.; Lopes, A.; Skoog, B.; Burns, A. Clinical assessment of spasticity in people with spinal cord damage: Recommendations from the Ability Network, an international initiative. Arch. Phys. Med. Rehabil. 2018, 99, 1917–1926. [Google Scholar] [CrossRef]
- Bohannon, R.W.; Smith, M.B. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys. Ther. 1986, 67, 206–207. [Google Scholar] [CrossRef]
- Baunsgaard, C.B.; Nissen, U.V.; Christensen, K.B.; Biering-Sørensen, F. Modified Ashworth scale and spasm frequency scale in spinal cord injury: Reliability and correlation. Spinal Cord 2016, 54, 702–708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guirao Cano, L.; Samitier Pastor, B. Método de localización anatómica. In Manual de Localización Muscular en Espasticidad, 1st ed.; Guirao Cano, L., Ed.; Ergon: Barcelona, Spain, 2013; pp. 3–8. [Google Scholar]
- Kinnear, B.Z.; Lannin, N.A.; Cusick, A.; Harvey, L.A.; Rawicki, B. Rehabilitation therapies after Botulinum toxin-A injection to manage limb spasticity: A systematic review. Phys. Ther. 2014, 94, 1569–1581. [Google Scholar] [CrossRef] [Green Version]
- Sätilä, H. Over 25 years of pediatric Botulinum Toxin treatments: What have we learned from injection techniques, doses, dilutions, and recovery of repeated injections? Toxins 2020, 12, 440. [Google Scholar] [CrossRef] [PubMed]
Dynamic extensor pattern of lower limbs. Although there may be hypertonia of the antigravity muscles, dynamic component predominates (extensor spasms that interfere with the transfers). |
Static extensor pattern of lower limbs. It is characterized by hypertonia of the antigravity muscles and minor overactivity. |
Static flexor pattern of lower limbs. A plastic muscular component predominates due to prolonged sitting, with shortening of hamstrings. |
Dynamic flexor lower limbs pattern. The flexor muscles are affected, and spasms occur with the triple flexion reflex. |
Upper limb flexor pattern. Muscles corresponding to flexor synergy are affected except shoulder (there is usually no internal rotation or adduction as in stroke). |
Spastic paraparesis gait. |
0 | No increase in tone |
1 | Slight increase in tone with a catch or minimal resistance at the end of the range of movement (ROM) |
1+ | Slight increase in tone with a catch, followed by minimal resistance throughout the remainder (less than half) of the ROM |
2 | Marked increase in tone through most of the ROM, but the limb is easily moved |
3 | Considerable increase in tone; passive movement difficult |
4 | Limb rigid or contracted |
MAXIMUM DOSES | ONA | ABO | INC | |
---|---|---|---|---|
400 U | 1500 U | 500 U | ||
DINAMIC EXTENSOR PATTERN IN LOWER LIMBS | Adductor magnus | 75 U each one | 250 U each one | 75 U each one |
Rectus femoris | 50 U each one | 150 U each one | 50 U each one | |
Vastus medialis | 50 U each one | 150 U each one | 50 U each one | |
Gastrocnemius (medialis) | 40 U each one | 100 U each one | 50 U each one | |
STATIC EXTENSOR PATTERN IN LOWER LIMBS | Adductor magnus | 75 U each one | 250 U each one | 75 U each one |
Rectus femoris | 75 U each one | 200 U each one | 75 U each one | |
Vastus medialis | 50 U each one | 150 U each one | 75 U each one | |
Soleus | 75 U each one | 200 U each one | 75 U each one | |
STATIC FLEXOR PATTERN IN LOWER LIMBS | Adductor magnus | 100 U each one | 350 U each one | 100 U each one |
Semitendinosus | 50 U each one | 150 U each one | 50 U each one | |
Semimembranosus | 50 U each one | 150 U each one | 50 U each one | |
Soleus | 50 U each one | 200 U each one | 50 U each one | |
UPPER LIMB FLEXOR PATTERN | Biceps brachii | 75 U each one | 250 U each one | 75 U each one |
Flexor carpi radialis | 50 U each one | 100 U each one | 50 U each one | |
Flexor profundus digitorum | 50 U each one | 150 U each one | 50 U each one | |
HELPING BLADDER CATHETERIZATION | Adductor magnus | 100 U each one | 350 U each one | 100 U each one |
Gracilis | 100 U each one | 150 U each one | 100 U each one |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazón-García, R.; Benavente-Valdepeñas, A.M. Botulinum Toxin: From Poison to Possible Treatment for Spasticity in Spinal Cord Injury. Int. J. Mol. Sci. 2021, 22, 4886. https://doi.org/10.3390/ijms22094886
Palazón-García R, Benavente-Valdepeñas AM. Botulinum Toxin: From Poison to Possible Treatment for Spasticity in Spinal Cord Injury. International Journal of Molecular Sciences. 2021; 22(9):4886. https://doi.org/10.3390/ijms22094886
Chicago/Turabian StylePalazón-García, Ramiro, and Ana María Benavente-Valdepeñas. 2021. "Botulinum Toxin: From Poison to Possible Treatment for Spasticity in Spinal Cord Injury" International Journal of Molecular Sciences 22, no. 9: 4886. https://doi.org/10.3390/ijms22094886
APA StylePalazón-García, R., & Benavente-Valdepeñas, A. M. (2021). Botulinum Toxin: From Poison to Possible Treatment for Spasticity in Spinal Cord Injury. International Journal of Molecular Sciences, 22(9), 4886. https://doi.org/10.3390/ijms22094886