Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review
Abstract
:1. Introduction
2. Acute Myeloid Leukemia (AML) and Its Treatment
3. Chemoresistance as Relapse and Refractory Disease
4. AML Cell Chemosensitization to Ara-C
4.1. Synergistic Cytotoxicity with Ara-C
4.2. Synergistic Cytotoxicity with Subtoxic Concentrations of Ara-C
4.3. Synergistic Cytotoxicity with Ara-C without Damaging Normal Hematopoietic Tissue
5. Future Perspectives
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ABC | ATP-binding cassette transporter |
AIDS | Acquired immunodeficiency syndrome |
AML | Acute myeloid leukemia |
AP-1 | Activator protein 1 |
Ara -C | Cytarabine |
Ara-CMP | Ara-C monophosphate |
Ara-CTP | Ara-C triphosphate |
AZT | Azidothymidine |
BM | Bone marrow |
BMMNC | Bone marrow mononuclear cells |
CDK | Cyclin-dependent kinases |
CIA | Clofarabine |
CLL | Chronic lymphocytic leukemia |
CML | Chronic myeloid leukemia |
CR | Complete remission |
CREB | cAMP Response Element Binding protein |
CSC | Cancer stem cell |
dCK | Enzyme deoxycytidine kinase |
dCMP | Enzyme deoxycytidine monophosphate kinase |
DNA | Deoxyribonucleic acid |
DNSP | De novo synthesis pathway |
ELN | European LeukemiaNet |
ERK | Extracellular signal-regulated kinases |
EZH2 | Enhancer of Zeste Homolog 2 |
FAB | French-American-British Association |
FDA | Food and drug administration |
FIA | Fludarabine |
FLAG | Fludarabine, cytarabine and filgrastim |
FLAG-IDA | Fludarabine, cytarabine and filgrastim plus idarubicin |
FTI | Farnesyl transferase inhibitor |
HCT | Hematopoietic cell transplantation |
hENT1 | Human balancing nucleoside transporter 1 |
HIV | Human immunodeficiency virus |
HU | Hydroxyurea |
JNK | c-Jun N-terminal protein kinases |
KDM6A | Lysine demethylase 6A |
LSC | Leukemia stem cell |
MAPK | Mitogen-activated protein kinase |
MDR | Resistance multidrug |
Mnks | MAPK-interacting kinases |
MOC | Mechanisms of chemoresistance |
NDPK | Nucleoside diphosphate kinase enzyme |
NF-κB | Nuclear factor kappa light chain enhancer of activated B cells |
NSP | Novo nucleotide synthesis |
OXPHOS | Oxidative phosphorylation |
R/R | Relapse and refractory disease |
RAS | Rat sarcoma |
RNR | Enzyme ribonucleotide diphosphate reductase |
ROS | Reactive oxygen species |
SAMHD1 | SAM and HD domain containing deoxynucleoside triphosphate triphosphohydrolase 1 |
shRNA | Short hairpin RNA |
TCA | Tricarboxylic acid cycle |
VEGF | Vascular endothelial growth factor |
WHO | World Health Organization |
References
- Meillon-Garcia, L.A.; Demichelis-Gómez, R. Access to Therapy for Acute Myeloid Leukemia in the Developing World: Barriers and Solutions. Curr. Oncol. Rep. 2020, 22, 125. [Google Scholar] [CrossRef]
- Versluis, J.; Cornelissen, J.J.; Craddock, C.; Sanz, M.Á.; Canaani, J.; Nagler, A. Acute Myeloid Leukemia in Adults. In The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 7th ed.; Carreras, E., Ed.; Springer: Berlin, Germany, 2019; pp. 507–521. [Google Scholar]
- Leyto-Cruz, F. Leucemia Mieloide Aguda. Rev. Hematol. 2018, 19, 24–40. [Google Scholar]
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Ravandi, F. Acute Myeloid Leukemia: Current Progress and Future Directions. Blood Cancer J. 2021, 11, 1–25. [Google Scholar] [CrossRef]
- Qian, J.; Huang, X.; Zhang, Y.; Ye, X.; Qian, W. γ-Catenin Overexpression in AML Patients May Promote Tumor Cell Sur-vival via Activation of the Wnt/β-Catenin Axis. OncoTargets Ther. 2020, 13, 1265–1276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferrara, F.; Lessi, F.; Vitagliano, O.; Birkenghi, E.; Rossi, G. Current Therapeutic Results and Treatment Options for Older Patients with Relapsed Acute Myeloid Leukemia. Cancers 2019, 11, 224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackl, H.; Astanina, K.; Wieser, R. Molecular and Genetic Alterations Associated with Therapy Resistance and Relapse of Acute Myeloid Leukemia. J. Hematol. Oncol. 2017, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Hwang, S.M. Classification of Acute Myeloid Leukemia. Blood Res. 2020, 55, S1–S4. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Ravandi, F. Acute Myeloid Leukemia: Past, Present, and Prospects for the Future. Clin. Lymphoma Myeloma Leuk. 2016, 16, S25–S29. [Google Scholar] [CrossRef] [PubMed]
- Short, N.J.; Konopleva, M.; Kadia, T.M.; Borthakur, G.; Ravandi, F.; DiNardo, C.D.; Daver, N. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discov. 2020, 10, 506–525. [Google Scholar] [CrossRef] [Green Version]
- Rautenberg, C.; Germing, U.; Haas, R.; Kobbe, G.; Schroeder, T. Relapse of Acute Myeloid Leukemia after Allogeneic Stem Cell Transplantation: Prevention, Detection, and Treatment. Int. J. Mol. Sci. 2019, 20, 228. [Google Scholar] [CrossRef] [Green Version]
- Bose, P.; Vachhani, P.; Cortes, J.E. Treatment of Relapsed/Refractory Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2017, 18, 17. [Google Scholar] [CrossRef] [PubMed]
- DeWolf, S.; Tallman, M.S. How I Treat Relapsed or Refractory AML. Blood 2020, 136, 1023–1032. [Google Scholar] [CrossRef]
- Winer, E.S.; Stone, R.M. Novel Therapy in Acute Myeloid Leukemia (AML): Moving Toward Targeted Approaches. Ther. Adv. Hematol. 2019, 10, 1–18. [Google Scholar] [CrossRef]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and Management of AML in Adults: 2017 ELN Recommendations from an International Expert Panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sami, S.A.; Darwish, N.H.E.; Barile, A.N.M.; Mousa, S.A. Current and Future Molecular Targets for Acute Myeloid Leukemia Therapy. Curr. Treat. Options Oncol. 2020, 21, 1–16. [Google Scholar] [CrossRef]
- Long, L.; Assaraf, Y.G.; Lei, Z.N.; Peng, H.; Yang, L.; Chen, Z.S.; Ren, S. Genetic Biomarkers of Drug Resistance: A Compass of Prognosis and Targeted Therapy in Acute Myeloid Leukemia. Drug Resist. Updates 2020, 52, 100703. [Google Scholar] [CrossRef] [PubMed]
- Estey, E.; Karp, J.E.; Emadi, A.; Othus, M.; Gale, R.P. Recent Drug Approvals for Newly Diagnosed Acute Myeloid Leukemia: Gifts or a Trojan Horse? Leukemia 2020, 34, 671–681. [Google Scholar] [CrossRef] [PubMed]
- Shallis, R.M.; Wang, R.; Davidoff, A.; Ma, X.; Zeidan, A.M. Epidemiology of Acute Myeloid Leukemia: Recent Progress and Enduring Challenges. Blood Res. 2019, 36, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Gibson, B.; Sauer, M.G.; Amrolia, P. Acute Myeloid Leukemia in Children. In The EBMT Handbook: Hematopoietic Stem Cell Transplantation and Cellular Therapies, 7th ed.; Carreras, E., Ed.; Springer: Berlin, Germany, 2019; pp. 523–530. [Google Scholar]
- Conneely, S.E.; Stevens, A.M. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Ap-proaches to Therapy. Curr. Oncol. Rep. 2021, 23, 16. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, M.U.; Harrington, A.M.; Chaudhary, S.G.; Michaelis, L.C.; Carlson, K.B.; Abedin, S.; Runass, L.; Callander, N.S.; Fallon, M.J.; Juckett, M.; et al. Comparison of Salvage Chemotherapy Regimens and Prognostic Significance of Minimal Residual Disease in Relapsed/Refractory Acute Myeloid Leukemia. Leuk. Lymphoma 2021, 62, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Koenig, K.; Mims, A. Relapsed or Primary Refractory AML: Moving Past MEC and FLAG-ida. Curr. Opin. Hematol. 2020, 27, 108–114. [Google Scholar] [CrossRef]
- Bhat, U.G.; Halasi, M.; Gartel, A.L. FoxM1 is a General Target for Proteasome Inhibitors. PLoS ONE 2009, 4, e6593. [Google Scholar] [CrossRef] [Green Version]
- Pollyea, D.A.; Kohrt, H.E.; Medeiros, B.C. Acute Myeloid Leukaemia in the Elderly: A Review. Br. J. Haematol. 2011, 152, 524–542. [Google Scholar] [CrossRef]
- Kuendgen, A.; Germing, U. Emerging Treatment Strategies for Acute Myeloid Leukemia (AML) in the Elderly. Cancer Treat. Rev. 2009, 35, 97–120. [Google Scholar] [CrossRef] [PubMed]
- Vosberg, S.; Greif, P.A. Clonal Evolution of Acute Myeloid Leukemia from Diagnosis to Relapse. Genes Chromosomes Cancer 2019, 58, 839–849. [Google Scholar] [CrossRef] [Green Version]
- Schmid, C.; Schleuning, M.; Schwerdtfeger, R.; Hertenstein, B.; Mischak-Weissinger, E.; Bunjes, D.; Harsdorf, S.V.; Scheid, C.; Holtick, U.; Greinix, H.; et al. Long-Term Survival in Refractory Acute Myeloid Leukemia after Sequential Treatment with Chemotherapy and Reduced-Intensity Conditioning for Allogeneic Stem Cell Transplantation. Blood 2006, 108, 1092–1099. [Google Scholar] [CrossRef]
- Marin, J.J.; Briz, O.; Rodríguez-Macias, G.; Díez-Martín, J.L.; Macias, R.I. Role of Drug Transport and Metabolism in the Chemo-Resistance of Acute Myeloid Leukemia. Blood Rev. 2016, 30, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Thol, F.; Ganser, A. Treatment of Relapsed Acute Myeloid Leukemia. Curr. Treat. Options Oncol. 2020, 21, 66. [Google Scholar] [CrossRef] [PubMed]
- da Silveira Júnior, L.S.; Soares, V.L.; Jardim da Silva, A.S.; Gil, E.A.; Pereira de Araújo, M.; Merces Gonçalves, C.A.; Paiva, A.S.; Moura de Oliveira, T.M.; Oliveira, G.; Kramer Cavacanti, E.; et al. P-Glycoprotein and Multidrug Resistance-Associated Protein-1 Expression in Acute Myeloid Leukemia: Biological and Prognosis Implications. Int. J. Lab. Hematol. 2020, 42, 594–603. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Gu, Y.; Chen, B. Mechanisms of Drug Resistance in Acute Myeloid Leukemia. OncoTargets Ther. 2019, 12, 1937–1945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zebisch, A.; Hatzl, S.; Pichler, M.; Wölfler, A.; Sill, H. Therapeutic Resistance in Acute Myeloid Leukemia: The Role of Non-Coding RNAs. Int. J. Mol. Sci. 2016, 17, 2080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabra, M.M.; Salmena, L. microRNAs and Acute Myeloid Leukemia Chemoresistance: A Mechanistic Overview. Front. Oncol. 2017, 7, 255. [Google Scholar] [CrossRef] [PubMed]
- Ling, H.; Fabbri, M.; Calin, G.A. MicroRNAs and Other Non-coding RNAs as Targets for Anticancer Drug Development. Nat. Rev. Drug Discov. 2013, 12, 847–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, C.; Oellerich, T.; Baldauf, H.M.; Schwarz, S.M.; Thomas, D.; Flick, R.; Bohnenberger, H.; Kaderali, L.; Stegmann, L.; Cremer, A.; et al. SAMHD1 is a Biomarker for Cytarabine Response and a Therapeutic Target in Acute Myeloid Leukemia. Nat. Med. 2017, 23, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Ait Boujmia, O.K.; Nadifi, S.; Dehbi, H.; Lamchahab, M.; Quessar, A. Association of Multidrug Resistance Gene-1 (MDR1 C1236T) Polymorphism with the Risk of Acute Myeloid Leukemia in a Moroccan Population. Asian Pac. J. Cancer Prev. 2020, 21, 1899–1904. [Google Scholar] [CrossRef] [PubMed]
- Göllner, S.; Oellerich, T.; Agrawal-Singh, S.; Schenk, T.; Klein, H.U.; Rohde, C.; Pabst, C.; Sauer, T.; Lerdrup, M.; Tavor, S.; et al. Loss of the Histone Methyltransferase EZH2 Induces Resistance to Multiple Drugs in Acute Myeloid Leukemia. Nat. Med. 2017, 23, 69–78. [Google Scholar] [CrossRef]
- Stief, S.M.; Hanneforth, A.L.; Weser, S.; Mattes, R.; Carlet, M.; Liu, W.H.; Bartoschek, M.D.; Domínguez Moreno, H.; Oettle, M.; Kempf, J.; et al. Loss of KDM6A Confers Drug Resistance in Acute Myeloid Leukemia. Leukemia 2020, 34, 50–62. [Google Scholar] [CrossRef]
- Valent, P.; Bauer, K.; Sadovnik, I.; Smiljkovic, D.; Ivanov, D.; Herrmann, H.; Rabitsch, W. Cell-based and Antibody-Mediated Immunotherapies Directed Against Leukemic Stem Cells in Acute Myeloid Leukemia: Perspectives and Open Issues. Stem Cells Transl. Med. 2020, 9, 1331–1343. [Google Scholar] [CrossRef]
- Lytle, N.K.; Barber, A.G.; Reya, T. Stem Cell Fate in Cancer Growth, Progression and Therapy Resistance. Nat. Rev. Cancer 2018, 18, 669–680. [Google Scholar] [CrossRef] [PubMed]
- Bencomo-Alvarez, A.E.; Rubio, A.J.; Gonzalez, M.A.; Eiring, A.M. Energy Metabolism and Drug Response in Myeloid Leukaemic Stem Cells. Br. J. Haematol. 2019, 186, 524–537. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Pratz, K.W.; Letai, A.; Jonas, B.A.; Wei, A.H.; Thirman, M.; Pollyea, D.A. Safety and Preliminary Efficacy of Venetoclax with Decitabine or Azacitidine in Elderly Patients with Previously Untreated Acute Myeloid Leukaemia: A Non-randomised, Open-label, Phase 1b Study. Lancet Oncol. 2018, 19, 216–228. [Google Scholar] [CrossRef]
- Pollyea, D.A.; Stevens, B.M.; Jones, C.L.; Winters, A.; Pei, S.; Minhajuddin, M.; Jordan, C.T. Venetoclax with Azacitidine Disrupts Energy Metabolism and Targets Leukemia Stem Cells in Patients with Acute Myeloid Leukemia. Nat. Med. 2018, 24, 1859–1866. [Google Scholar] [CrossRef] [PubMed]
- Meric-Bernstam, F.; Mills, G.B. Overcoming Implementation Challenges of Personalized Cancer Therapy. Nat. Rev. Clin. Oncol. 2012, 9, 542–548. [Google Scholar] [CrossRef]
- Lin, L.; Tong, Y.; Straube, J.; Zhao, J.; Gao, Y.; Bai, P.; Li, L. Ex-vivo Drug Testing Predicts Chemosensitivity in Acute Myeloid Leukemia. J. Leukoc. Biol. 2020, 107, 859–870. [Google Scholar] [CrossRef]
- Xu, H.; Muise, E.S.; Javaid, S.; Chen, L.; Cristescu, R.; Mansueto, M.S.; Chen, H. Identification of Predictive Genetic Sgnatures of Cytarabine Responsiveness Using a 3D Acute Myeloid Leukaemia Model. J. Cell Mol. Med. 2019, 23, 7063–7077. [Google Scholar] [CrossRef] [PubMed]
- Laverdière, I.; Boileau, M.; Neumann, A.L.; Frison, H.; Mitchell, A.; Ng, S.W.; Eppert, K. Leukemic Stem Cell Signatures Identify Novel Therapeutics Targeting Acute Myeloid Leukemia. Blood Cancer J. 2018, 6, 1–16. [Google Scholar] [CrossRef]
- Lamba, J.K.; Crews, K.R.; Pounds, S.B.; Cao, X.; Gandhi, V.; Plunkett, W.; Ribeiro, R.C. Identification of Predictive Markers of Cytarabine Response in AML by Integrative Analysis of Gene-Expression Profiles with Multiple Phenotypes. Pharmacogenomics 2011, 12, 327–339. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Skibbe, J.R.; Hu, C.; Dong, L.; Ferchen, K.; Su, R.; Jiang, X. ALOX5 Exhibits Anti-Tumor and Drug-Sensitizing Effects in MLL-Rearranged Leukemia. Sci. Rep. 2017, 7, 1853. [Google Scholar] [CrossRef]
- Drenberg, C.D.; Hu, S.; Li, L.; Buelow, D.R.; Orwick, S.J.; Gibson, A.A.; Baker, S.D. ABCC4 Is a Determinant of Cytara-bine-Induced Cytotoxicity and Myelosuppression. Clin. Transl. Sci. 2016, 9, 51–59. [Google Scholar] [CrossRef]
- Rassidakis, G.Z.; Herold, N.; Myrberg, I.H.; Tsesmetzis, N.; Rudd, S.G.; Henter, J.I.; Schaller, T.; Ng, S.B.; Chng, W.J.; Yan, B.; et al. Low-Level Expression of SAMHD1 in Acute Myeloid Leukemia (AML) Blasts Correlates with Improved Outcome Upon Consolidation Chemotherapy with High-Dose Cytarabine-Based Regimens. Blood Cancer J. 2018, 8, 98. [Google Scholar] [CrossRef]
- Herold, N.; Rudd, S.G.; Ljungblad, L.; Sanjiv, K.; Myrberg, I.H.; Paulin, C.B.; Heshmati, Y.; Hagenkort, A.; Kutzner, J.; Page, B.D.; et al. Targeting SAMHD1 with the Vpx Protein to Improve Cytarabine Therapy for Hematological Malignancies. Nat. Med. 2017, 23, 256–263. [Google Scholar] [CrossRef]
- Herold, N.; Rudd, S.G.; Sanjiv, K.; Kutzner, J.; Myrberg, I.H.; Paulin, C.; Olsen, T.K.; Helleday, T.; Henter, J.I.; Schaller, T. With Me or Against Me: Tumor Suppressor and Drug Resistance Activities of SAMHD1. Exp. Hematol. 2017, 52, 32–39. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Diab, S.; Yu, M.; Adams, J.; Islam, S.; Basnet, S.K.; Albrecht, H.; Milne, R.; Wang, S. Inhibition of Mnk Enhances Apoptotic Activity of Cytarabine in Acute Myeloid Leukemia Cells. Oncotarget 2016, 7, 56811–56825. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Boyson, C.A.; Di Liberto, M.; Huang, X.; Hannah, J.; Dorn, D.C.; Moore, M.A.; Chen-Kiang, S.; Zhou, P. CDK4/6 Inhibitor PD 0332991 Sensitizes Acute Myeloid Leukemia to Cytarabine-Mediated Cytotoxicity. Cancer Res. 2015, 75, 1838–1845. [Google Scholar] [CrossRef] [Green Version]
- Chae, H.D.; Cox, N.; Dahl, G.V.; Lacayo, N.J.; Davis, K.L.; Capolicchio, S.; Smith, M.; Sakamoto, K.M. Niclosamide Suppresses Acute Myeloid Leukemia Cell Proliferation through Inhibition of CREB-Dependent Signaling Pathways. Oncotarget 2017, 9, 4301–4317. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, X.; Gu, J.; Hu, H.; Dong, D.; Yao, J.; Fei, J. Anti-miR-21 Oligonucleotide Enhances Chemosensitivity of Leukemic HL60 Cells to Arabinosylcytosine by Inducing Apoptosis. Hematology 2010, 15, 215–221. [Google Scholar] [CrossRef]
- Lu, F.; Zhang, J.; Ji, M.; Li, P.; Du, Y.; Wang, H.; Ji, C. miR-181b Increases Drug Sensitivity in Acute Myeloid Leukemia via Targeting HMGB1 and Mcl-1. Int. J. Oncol. 2014, 45, 383–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bai, H.; Cao, Z.; Deng, C.; Zhou, L.; Wang, C. miR-181a Sensitizes Resistant Leukaemia HL-60/Ara-C Cells to Ara-C by Inducing Apoptosis. J. Cancer Res. Clin. Oncol. 2012, 138, 595–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maganti, H.B.; Jrade, H.; Cafariello, C.; Manias Rothberg, J.L.; Porter, C.J.; Yockell-Lelièvre, J.; Battaion, H.L.; Khan, S.T.; Howard, J.P.; Li, Y.; et al. Targeting the MTF2-MDM2 Axis Sensitizes Refractory Acute Myeloid Leukemia to Chemotherapy. Cancer Discov. 2018, 8, 1376–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperlazza, J.; Rahmani, M.; Beckta, J.; Aust, M.; Hawkins, E.; Wang, S.Z.; Zu Zhu, S.; Podder, S.; Dumur, C.; Archer, K.; et al. Depletion of the Chromatin Remodeler CHD4 Sensitizes AML Blasts to Genotoxic Agents and Reduces Tumor Formation. Blood 2015, 126, 1462–1472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, F.; Cheng, C.; Xiao, F.; Liu, H.; Cao, S.; Zhou, G. Inhibition of mTORC1/P70S6K Pathway by Metformin Synergistically Sensitizes Acute Myeloid Leukemia to Ara-C. Life Sci. 2020, 243, 117276. [Google Scholar] [CrossRef] [PubMed]
- Levin, M.; Stark, M.; Berman, B.; Assaraf, Y.G. Surmounting Cytarabine-Resistance in Acute Myeloblastic Leukemia Cells and Specimens with a Synergistic Combination of Hydroxyurea and Azidothymidine. Cell Death Dis. 2019, 10, 390. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Gan, D.; Huang, Q.; Luo, X.; Lin, D.; Hu, J. Emodin and Its Combination with Cytarabine Induce Apoptosis in Resistant Acute Myeloid Leukemia Cells in Vitro and in Vivo. Cell Physiol. Biochem. 2018, 48, 2061–2073. [Google Scholar] [CrossRef] [PubMed]
- Saikia, M.; Retnakumari, A.P.; Anwar, S.; Anto, N.P.; Mittal, R.; Shah, S.; Pillai, K.S.; Balachandran, V.S.; Peter, V.; Thomas, R.; et al. Heteronemin, a Marine Natural Product, Sensitizes Aacute Myeloid Leukemia Cells Towards Cytarabine Chemotherapy by Regulating Farnesylation of Ras. Oncotarget 2018, 9, 18115–18127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cros, E.; Jordheim, L.; Dumontet, C.; Galmarini, C.M. Problems Related to Resistance to Cytarabine in Acute Myeloid Leukemia. Leuk. Lymphoma 2004, 45, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Negoro, E.; Yamauchi, T.; Urasaki, Y.; Nishi, R.; Hori, H.; Ueda, T. Characterization of Cytarabine-Resistant Leukemic Cell Lines Established from Five Different Blood Cell Lineages Using Gene Expression and Proteomic Analyses. Int. J. Oncol. 2011, 38, 911–919. [Google Scholar]
- Lamba, J.K. Genetic Factors Influencing Cytarabine Therapy. Pharmacogenomics 2009, 10, 1657–1674. [Google Scholar] [CrossRef] [Green Version]
- Pastore, D.; Specchia, G.; Carluccio, P.; Liso, A.; Mestice, A.; Rizzi, R.; Liso, V. FLAG-IDA in the Treatment of Refractory/Relapsed Acute Myeloid Leukemia: Single-Center Experience. Ann. Hematol. 2003, 82, 231–235. [Google Scholar] [CrossRef]
- Kim, I.; Koh, Y.; Yoon, S.S.; Park, S.; Kim, B.K.; Kim, D.Y. Korean Society of Hematology AML/MDS Working Party. Fludarabine, Cytarabine, and Attenuated-Dose Idarubicin (m-FLAI) Combination Therapy for Elderly Aute Myeloid Leukemia Patients. Am. J. Hematol. 2013, 88, 10–15. [Google Scholar] [CrossRef]
- Park, H.; Youk, J.; Kim, I.; Yoon, S.S.; Park, S.; Lee, J.O.; Koh, Y. Comparison of Cladribine-and Fludarabine-Based Induction Chemotherapy in Relapsed or Refractory Acute Myeloid Leukaemia. Ann. Hematol. 2016, 95, 1777–1786. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Keating, M.J.; Jabbour, E.J.; Ravandi-Kashani, F.; O’Brien, S.; Estey, E.; Borthakur, G. A Phase I Study of Fludarabine, Cytarabine, and Oxaliplatin Therapy in Patients with Relapsed or Refractory Acute Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2014, 14, 395–400. [Google Scholar] [CrossRef] [Green Version]
- Aldoss, I.; Ji, L.; Haider, M.; Pullarkat, V. The Combination of Fludarabine, Cytarabine and Etoposide is an Active and Well-Tolerated Regimen in Relapsed/Refractory Acute Myeloid Leukemia. Acta Haematol. 2014, 131, 202–207. [Google Scholar] [CrossRef] [PubMed]
- Jamy, O.; Bae, S.; Costa, L.J.; Erba, H.P.; Papadantonakis, N. Outcomes of Fludarabine, High Dose Cytarabine and Granulocyte-Colony Stimulating Factor (FLAG) as Re-induction for Residual Acute Myeloid Leukemia on Day 14 Bone Marrow. Leuk. Res. 2018, 74, 64–67. [Google Scholar] [CrossRef]
- Nakayama, H.; Tomizawa, D.; Tanaka, S.; Iwamoto, S.; Shimada, A.; Saito, A.M.; Adachi, S. Fludarabine, Cytarabine, Granulocyte Colony-Stimulating Factor and Idarubicin for Relapsed Childhood Acute Myeloid Leukemia. Pediatr. Int. 2017, 59, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Guolo, F.; Minetto, P.; Clavio, M.; Miglino, M.; Lemoli, R.M.; Gobbi, M. Intesive Fludarabine-High Dose Cytarabine-Idarubicin Combination as Induction Therapy with Risk-Adapted Consolidation May Improve Treatment Efficacy in Younger Acute Myeloid Leukemia (AML) Patients: Rationales, Evidences and Future Perspectives. Biosci. Trends 2017, 11, 110–114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Zhao, L.; Ma, H.; Zhang, W.; Jin, Y. Knockdown of MRP4 by Lentivirus-Mediated siRNA Improves Sensitivity to Adriamycin in Adriamycin-Resistant Acute Myeloid Leukemia Cells. Chin. Sci. Bull. 2012, 57, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Freisleben, F.; Behrmann, L.; Thaden, V.; Muschhammer, J.; Bokemeyer, C.; Fiedler, W.; Wellbrock, J. Downregulation of GLI3 Expression Mediates Chemotherapy Resistance in Acute Myeloid Leukemia. Int. J. Mol. Sci. 2020, 21, 5084. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, D.; Lengemann, J.; Voigt, A.; Hermann, J.; Zintl, F.; Sauerbrey, A. Response to Chemotherapy and Expression of the Genes Encoding the Multidrug Resistance-Associated Proteins MRP2, MRP3, MRP4, MRP5, and SMRP in Childhood Acute Myeloid Leukemia. Clin. Cancer Res. 2003, 9, 1083–1086. [Google Scholar] [PubMed]
- Schaich, M.; Soucek, S.; Thiede, C.; Ehninger, G.; Illmer, T. SHG AML96 Study Group. MDR1 and MRP1 Gene Expression are Independent Predictors for Treatment Outcome in Adult Acute Myeloid Leukaemia. Br. J. Haematol. 2005, 128, 324–332. [Google Scholar] [CrossRef]
- Malofeeva, E.V.; Domanitskaya, N.; Gudima, M.; Hopper-Borge, E.A. Modulation of the ATPase and Transport Activities of Broad-Acting Multidrug Resistance Factor ABCC10 (MRP7). Cancer Res. 2012, 72, 6457–6467. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Köck, K.; Ritter, C.A.; Chen, Z.S.; Grube, M.; Jedlitschky, G.; Schaich, M. Expression of ABCC-Type Nucleotide Exporters in Blasts of Adult Acute Myeloid Leukemia: Relation to Long-Term Survival. Clin. Cancer Res. 2009, 15, 1762–1769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishioka, C.; Ikezoe, T.; Yang, J.; Yokoyama, A. Inhibition of MEK Signalling Enhances the Ability of Cytarabine to Induce Growth Arrest and Apoptosis of Acute Myelogenous Leukemia Cells. Apoptosis 2009, 14, 1108–1120. [Google Scholar] [CrossRef] [PubMed]
- Sandhöfer, N.; Metzeler, K.; Rothenberg, M.; Herold, T.; Tiedt, S.; Groiss, V.; Spiekermann, K. Dual PI3K/mTOR Inhibition Shows Antileukemic Activity in MLL-Rearranged Acute Myeloid Leukemia. Leukemia 2015, 29, 828–838. [Google Scholar] [CrossRef]
- Sahra, I.B.; Le Marchand-Brustel, Y.; Tanti, J.F.; Bost, F. Metformin in Cancer Therapy: A New Perspective for an Old Antidiabetic Drug? Mol. Cancer Ther. 2010, 9, 1092–1099. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Hu, H.; Ye, S.; Wang, H.; Cui, R.; Yi, L. The Effect of Metformin Therapy on Incidence and Prognosis in Prostate Cancer: A Systematic Review and Meta-Analysis. Sci. Rep. 2019, 9, 2218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martelli, A.M.; Evangelisti, C.; Chiarini, F.; McCubrey, J.A. The Phosphatidylinositol 3-kinase/Akt/mTOR Signaling Network as a Therapeutic Target in Acute Myelogenous Leukemia Patients. Oncotarget 2010, 1, 89–103. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Yu, L.; Liu, B.L.; He, X.J.; Zhang, B.Y. Downregulation of P-gp, Ras and p-ERK1/2 Contributes to the Arsenic Trioxide-Induced Reduction in Drug Resistance Towards Doxorubicin in Gastric Cancer Cell Lines. Mol. Med. Rep. 2015, 12, 7335–7343. [Google Scholar] [CrossRef] [Green Version]
- Crans-Vargas, H.N.; Landaw, E.M.; Bhatia, S.; Sandusky, G.; Moore, T.B.; Sakamoto, K.M. Expression of Cyclic Adenosine Monophosphate Response-Element Binding Protein in Acute Leukemia. Blood 2002, 99, 2617–2619. [Google Scholar] [CrossRef]
- Cheng, J.C.; Kinjo, K.; Judelson, D.R.; Chang, J.; Wu, W.S.; Schmid, I.; Shankar, D.B.; Kasahara, N.; Stripecke, R.; Bhatia, R.; et al. CREB is a Critical Regulator of Normal Hematopoiesis and Leukemogenesis. Blood 2008, 111, 1182–1192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, W.; Mook, R.A., Jr.; Premont, R.T.; Wang, J. Niclosamide: Beyond an Antihelminthic Drug. Cell. Signal. 2018, 41, 89–96. [Google Scholar] [CrossRef]
- Li, Y.; Li, P.K.; Roberts, M.J.; Arend, R.C.; Samant, R.S.; Buchsbaum, D.J. Multi-Targeted Therapy of Cancer by Niclosamide: A New Application for an Old Drug. Cancer Lett. 2014, 349, 8–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Lu, Z.; Ding, K.; Li, J.; Du, X.; Chen, C.; Sun, X.; Wu, Y.; Zhou, J.; Pan, J. Antineoplastic Mechanisms of Niclosamide in Acute Myelogenous Leukemia Stem Cells: Inactivation of the NF-kappaB Pathway and Generation of Reactive Oxygen Species. Cancer Res. 2010, 70, 2516–2527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.K.; Diehl, J.A. Nuclear Cyclin D1: An Oncogenic Driver in Human Cancer. J. Cell Physiol. 2009, 220, 292–296. [Google Scholar] [CrossRef] [Green Version]
- Leonard, J.P.; LaCasce, A.S.; Smith, M.R.; Noy, A.; Chirieac, L.R.; Rodig, S.J.; Yu, J.Q.; Vallabhajosula, S.; Schoder, H.; Eng-lish, P.; et al. Selective CDK4/6 Inhibition with Tumor Responses by PD0332991 in Patients with Mantle Cell Lymphoma. Blood 2012, 119, 4597–4607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Korc, M. Cdk4/6 Inhibition Induces Epithelial-Mesenchymal Transition and Enhances Invasiveness in Pancreatic Can-cer Cells. Mol. Cancer Ther. 2012, 11, 2138–2148. [Google Scholar] [CrossRef] [Green Version]
- Chiron, D.; Martin, P.; Di Liberto, M.; Huang, X.; Ely, S.; Lannutti, B.J.; Leonard, J.P.; Mason, C.E.; Chen-Kiang, S. Induction of Prolonged Early G1 Arrest by CDK4/CDK6 Inhibition Reprograms Lymphoma Cells for Durable PI3Kδ Inhibition through PIK3IP1. Cell Cycle 2013, 12, 1892–1900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chung, E.; Kondo, M. Role of Ras/Raf/MEK/ERK Signaling in Physiological Hematopoiesis and Leukemia Development. Immunol. Res. 2011, 49, 248–268. [Google Scholar]
- Zhao, Y.; Shen, S.; Guo, J.; Chen, H.; Greenblatt, D.Y.; Kleeff, J.; Liao, Q.; Chen, G.; Friess, H.; Leung, P.S. Mitogen-Activated Protein Kinases and Chemoresistance in Pancreatic Cancer Cells. J. Surg. Res. 2006, 136, 325–335. [Google Scholar] [CrossRef] [Green Version]
- Villa, E.; Ali, E.S.; Sahu, U.; Ben-Sahra, I. Cancer Cells Tune the Signaling Pathways to Empower de Novo Synthesis of Nucleotides. Cancers 2019, 11, 688. [Google Scholar] [CrossRef] [Green Version]
- Morgan, R.J.; Newman, E.M.; Sowers, L.; Scanlon, K.; Harrison, J.; Akman, S.; Leong, L.; Margolin, K.; Niland, J.; Raschko, J.; et al. Phase I Study of Cisdiam-Minedichloroplatinum in Combination with Azidothymidine in the Treatment of Patients with Advanced Malignancies. Cancer Chemother. Pharmacol. 2003, 51, 459–464. [Google Scholar] [CrossRef]
Type | Characteristics | Treatment Approach | References |
---|---|---|---|
Chemosensitive AML at diagnosis | Translocations RUNX1-RUNXT1 and CBFB-MYH11, CBF leukemia (without KIT mutation). Diploid AML with NPM1 or CEBPα (without FLT3 mutation). Younger patients without therapy-related AML or antecedent of hematological disorder). | Cytotoxic combination chemotherapy/dose intensification of chemotherapy | [10,11] |
Chemoresistant AML at diagnosis | Complex karyotype (≥3 cytogenetic abnormalities) or specific chromosomal aneuploidies (e.g., −5/−5q. −7 and −17/−17p) FLT3-ITD mutation. Older/younger patients with therapy-related AML or antecedent of hematological disorder). | New agents (e.g., molecular targeted or immune-based therapy) | [10,11] |
Chemoresistance acquired by clonal evolution | Adaptation to the new environment defined by chemotherapy or new treatment; mutational profile change; survival and proliferation. | Existing treatments (chemotherapy and new agents) without significant increase in survival | [12,13] |
FDA Approved (Approval Year) or Current Status of Use | Drug Name/Active Ingredient (Clinical Trial Number) | Reference |
---|---|---|
Main treatment for 50 years in combination with anthracyclines | Cytarabine | [4] |
1991 | Fludara/fludarabine | [17] |
1997 | Idamycin PFS/idarubicin | |
1997 | Etopophos/etoposide | |
1998 | Cytosar-U/cytarabine | |
2004 | Vidaza/azacitidine | |
2005 | Nexavar/sorafenib | |
2006 | Sutent/sunitinib | |
2006 | Dacogen/decitabine | |
2017 | Rydapt/midostaurin | |
2017 | CPX-351/vyxeos (cytarabine/daunorubicin) | |
2017 | Idhifa/enasidenib | |
2017 | Mylotarg/gemtuzumab ozogamicin | |
2018 | Tibsovo/ivosidenib | |
2018 | Venclexta/venetoclax | |
2018 | Xospata/gilteritinib | |
Preclinical investigational drugs | NSC-370284, UC-514321, SD36, ALRN-6924, BRD0705, SHP099, MP-A08, BAY 2402234, Meclizine, OG-86, EPZ-6438, Atuveciclib, DB2313, DB2115, DB1976 | |
Investigational drugs in phase I | BYL719 (NCT01449058), Everolimus (NCT01154439), Pacritinib (NCT02323607), OPB-111077 (NCT03197714), LGH447 (NCT02078609), Sonidegib (NCT02129101), BMS-214662 (NCT00006213), Nintedanib (NCT03513484), PTC299 (NCT03761069), LY2874455 (NCT03125239), Merestinib (NCT03125239), CYC140 (NCT03884829), SEL120 (NCT04021368), Veliparib (NCT00588991), Pevonedistat (NCT03009240), MEK162 (NCT02049801) | |
Investigational drugs in phase II | FF-10101-01 (NCT03194685), GSK214795 (NCT01907815), Perifosine (NCT00301938), MK2206 (NCT01253447), Sirolimus (NCT02583893), Temsirolimus (NCT00084916), Glasdegib (NCT03226418), Trametinib (NCT01907815), Selumetinib (NCT00588809), Lenalidomide (NCT00890929), Alisertib (NCT00830518), BI 811283 (NCT00632749), Entospletinib (NCT02343939), Ponatinib Hydrochloride (NCT01620216), Lestaurtinib (NCT00469859), Pexidartini (NCT01349049), JNJ-40346527 (NCT03557970), Semaxanib (NCT00005942), Cediranib Maleate (NCT00475150), Erlotinib Hydrochloride (NCT01664897), GO-203-2c (NCT02204085), Talazoparib (NCT02878785), Selinexor (NCT02835222), HDM201 (NCT03760445) | [18] |
Investigational drugs in phase III | Zosuquidar (NCT00046930), Tipifarnib (NCT00093990), Valspodar (NCT00003190) |
Type of Molecular Alteration | Molecule | Reference |
---|---|---|
Proteins and enzymes | P-gp, MRP1, LRP, GST, TopoII and PKC | [18,36] |
Genes | FLT3, WT1, RAS family, MDR1 (ABCB1), SAMHD1, EZH2 and KDM6A have been proposed | [12,36] |
miRNAs | Group I, high expression associated with sensitivity: miR-10, miR-27a, let-7a, let-7f, miR-96, miR-128, miR-135a, miR-181a, miR-181b, miR-331 and miR-409. Group II, high expression associated with resistance: miR-20a, miR-32, miR-155, miR-125b, miR-126, miR-210, miR-3151, miR-196b, miR-199a, miR191, miR128, HOTAIR and HOTAIRM1 | [33] |
Signaling pathways | PI3K/AKT/mTOR, STAT5/PIM, RAS/MAPK, P53, NF-κB, Hh and UPR | [18,36] |
Molecules related to drug metabolism | In the case of Ara-C: CDA: irreversibly deaminates Ara-C, changing it to its inactive form, Ara-U SAMHD1: reduces the level of active Ara-CTP through hydrolysis to inactive Ara-C | [37] |
Interaction with the tumor microenvironment | SDF-1/CXCR4, FGF2/FGFR1 and VCAM/VLA4 ligand/receptor interaction generates drug resistance similar to FLT3. Hypoxia and acidic pH by maintaining quiescence of leukemic stem cells. | [36] |
Ara-C Sensitization Strategies | Molecule | Evidence | Reference |
---|---|---|---|
Molecular targets | ABCC4 (MRP4) | ABCC4 protects leukemia cells from Ara-C by through efflux. Inhibiting ABCC4 (e.g., with sorafenib and MK571) or silencing it with an siRNA can reverse Ara-C resistance in AML cells. Abcc4 deficiency in mouse cells sensitizes myeloid progenitors to Ara-C. | [51] |
SAMDH1 | SAMDH1 depletion in AML blasts increases sensitivity to Ara-C. Low SAMDH1 expression has been associated with longer survival in a subgroup of patients who received high doses of Ara-C. The combination of high-dose Ara-C with SAMDH1 inhibitors sensitizes cells to chemotherapy. | [52,53,54] | |
Mnk | MNKI-8e (an Mnk inhibitor) and an shRNA-generated Mnk knockdown both enhance the ability of Ara-C to induce apoptosis in the human MV4-11 cell line by suppressing MAPK and antiapoptotic proteins. | [55] | |
CDK4/6 | PD0332991, a CDK4/6 inhibitor, synchronizes HL60 cells in the S phase of the cell cycle, favoring the incorporation of Ara-C at the time of DNA replication, thereby increasing apoptosis. PD0332991 suppressed tumor growth at a lower dose of Ara-C in a xenotransplantation model. | [56] | |
CREB | Pretreatment with niclosamide, a CREEB inhibitor, sensitizes HL60 cells to Ara-C, daunorubicin and vincristine, showing a synergistic effect by inhibiting proliferation and reducing the viability of leukemic cells. | [57] | |
Noncoding RNA | miRNA | miR-23a, miR-21, miR-181b and miR-181 are examples of miRNAs involved in drug resistance and are used to sensitize AML cells to Ara-C. The overexpression of miR-23a decreases the sensitivity to Ara-C, while its knockdown has the opposite effect. Likewise, high miR-23a expression has been correlated with relapse and refractoriness of AML. Downregulating miR-21 significantly sensitizes HL60 cells to Ara-C by inducing apoptosis; this effect is partially due to the upregulation of PDCD4. miR-181b is significantly decreased in human multidrug-resistant leukemia cells and in R/R AML patient samples. The overexpression of miR-181b increases the sensitivity of leukemia cells to doxorubicin and Ara-C and promotes drug-induced apoptosis, at least partially though the direct suppression of its target genes HMGB1 and Mcl-1. In a similar way, miR-181a expression is downregulated in the Ara-C-resistant cell line HL-60/Ara-C compared to the parental cell line HL-60, and overexpression of miR-181a in HL-60/Ara-C cells sensitizes the cells to Ara-C treatment by inducing apoptosis. | [33,58,59,60] |
Epigenetic regulation | MTF2–MDM2 | MTF2 deficiency is related to drug resistance and refractoriness in AML. MTF2 upregulation or MDM2 inhibition sensitizes cells from AML patients to treatment with Ara-C and daunorubicin. | [61] |
Remodeler CHD4 | CHD4 depletion in U937, MV4-11 and AML-3 cell lines and in primary AML cells sensitizes them to treatment with Ara-C and daunorubicin by relaxing chromatin and impairing the ability to repair the double-stranded DNA. | [62] | |
KDM6A | The downregulation of KDM6 favors drug resistance in K562 and MM-6 cell lines and is related to decreased ENT1 expression. The restoration of KDM6A expression in KDM6A-null cells of the TPH-1 and K562 KDM6A KO lines suppresses proliferation, and the cells are sensitized to Ara-C. | [39] | |
Nonspecific substances | Metformin | Metformin sensitizes leukemic cells to Ara-C treatment by inhibiting the mTORC1/P70S6K pathway, thereby promoting apoptosis. In vivo, in leukemic cell transplants in nude mice, the combination of metformin and Ara-C produces a synergistic antitumor effect compared to the use of Ara-C alone. | [63] |
Hydroxyurea and azidothymidine | In sub-cell lines resistant to Ara-C and in peripheral blood cells from patients with AML, treatment with HU and AZT in combination with Ara-C results in a synergistic effect to inhibit cell growth. | [64] | |
Emodin | In combination with Ara-C, emodin inhibits proliferation and promotes apoptosis in leukemic cell lines, including HL60/ADR. In vivo, the administration of high doses of emodin increases sensitivity to Ara-C, inhibiting tumor growth and improving survival. | [65] | |
Heteronemin | The combination of heteronemin and low-dose Ara-C produces an improved synergistic cytotoxic effect towards AML cells compared with high-dose Ara-C alone. | [66] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fajardo-Orduña, G.R.; Ledesma-Martínez, E.; Aguiñiga-Sánchez, I.; Mora-García, M.d.L.; Weiss-Steider, B.; Santiago-Osorio, E. Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review. Int. J. Mol. Sci. 2021, 22, 4955. https://doi.org/10.3390/ijms22094955
Fajardo-Orduña GR, Ledesma-Martínez E, Aguiñiga-Sánchez I, Mora-García MdL, Weiss-Steider B, Santiago-Osorio E. Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review. International Journal of Molecular Sciences. 2021; 22(9):4955. https://doi.org/10.3390/ijms22094955
Chicago/Turabian StyleFajardo-Orduña, Guadalupe Rosario, Edgar Ledesma-Martínez, Itzen Aguiñiga-Sánchez, María de Lourdes Mora-García, Benny Weiss-Steider, and Edelmiro Santiago-Osorio. 2021. "Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review" International Journal of Molecular Sciences 22, no. 9: 4955. https://doi.org/10.3390/ijms22094955
APA StyleFajardo-Orduña, G. R., Ledesma-Martínez, E., Aguiñiga-Sánchez, I., Mora-García, M. d. L., Weiss-Steider, B., & Santiago-Osorio, E. (2021). Inhibitors of Chemoresistance Pathways in Combination with Ara-C to Overcome Multidrug Resistance in AML. A Mini Review. International Journal of Molecular Sciences, 22(9), 4955. https://doi.org/10.3390/ijms22094955