An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces
Abstract
:1. Introduction
2. Design and Synthesis of 1,2,3-Triazoles
3. 1,2,3-Triazoles as Corrosion Inhibitors
3.1. Steel and Its Alloys
3.2. Copper and Its Alloys
3.3. Aluminum and Its Alloys
3.4. Effect of the Structure of the Inhibitors on Their Inhibition Efficiency
4. Mechanism of Corrosion Inhibition
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bourzi, H.; Oukhrib, R.; El Ibrahimi, B.; Abou Oualid, H.; Abdellaoui, Y.; Balkard, B.; El Issami, S.; Hilali, M.; Bazzi, L.; Len, C. Furfural Analogs as Sustainable Corrosion Inhibitors—Predictive Efficiency Using DFT and Monte Carlo Simulations on the Cu(111), Fe(110), Al(111) and Sn(111) Surfaces in Acid Media. Sustainability 2020, 12, 3304. [Google Scholar] [CrossRef] [Green Version]
- Koch, G. Trends in Oil and Gas Corrosion Research and Technologies, Production and Transmission, 1st ed.; El-Sherik, A.M., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 3–30. [Google Scholar]
- Jacobson, G.A. NACE International’s IMPACT Study Breaks New Ground in Corrosion Management Research and Practice. Bridge Natl. Acad. Eng. 2016, 46, 30–38. [Google Scholar]
- Salhi, A.; Bouyanzer, A.; Chetouani, A.; El Barkany, S.; Amhamdi, H.; Hamdani, I.; Zarrouk, A.; Hammouti, B.; Desjobert, J.M.; Costa, J. Chemical composition of essential oil and antioxidant and anti-corrosion activity of extract and essential oil of Pennyroyal Mint (Mentha pulegium, MP). Mor. J. Chem. 2017, 5, 5–11. [Google Scholar]
- Rouifi, Z.; El Faydy, M.; About, H.; Benhiba, F.; Ramsis, H.; Boudalia, M.; Zarrok, H.; Touir, R.; El M’Rabet, M.; Oudda, H. Electrochemical and theoretical studies of adsorption and corrosion inhibition of ethyl 5-amino-1-((8-hydroxyquinolin-5-yl) methyl)-1H-1, 2, 3-triazole-4-carboxylate on carbon steel in acidic solution. J. Mater. Environ. Sci. 2018, 9, 453–465. [Google Scholar]
- Xu, B.; Ji, Y.; Zhang, X.; Jin, X.; Yang, W.; Chen, Y. Experimental and theoretical studies on the corrosion inhibition performance of 4-amino-N, N-di-(2-pyridylmethyl)-aniline on mild steel in hydrochloric acid. RSC Adv. 2015, 5, 56049–56059. [Google Scholar] [CrossRef]
- Solmaz, R. Investigation of the inhibition effect of 5-((E)-4-phenylbuta-1,3-dienylideneamino)-1,3,4-thiadiazole-2-thiol Schiff base on mild steel corrosion in hydrochloric acid. Corros. Sci. 2010, 52, 3321–3330. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, S.; Quan, H.; Huang, Z.; Xu, S. Synthesis and corrosion inhibition performance of alkyl triazole derivatives. Res. Chem. Intermed. 2013, 41, 2709–2724. [Google Scholar] [CrossRef]
- Ma, Q.; Qi, S.; He, X.; Tang, Y.; Lu, G. 1,2,3-Triazole derivatives as corrosion inhibitors for mild steel in acidic medium: Experimental and computational chemistry studies. Corros. Sci. 2017, 129, 91–101. [Google Scholar] [CrossRef]
- Li, J.; Chen, D.; Zhang, D.; Wang, Y.; Yu, Y.; Gao, L.; Huang, M. Preparation of triazole compounds via click chemistry reaction and formation of the protective self-assembled membrane against copper corrosion. Colloid. Surf. A-Physicochem. Eng. Asp. 2018, 550, 145–154. [Google Scholar] [CrossRef]
- Faisal, M.; Saeed, A.; Shahzad, D.; Abbas, N.; Ali Larik, F.; Ali Channar, P.; Aaliya Shehzadi, S. General properties and comparison of the corrosion inhibition efficiencies of the triazole derivatives for mild steel. Corros. Rev. 2018, 36, 507–545. [Google Scholar] [CrossRef] [Green Version]
- Önal, A.N.; Aksüt, A.A. Corrosion inhibition of aluminium alloys by tolyltriazole in chloride solutions. Anti-Corros. Method. Mater. 2000, 47, 339–349. [Google Scholar] [CrossRef]
- Hu, X.; Tan, H.; Wang, X.; Chen, P. Surface functionalization of hydrogel by thiol-yne click chemistry for drug delivery. Colloid. Surf. A-Physicochem. Eng. Asp. 2016, 489, 297–304. [Google Scholar] [CrossRef]
- Abarca, C.; Ali, M.M.; Bowie, D.; Pelton, R.H. A simple assay for azide surface groups on clickable polymeric nanoparticles. Colloid. Surf. A-Physicochem. Eng. Asp. 2016, 508, 192–196. [Google Scholar] [CrossRef]
- Peng, Z.; Li, H.; Li, Q.; Hu, Y. Microwave-Assisted thiol-ene click chemistry of carbon nanoforms. Colloid. Surf. A-Physicochem. Eng. Asp. 2017, 533, 48–54. [Google Scholar] [CrossRef]
- Espeel, P.; Du Prez, F.E. “Click”-Inspired Chemistry in Macromolecular Science: Matching Recent Progress and User Expectations. Macromolecules 2014, 48, 2–14. [Google Scholar] [CrossRef]
- Singh, M.S.; Chowdhury, S.; Koley, S. Advances of azide-alkyne cycloaddition-click chemistry over the recent decade. Tetrahedron 2016, 72, 5257–5283. [Google Scholar] [CrossRef]
- Thirumurugan, P.; Matosiuk, D.; Jozwiak, K. Click Chemistry for Drug Development and Diverse Chemical–Biology Applications. Chem. Rev. 2013, 113, 4905–4979. [Google Scholar] [CrossRef]
- Xi, W.; Scott, T.F.; Kloxin, C.J.; Bowman, C.N. Click Chemistry in Materials Science. Adv. Func. Mater. 2014, 24, 2572–2590. [Google Scholar] [CrossRef] [Green Version]
- Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40, 2004–2021. [Google Scholar] [CrossRef]
- Tornøe, C.W.; Christensen, C.; Meldal, M. Peptidotriazoles on Solid Phase: [1,2,3]-Triazoles by Regioselective Copper(I)-Catalyzed 1,3, Dipolar Cycloaddition of Terminal Alkynes to Azides. J. Org. Chem. Chem. 2002, 67, 3057–3064. [Google Scholar] [CrossRef] [PubMed]
- Kolb, H.C.; Sharpless, K.B. The growing impact of click chemistry on drug discovery. Drug. Discov. Today 2003, 8, 1128–1137. [Google Scholar] [CrossRef]
- Brennan, J.L.; Hatzakis, N.S.; Tshikhudo, T.R.; Razumas, V.; Patkar, S.; Vind, J.; Brust, M. Bionanoconjugation via Click Chemistry: The Creation of Functional Hybrids of Lipases and Gold Nanoparticles. Bioconjug. Chem. 2006, 17, 1373–1375. [Google Scholar] [CrossRef]
- Uszczyńska, B.; Ratajczak, T.; Frydrych, E.; Maciejewski, H.; Figlerowicz, M.; Markiewicz, W.T.; Chmielewski, M.K. Application of click chemistry to the production of DNA microarrays. Lab. Chip. 2012, 12, 1151. [Google Scholar] [CrossRef]
- Binder, W.H.; Sachsenhofer, R. “Click” Chemistry in Polymer and Materials Science. Macromol. Rapid. Commun. 2007, 28, 15–54. [Google Scholar] [CrossRef]
- Li, H.; Cheng, F.; Duft, A.M.; Adronov, A. Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polystyrene by “Click” Coupling. J. Am. Chem. Soc. 2005, 127, 14518–14524. [Google Scholar] [CrossRef] [PubMed]
- White, M.A.; Johnson, J.A.; Koberstein, J.T.; Turro, N.J. Towards the Syntheses of Universal Ligands for Metal Oxide Surfaces: Controlling Surface Functionality through Click Chemistry. J. Am. Chem. Soc. 2006, 128, 11356–11357. [Google Scholar] [CrossRef] [PubMed]
- Nandivada, H.; Jiang, X.; Lahann, J. Click Chemistry: Versatility and Control in the Hands of Materials Scientists. Adv. Mater. 2007, 19, 2197–2208. [Google Scholar] [CrossRef]
- Orski, S.V.; Poloukhtine, A.A.; Arumugam, S.; Mao, L.; Popik, V.V.; Locklin, J. High Density Orthogonal Surface Immobilization via Photoactivated Copper-Free Click Chemistry. J. Am. Chem. Soc. 2010, 132, 11024–11026. [Google Scholar] [CrossRef]
- Gupta, N.; Lin, B.F.; Campos, L.M.; Dimitriou, M.D.; Hikita, S.T.; Treat, N.D.; Hawker, C.J. A versatile approach to high-throughput microarrays using thiol-ene chemistry. Nat. Chem. 2009, 2, 138–145. [Google Scholar] [CrossRef]
- Huisgen, R. 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. 1963, 2, 565–598. [Google Scholar] [CrossRef]
- Huisgen, R. Kinetics and Mechanism of 1,3-Dipolr Cycloadditions. Angew. Chem. Int. Ed. 1963, 2, 633–645. [Google Scholar] [CrossRef]
- Sherif, E.-S.M.; Abbas, A.T.; Gopi, D.; El-Shamy, A.M. Corrosion and Corrosion Inhibition of High Strength Low Alloy Steel in 2.0 M Sulfuric Acid Solutions by 3-Amino-1,2,3-triazole as a Corrosion Inhibitor. J. Chem. 2014, 2014, 1–8. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, Y.; Li, J.; Zhang, D.; Gao, L. In situ click-assembling monolayers on copper surface with enhanced corrosion resistance. Corros. Sci. 2016, 113, 133–144. [Google Scholar] [CrossRef]
- Tamil Selvi, S.; Raman, V.; Rajendran, N. Corrosion inhibition of mild steel by benzotriazole derivatives in acidic medium. J. Appl. Electrochem. 2003, 33, 1175–1182. [Google Scholar] [CrossRef]
- Yao, J.L.; Ren, B.; Huang, Z.F.; Cao, P.G.; Gu, R.A.; Tian, Z.Q. Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes. Electrochim. Acta 2003, 48, 1263–1271. [Google Scholar] [CrossRef]
- Balaskas, A.C.; Curioni, M.; Thompson, G.E. Effectiveness of 2-mercaptobenzothiazole, 8-hydroxyquinoline and benzotriazole as corrosion inhibitors on AA 2024-T3 assessed by electrochemical methods. Surf. Interface Anal. 2015, 47, 1029–1039. [Google Scholar] [CrossRef]
- Eivaz Mohammadloo, H.; Mirabedini, S.M.; Pezeshk-Fallah, H. Microencapsulation of quinoline and cerium based inhibitors for smart coating application: Anti-corrosion, morphology and adhesion study. Prog. Org. Coat. 2019, 137, 105339. [Google Scholar] [CrossRef]
- Isaacs, H.S.; Adzic, G.; Jeffcoate, C.S. Visualizing corrosion. Corrosion 2000, 56, 971. [Google Scholar] [CrossRef]
- Miled, O.B.; Grosso, D.; Sanchez, C.; Livage, J. An optical fibre pH sensor based on dye doped mesostructured silica. J. Phys. Chem. Solids 2004, 65, 1751–1755. [Google Scholar] [CrossRef]
- Sibi, M.P.; Zong, Z. Determination of corrosion on aluminum alloy under protective coatings using fluorescent probes. Prog. Org. Coat. 2003, 47, 8–15. [Google Scholar] [CrossRef]
- Bryant, D.E.; Greenfield, D. The Use of Fluorescent Probes for the Detection of Under-Film Corrosion. Prog. Org. Coat. 2006, 57, 416–420. [Google Scholar] [CrossRef]
- Li, S.M.; Zhang, H.R.; Liu, J.H. Preparation and performance of fluorescent sensing coating for monitoring corrosion of Al alloy 2024. Trans. Nonferrous Met. Soc. China 2006, 16, S159–S164. [Google Scholar] [CrossRef]
- Ivušić, F.; Lahodny-Šarc, O.; Stojanović, I. Corrosion inhibition of carbon steel in saline solutions by gluconate, zinc sulphate and clay eluate. VJESN 2014, 21, 107–114. [Google Scholar]
- Maranescu, B.; Lupa, L.; Tara-Lunga Mihali, M.; Plesu, N.; Maranescu, V.; Visa, A. The corrosion inhibitor behavior of iron in saline solution by the action of magnesium carboxyphosphonate. Pure Appl. Chem. 2018, 90, 1713–1722. [Google Scholar] [CrossRef]
- Abd-Elaal, A.A.; Aiad, I.; Shaban, S.M.; Tawfik, S.M.; Sayed, A. Synthesis and evaluation of some triazole derivatives as corrosion inhibitors and biocides. J. Surfactants Deterg. 2014, 17, 483–491. [Google Scholar] [CrossRef]
- Lebrini, M.; Bentiss, F.; Vezin, H.; Lagrenee, M. Inhibiting effects of some oxadiazole derivatives on the corrosion of mild steel in perchloric acid solution. Appl. Surf. Sci. 2005, 252, 950–958. [Google Scholar] [CrossRef]
- Koh, E.; Baek, S.Y.; Kim, N.K.; Lee, S.; Shin, J.; Kim, Y.W. Microencapsulation of the triazole derivative for self-healing anticorrosion coatings. New J. Chem. 2014, 38, 4409. [Google Scholar] [CrossRef]
- Joshi, A.; Abdullayev, E.; Vasiliev, A.; Volkova, O.; Lvov, Y. Interfacial Modification of Clay Nanotubes for the Sustained Release of Corrosion Inhibitors. Langmuir 2012, 29, 7439–7448. [Google Scholar] [CrossRef] [PubMed]
- Sultana, J.; Sarma, D. Ag-catalyzed azide-alkyne cycloaddition: Copper free approaches for synthesis of 1,4-disubstituted 1,2,3-triazoles. Catal. Rev. 2019, 62, 96–117. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Z.; Cao, G.; Li, H.; Ren, H. Recent Advances in Multicomponent Synthesis of 1,4,5-Trisubstituted 1,2,3-Triazoles. Adv. Synth. Catal. 2017, 359, 202–224. [Google Scholar] [CrossRef]
- Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B.A. Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angew. Chem. 2002, 114, 2708–2711. [Google Scholar] [CrossRef]
- Valverde, I.E.; Bauman, A.; Kluba, C.A.; Vomstein, S.; Walter, M.A.; Mindt, T.L. 1,2,3-Triazoles as Amide Bond Mimics: Triazole Scan Yields Protease-Resistant Peptidomimetics for Tumor Targeting. Angew. Chem. Int. Ed. 2013, 52, 8957–8960. [Google Scholar] [CrossRef]
- Agalave, S.G.; Maujan, S.R.; Pore, V.S. Click Chemistry: 1,2,3-Triazoles as Pharmacophores. Chem. Asian J. 2011, 6, 2696–2718. [Google Scholar] [CrossRef]
- Reddyrajula, R.; Dalimba, U. The bioisosteric modification of pyrazinamide derivatives led to potent antitubercular agents: Synthesis via click approach and molecular docking of pyrazine-1,2,3-triazoles. Bioorg. Med. Chem. Lett. 2019, 30, 126846. [Google Scholar] [CrossRef] [PubMed]
- Asif, M. Antivral and antiparasitic activities of various substituted triazole derivatives: A mini review. Chem. Int. 2015, 1, 71–80. [Google Scholar]
- Hosseinnejad, T.; Ebrahimpour-Malmir, F.; Fattahi, B. Computational investigations of click-derived 1,2,3-triazoles as keystone ligands for complexation with transition metals: A review. RSC. Adv. 2018, 8, 12232–12259. [Google Scholar] [CrossRef] [Green Version]
- Run, M.T.; Wu, S.Z.; Zhang, D.Y.; Wu, G. A polymer/mesoporous molecular sieve composite: Preparation, structure and properties. Mater. Chem. Phys. 2007, 105, 341–347. [Google Scholar] [CrossRef]
- Alizadeh, M.; Mirjafary, Z.; Saeidian, H. Straightforward synthesis, spectroscopic characterizations and comprehensive DFT calculations of novel 1-ester 4-sulfonamide-1,2,3-triazole scaffolds. J. Mol. Struct. 2020, 1203, 127405. [Google Scholar] [CrossRef]
- Ali, A.A.; Sharma, R.; Saikia, P.J.; Sarma, D. CTAB promoted CuI catalyzed green and economical synthesis of 1,4-disubstituted-1,2,3-triazoles. Synth. Commun. 2018, 48, 1206–1212. [Google Scholar] [CrossRef]
- Hrimla, M.; Bahsis, L.; Boutouil, A.; Laamari, M.R.; Julve, M.; Stiriba, S.E. A combined computational and experimental study on the mild steel corrosion inhibition in hydrochloric acid by new multifunctional phosphonic acid containing 1,2,3-triazoles. J. Adhes. Sci. Technol. 2020, 34, 1741–1773. [Google Scholar] [CrossRef]
- Noshiranzadeh, N.; Emami, M.; Bikas, R.; Kozakiewicz, A. Green click synthesis of β-hydroxy-1, 2, 3-triazoles in water in the presence of a Cu (II)–azide catalyst: A new function for Cu (II)–azide complexes. New J. Chem. 2017, 41, 2658–2667. [Google Scholar] [CrossRef]
- Yadav, J.S.; Reddy, B.V.S.; Reddy, G.M.; Chary, D.N. Three component, regioselective, one-pot synthesis of β-hydroxytriazoles from epoxides via “click reactions”. Tetrahedron. Lett. 2007, 48, 8773–8776. [Google Scholar] [CrossRef]
- Alonso, F.; Moglie, Y.; Radivoy, G.; Yus, M. Multicomponent Synthesis of 1,2,3-Triazoles in Water Catalyzed by Copper Nanoparticles on Activated Carbon. Adv. Synth. Catal. 2010, 352, 3208–3214. [Google Scholar] [CrossRef] [Green Version]
- Ötvös, S.B.; Mándity, I.M.; Kiss, L.; Fülöp, F. Alkyne-Azide Cycloadditions with Copper Powder in a High-Pressure Continuous-Flow Reactor: High-Temperature Conditions versus the Role of Additives. Chem. Asian. J. 2013, 8, 800–808. [Google Scholar] [CrossRef]
- Lu, J.; Ma, E.Q.; Liu, Y.H.; Li, Y.M.; Mo, L.P.; Zhang, Z.-H. One-pot three-component synthesis of 1,2,3-triazoles using magnetic NiFe2O4–glutamate–Cu as an efficient heterogeneous catalyst in water. RSC. Adv. 2015, 5, 59167–59185. [Google Scholar] [CrossRef]
- Sharghi, H.; Beyzavi, M.H.; Safavi, A.; Doroodmand, M.M.; Khalifeh, R. Immobilization of Porphyrinatocopper Nanoparticles onto Activated Multi-Walled Carbon Nanotubes and a Study of its Catalytic Activity as an Efficient Heterogeneous Catalyst for a Click Approach to the Three-Component Synthesis of 1,2,3-Triazoles in Water. Adv. Synth. Catal. 2009, 351, 2391–2410. [Google Scholar] [CrossRef]
- Naeimi, H.; Nejadshafiee, V. Efficient one-pot click synthesis of β-hydroxy-1,2,3-triazoles catalyzed by copper(i)@phosphorated SiO2via multicomponent reaction in aqueous media. New J. Chem. 2014, 38, 5429–5435. [Google Scholar] [CrossRef]
- Mishra, A.; Rai, P.; Srivastava, M.; Tripathi, B.P.; Yadav, S.; Singh, J.; Singh, J. A Peerless Aproach: Organophotoredox/Cu(I) Catalyzed, Regioselective, Visible Light Facilitated, Click Synthesis of 1,2,3-Triazoles via Azide–Alkyne [3+2] Cycloaddition. Catal. Lett. 2017, 147, 2600–2611. [Google Scholar] [CrossRef]
- De Souza, T.B.; Caldas, I.S.; Paula, F.R.; Rodrigues, C.C.; Carvalho, D.T.; Dias, D.F. Synthesis, activity and molecular modeling studies of 1,2,3-triazole derivatives from natural phenylpropanoids as new trypanocidal agents. Chem. Bioorganic Drug. Des. 2019, 95, 124–129. [Google Scholar] [CrossRef] [PubMed]
- Chavan, P.V.; Charate, S.P.; Desai, U.V.; Rode, C.V.; Wadgaonkar, P.P. Bentonite—Clay—Supported Cuprous Iodide Nanoparticles (BENT- CuI NPs): A New Heterogeneous Catalyst in Diversity—Oriented Synthesis of 1, 2, 3- Triazoles in Aqueous Medium. Chem. Select. 2019, 4, 7144–7150. [Google Scholar] [CrossRef]
- Ghosh, D.; Dhibar, S.; Dey, A.; Manna, P.; Mahata, P.; Dey, B.A. Cu(II)-Inorganic Co−Crystal as a Versatile Catalyst Towardss “Click” Chemistry for Synthesis of 1,2,3-triazoles and β-hydroxy-1,2,3-triazoles. Chem. Select. 2020, 5, 75–82. [Google Scholar]
- Fayomi, O.S.I.; Anawe, P.A.L.; Daniyan, A. Corrosion Inhibitors, Principles and Recent Applications; Aliofkhazraei, M., Ed.; Tarbiat Modares University: Tehran, Iran, 2018; pp. 79–94. [Google Scholar]
- Vishnudevan, M.; Thangavel, K. A comparative study of inorganic versus organic corrosion inhibitors for mitigation of steel in chloride contaminated alkaline solution. Indian J. Chem. Technol. 2007, 14, 22–28. [Google Scholar]
- Iwasaki, M.; Yorimitsu, H.; Oshima, K. Microwave-Assisted Palladium-Catalyzed Direct Arylation of 1,4-Disubstituted 1,2,3-Triazoles with Aryl Chlorides. Chem. Asian J. 2007, 2, 1430–1435. [Google Scholar] [CrossRef]
- Deswal, S.; Naveen; Tittal, R.K.; Ghule Vikas, D.; Lal, K.; Kumar, A. 5-Fluoro-1H-indole-2,3-dione-triazoles- synthesis, biological activity, molecular docking, and DFT study. J. Mol. Struct. 2020, 1209, 127982. [Google Scholar] [CrossRef]
- Aziz Ali, A.; Gogoi, D.; Chaliha, A.K.; Buragohain, A.K.; Trivedi, P.; Saikia, P.J.; Sarma, D. Synthesis and biological evaluation of novel 1,2,3-triazole derivatives as anti-tubercular agents. Bioorganic Med. Chem. Lett. 2017, 27, 3698–3703. [Google Scholar] [CrossRef] [PubMed]
- Keri, R.S.; Patil, S.A.; Budagumpi, S.; Nagaraja, B.M. Triazole: A Promising Antitubercular Agent. Chem. Bioorganic Drug. Des. 2015, 86, 410–423. [Google Scholar] [CrossRef]
- Finšgar, M.; Jackson, J. Application of corrosion inhibitors for steels in acidic media for the oil and gas industry: A review. Corros. Sci. 2014, 86, 17–41. [Google Scholar] [CrossRef] [Green Version]
- El Ibrahimi, B.; Jmiai, A.; Bazzi, L.; El Issami, S. Amino acids and their derivatives as corrosion inhibitors for metals and alloys. Arab. J. Chem. 2017, 13, 740–771. [Google Scholar] [CrossRef]
- Ofoegbu, S.U.; Galvão, T.L.P.; Gomes, J.R.B.; Tedim, J.; Nogueira, H.I.S.; Ferreira, M.G.S.; Zheludkevich, M.L. Corrosion inhibition of copper in aqueous chloride solution by 1H-1,2,3-triazole and 1,2,4-triazole and their combinations: Electrochemical, Raman and theoretical studies. Phys. Chem. Chem. Phys. 2017, 19, 6113–6129. [Google Scholar] [CrossRef]
- Abdennabi, A.M.S.; Abdulhadi, A.I.; Abu-Orabi, S.T.; Saricimen, H. The inhibition action of 1(benzyl) 1-H-4,5-dibenzoyl-1, 2,3-triazole on mild steel in hydrochloric acid media. Corros. Sci. 1996, 38, 1791–1800. [Google Scholar] [CrossRef]
- Abdennabi, A.M.S.; Abdulhadi, A.I.; Abu-Orabi, S. Relationship between the molecular structure and the inhibition performance of triazole compounds using electrochemical methods. Anti-Corros. Method. Mater. 1998, 45, 103–108. [Google Scholar] [CrossRef]
- Neupokoeva, E.I.; Kaluzhina, S.A. The Inhibition Activity of Low- and High-molecular Compounds with Triazole Cycle under Acidic Iron Corrosion. ECS Trans. 2006, 1, 189–194. [Google Scholar]
- Babić-Samardžija, K.; Hackerman, N. Triazole, benzotriazole and substituted benzotriazoles as corrosion inhibitors of iron in aerated acidic media. J. Solid. State Elect. 2005, 9, 483–497. [Google Scholar] [CrossRef]
- El-Sayed, M.; Sherif, A.A.T.; Halfa, H.; El-Shamy, A.M. Corrosion of High Strength Steel in Concentrated Sulfuric Acid Pickling Solutions and Its Inhibition by 3-Amino-5-mercapto-1,2,3-triazole. Int. J. Electrochem. Sci. 2015, 10, 1777–1791. [Google Scholar]
- Hrimla, M.; Bahsis, L.; Boutouil, A.; Laamari, M.R.; Julve, M.; Stiriba, S.-E. Corrosion inhibition performance of a structurally well-defined 1, 2, 3-triazole derivative on mild steel-hydrochloric acid interface. J. Mol. Struct. 2021, 1231, 129895. [Google Scholar] [CrossRef]
- Deng, Q.; He, X.P.; Shi, H.W.; Chen, B.Q.; Liu, G.; Tang, Y.; Chen, K. Concise CuI-Catalyzed Azide–Alkyne 1,3-Dipolar Cycloaddition Reaction Ligation Remarkably Enhances the Corrosion Inhibitive Potency of Natural Amino Acids for Mild Steel in HCl. Ind. Eng. Chem. Res. 2012, 51, 7160–7169. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Negrón-Silva, G.E.; González-Olvera, R.; Angeles-Beltrán, D.; Herrera-Hernández, H.; Romero-Romo, M.; Palomar-Pardavé, M. Mild steel corrosion inhibition in HCl by di-alkyl and di-1,2,3-triazole derivatives of uracil and thymine. Mater. Chem. Phys. 2014, 145, 407–417. [Google Scholar] [CrossRef]
- Syifa Insani, R.M.; Wahyuningrum, D.; Bundjali, B. The Synthesis of Ethyl-1-Benzyl-5-Methyl-1H-1,2,3-Triazoles-4-Carboxylate Using Microwave Assisted Organic Synthesis Method and Determination of its Corrosion Inhibition Activity on Carbon Steel. Adv. Mater. Res. 2015, 1112, 333–337. [Google Scholar] [CrossRef]
- Dhaif, H.K.; Jasim, E.Q.; Muhajjar, Z.A.; Shanta, A.A. Corrosion Inhibition of Mild-Steel in 0.5 M HCl using some prepared 1,2,3-Triazoles Derivatives. Mediterr. J. Chem. 2019, 9, 290–304. [Google Scholar] [CrossRef] [Green Version]
- Deng, Q.; Shi, H.W.; Ding, N.N.; Chen, B.-Q.; He, X.P.; Liu, G.; Chen, G.R. Novel triazolyl bis-amino acid derivatives readily synthesized via click chemistry as potential corrosion inhibitors for mild steel in HCl. Corros. Sci. 2012, 57, 220–227. [Google Scholar] [CrossRef]
- González-Olvera, R.; Espinoza-Vázquez, A.; Negrón-Silva, G.; Palomar-Pardavé, M.; Romero-Romo, M.; Santillan, R. Multicomponent Click Synthesis of New 1,2,3-Triazole Derivatives of Pyrimidine Nucleobases: Promising Acidic Corrosion Inhibitors for Steel. Molecules 2013, 18, 15064–15079. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.L.; He, X.P.; Deng, Q.; Long, Y.T.; Chen, G.R.; Chen, K. Research on the structure–surface adsorptive activity relationships of triazolyl glycolipid derivatives for mild steel in HCl. Carbohydr. Res. 2012, 354, 32–39. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.J.; Vergara-Arenas, B.I.; Lomas-Romero, L.; Angeles-Beltrán, D.; Negrón-Silva, G.E.; Morales-Serna, J.A. Synthesis of 1,2,3-triazoles in the presence of mixed Mg/Fe oxides and their evaluation as corrosion inhibitors of API 5L X70 steel submerged in HCl. RSC. Adv. 2017, 7, 24736–24746. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, H.; Alaoui, K.I.; Azzouzi, M.E.; Benhiba, F.; Hallaoui, A.E.; Rais, Z.; Zarrouk, A. Corrosion assessement of mild steel in acid environment using novel triazole derivative as an anti-corrosion agent: A combined experimental and quantum chemical study. Chem. Data. Collect. 2019, 24, 100302. [Google Scholar] [CrossRef]
- Negrón-Silva, G.; González-Olvera, R.; Angeles-Beltrán, D.; Maldonado-Carmona, N.; Espinoza-Vázquez, A.; Palomar-Pardavé, M.; Santillan, R. Synthesis of New 1,2,3-Triazole Derivatives of Uracil and Thymine with Potential Inhibitory Activity against Acidic Corrosion of Steels. Molecules 2013, 18, 4613–4627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Olvera, R.; Román-Rodríguez, V.; Negrón-Silva, G.; Espinoza-Vázquez, A.; Rodríguez-Gómez, F.; Santillan, R. Multicomponent Synthesis and Evaluation of New 1,2,3-Triazole Derivatives of Dihydropyrimidinones as Acidic Corrosion Inhibitors for Steel. Molecules 2016, 21, 250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negrón-Silva, G.; Cruz-Gonzalez, D.; González-Olvera, R.; Lomas-Romero, L.; Gutiérrez-Carrillo, A.; Palomar-Pardavé, M.; Romero-Romo, M.A.; Santillan, R.; Uruchurtu, J. One-Pot Three-Component Synthesis of New Mono- and Bis-1,2,3-triazole Derivatives of 2-Benzimidazolethiol with a Promising Inhibitory Activity against Acidic Corrosion of Steel. Synthesis 2014, 46, 1217–1223. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.J.; Martínez-Cruz, I.K.; Ángeles-Beltrán, D.; Negrón-Silva, G.E.; Palomar-Pardavé, M.; Navarrete-López, A.M. Adsorption and corrosion inhibition behaviour of new theophylline–triazole-based derivatives for steel in acidic medium. R. Soc. Open. Sci. 2019, 6, 181738. [Google Scholar] [CrossRef]
- Espinoza-Vázquez, A.; Rodríguez-Gómez, F.J.; González-Olvera, R.; Angeles-Beltrán, D.; Mendoza-Espinosa, D.; Negrón-Silva, G.E. Electrochemical assessment of phenol and triazoles derived from phenol (BPT) on API 5L X52 steel immersed in 1 M HCl. RSC Adv. 2016, 6, 72885–72896. [Google Scholar] [CrossRef]
- Sampath, S.; Vadivelu, M.; Ravindran, R.; Perumal, P.T.; Velkannan, V.; Karthikeyan, K. Synthesis of 1,2,3-Triazole Tethered 3-Hydroxy-2-oxindoles: Promising Corrosion Inhibitors for Steel in Acidic Medium and Their Anti-Microbial Evaluation. ChemistrySelect. 2020, 5, 2130–2134. [Google Scholar] [CrossRef]
- Resende, G.O.; Teixeira, S.F.; Figueiredo, I.F.; Godoy, A.A.; Lougon, D.J.F.; Cotrim, B.A.; Souza, F.C. Synthesis of 1,2,3-Triazole Derivatives and Its Evaluation as Corrosion Inhibitors for Carbon Steel. Int. J. Electrochem. 2019, 2019, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, C.M.; Alvarez, L.X.; dos Santos, N.E.; Maldonado Barrios, A.C.; Ponzio, E.A. Green synthesis of 1-benzyl-4-phenyl-1H-1,2,3-triazole, its application as corrosion inhibitor for mild steel in acidic medium and new approach of classical electrochemical analyses. Corros. Sci. 2019, 149, 185–194. [Google Scholar] [CrossRef]
- Elazhary, I.; Laamari, M.R.; Boutouil, A.; Bahsis, L.; El Haddad, M.; Anane, H.; Stiriba, S.-E. Comparative study of 1,2,3-triazole derivatives as corrosion inhibitors of mild steel in sulphuric acid solution. Anti-Corros. Method. Mater. 2019, 66, 544–555. [Google Scholar] [CrossRef]
- Boutouil, A.; Laamari, M.R.; Elazhary, I.; Bahsis, L.; Anane, H.; Stiriba, S.-E. Towardss a deeper understanding of the inhibition mechanism of a new 1,2,3-triazole derivative for mild steel corrosion in the hydrochloric acid solution using coupled experimental and theoretical methods. Mater. Chem. Phys. 2020, 241, 122420. [Google Scholar] [CrossRef]
- Petrunin, M.; Maksaeva, L.; Gladkikh, N.; Makarychev, Y.; Maleeva, M.; Yurasova, T.; Nazarov, A. Thin Benzotriazole Films for Inhibition of Carbon Steel Corrosion in Neutral Electrolytes. Coating 2020, 10, 362. [Google Scholar] [CrossRef] [Green Version]
- Temple, S.G. Recent Developments in Properties and Protection of Copper for Electrical Uses. Metallurg. Rev. 1966, 11, 47–60. [Google Scholar]
- Nam, N.D.; Thang, V.Q.; Hoai, N.T.; Hien, P.V. Yttrium 3-(4-nitrophenyl)-2-propenoate used as inhibitor against copper alloy corrosion in 0.1 M NaCl solution. Corros. Sci. 2016, 112, 451–461. [Google Scholar] [CrossRef]
- Fan, Y.H.; Li, C.Z.; Chen, Z.J.; Chen, H. Superhydrophobic Sol-Gel Films Based on Copper Wafer and its Anti-Corrosive Properties. Adv. Mater. Res. 2012, 557–559, 1777–1781. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Z.; Liu, W. Fabrication of superhydrophobic surfaces with perfluorooctanoic acid modified TiO2/polystyrene nanocomposites coating. Colloid. Surf. A-Physicochem. Eng. Asp. 2009, 341, 21–26. [Google Scholar] [CrossRef]
- Wei, Z.J.; Liu, W.L.; Xiao, C.L.; Tian, D.; Fan, Z.P.; Sun, X.L.; Wang, X.Q. Based on atom transfer radical polymerization method preparation of fluoropolymer superhydrophobic films. Thin. Solid. Films. 2010, 518, 6972–6976. [Google Scholar] [CrossRef]
- Wu, Y.C.; Zhang, P.; Pickering, H.W.; Allara, D.L. Effect of KI on Improving Copper Corrosion Inhibition Efficiency of Benzotriazole in Sulfuric Acid Electrolytes. J. Electrochem. Soc. 1993, 140, 10. [Google Scholar] [CrossRef]
- Zhou, G.D.; Shao, H.; Loo, B.H. A study of the copper electrode behavior in borax buffer solutions containing chloride ions and benzotriazole-type inhibitors by voltammetry and the photocurrent response method. J. Electroanal. Chem. 1997, 421, 129–135. [Google Scholar] [CrossRef]
- Sawoo, S.; Dutta, P.; Chakraborty, A.; Mukhopadhyay, R.; Bouyloussa, O.; Sarkar, A. A new bio-active surface for protein immobilisation via copper-free ‘click’ between azido SAM and alkynyl Fischer carbene complex. Chem. Commun. 2008, 45, 5957–5959. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Wang, P.; Wu, B.; Huang, N. Inhibition of copper corrosion by self-assembled monolayers of triazole derivative in chloride-containing solution. J. Solid. State. Electr. 2010, 14, 1391–1399. [Google Scholar] [CrossRef]
- Villamil, R.F.V.; Cordeiro, G.G.O.; Matos, J.; D’Elia, E.; Agostinho, S.M.L. Effect of sodium dodecylsulfate and benzotriazole on the interfacial behavior of Cu/Cu(II), H2SO4. Mater. Chem. Phys. 2003, 78, 448–452. [Google Scholar] [CrossRef]
- Bi, H.; Burstein, G.T.; Rodriguez, B.B.; Kawaley, G. Some aspects of the role of inhibitors in the corrosion of copper in tap water as observed by cyclic voltammetry. Corros. Sci. 2016, 102, 510–516. [Google Scholar] [CrossRef]
- Shi, C.; Wang, Y.; Yu, Y.; Li, J.; Zhang, D.; Gao, L. The role of cuprous ions on the click-assembled triazole films against copper corrosion. Corros. Sci. 2018, 145, 100–108. [Google Scholar] [CrossRef]
- Zhang, K.; Lu, J.; Li, J.; Zhang, D.; Gao, L.; Zhou, H. An improved approach to prepare triazole protective film by click-assembly on copper surface. Corros. Sci. 2019, 164, 108352. [Google Scholar] [CrossRef]
- Walsh, M.J.; Ahner, B.A. Determination of stability constants of Cu(I), Cd(II) & Zn(II) complexes with thiols using fluorescent probes. J. Inorg. Biochem. 2013, 128, 112–123. [Google Scholar]
- Walker, R. Triazole, Benzotriazole and Naphthotriazole as Corrosion Inhibitors for Copper. Corrosion 1975, 31, 97–100. [Google Scholar] [CrossRef]
- Nazeer, A.A.; Ashour, E.A.; Allam, N.K. Potential of 5-methyl 1-H benzotriazole to suppress the dissolution of α-aluminum bronze in sulfide-polluted salt water. Mater. Chem. Phys. 2014, 144, 55–65. [Google Scholar] [CrossRef]
- Marcelin, S.; Pébère, N. Synergistic effect between 8-hydroxyquinoline and benzotriazole for the corrosion protection of 2024 aluminium alloy: A local electrochemical impedance approach. Corros. Sci. 2015, 101, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Gong, Y.; Jing, C.; Huang, H.; Li, H.; Zhang, S.; Gao, F. Synthesis of dibenzotriazole derivatives bearing alkylene linkers as corrosion inhibitors for copper in sodium chloride solution: A new thought for the design of organic inhibitors. Corros. Sci. 2016, 113, 64–77. [Google Scholar] [CrossRef]
- Fayomi, O.S.I.; Anawe, P.A.L.; Daniyan, A. The Impact of Drugs as Corrosion Inhibitors on Aluminum Alloy in Coastal-Acidified Medium. Corros. Inhib. Princ. Recent Appl. 2018, 79–94. [Google Scholar]
- Fouda, A.S.; Abdallah, M.; Eissa, M. Corrosion inhibition of Aluminum in 1 M phosphoric acid solutions using some Chalcones derivatives and synergistic action with halide ions. Afr. J. Pure Appl. Chem. 2013, 7, 394–404. [Google Scholar]
- Lumley, R.N. Introduction to aluminium metallurgy. In Fundamentals of Aluminium Metallurgy; Woodhead Publishing: Sawston, UK, 2011; pp. 1–19. [Google Scholar]
- Hamadi, L.; Mansouri, S.; Oulmi, K.; Kareche, A. The use of amino acids as corrosion inhibitors for metals: A review. Egypt. J. Pet. 2018, 27, 1157–1165. [Google Scholar] [CrossRef]
- Armelin, E.; Whelan, R.; Martínez-Triana, Y.M.; Alemán, C.; Finn, M.G.; Díaz, D.D. Protective Coatings for Aluminum Alloy Based on Hyperbranched 1,4-Polytriazoles. ACS Appl. Mater. Interfaces 2017, 9, 4231–4243. [Google Scholar] [CrossRef]
- Xhanari, K.; Finšgar, M. Organic corrosion inhibitors for aluminum and its alloys in chloride and alkaline solutions: A review. Arab. J. Chem. 2019, 12, 4646–4663. [Google Scholar] [CrossRef]
- Zheludkevich, M.L.; Yasakau, K.A.; Poznyak, S.K.; Ferreira, M.G.S. Triazole and thiazole derivatives as corrosion inhibitors for AA2024 aluminium alloy. Corros. Sci. 2005, 47, 3368–3383. [Google Scholar] [CrossRef]
- Espinoza Vázquez, A.; González-Olvera, R.; Moreno Cerros, D.; Negrón Silva, G.E.; Figueroa, I.A.; Rodríguez Gómez, F.J.; Huerta, L. Inhibition of acid corrosion in API 5L X52 steel with 1,2,3-triazole derivatized from benzyl alcohol: Experimental and theoretical studies. J. Mol. Struct. 2021, 1242, 130731. [Google Scholar] [CrossRef]
- DeSimone, M.P.; Grundmeier, G.; Gordillo, G.; Simison, S.N. Amphiphilic amido-amine as an effective corrosion inhibitor for mild steel exposed to CO2 saturated solution: Polarization, EIS and PM-IRRAS studies. Electrochim. Acta 2011, 56, 2990–2998. [Google Scholar] [CrossRef]
- Li, X.; Deng, S.; Fu, H.; Li, T. Adsorption and inhibition effect of 6-benzyl aminopurine on cold rolled steel in 1.0 M HCl. Electrochim. Acta 2009, 54, 4089–4098. [Google Scholar] [CrossRef]
- Şahin, M.; Bilgiç, S.; Yılmaz, H. The inhibition effects of some cyclic nitrogen compounds on the corrosion of the steel in NaCl mediums. Appl. Surf. Sci. 2002, 195, 1–7. [Google Scholar] [CrossRef]
- Verma, C.B.; Quraishi, M.A.; Singh, A. 2-Aminobenzene-1,3-dicarbonitriles as green corrosion inhibitor for mild steel in 1 M HCl: Electrochemical, thermodynamic, surface and quantum chemical investigation. J. Taiwan Inst. Chem. Eng. 2015, 49, 229–239. [Google Scholar] [CrossRef]
- Keleş, H.; Keleş, M.; Dehri, İ.; Serindağ, O. The inhibitive effect of 6-amino-m-cresol and its Schiff base on the corrosion of mild steel in 0.5M HCI medium. Mater. Chem. Phys. 2008, 112, 173–179. [Google Scholar] [CrossRef]
- Deng, S.; Li, X.; Xie, X. Hydroxymethyl urea and 1,3-bis(hydroxymethyl) urea as corrosion inhibitors for steel in HCl solution. Corros. Sci. 2014, 80, 276–289. [Google Scholar] [CrossRef]
- Verma, C.; Quraishi, M.A.; Singh, A. A thermodynamical, electrochemical, theoretical and surface investigation of diheteroaryl thioethers as effective corrosion inhibitors for mild steel in 1 M HCl. J. Taiwan Inst. Chem. Eng. 2016, 58, 127–140. [Google Scholar] [CrossRef]
Enter | Inhibitor Name | Abb/Symbol | Molecular Structure | Material/Corrosive Medium | T/K | Inhibitor Concentration (ppm) | IE (%) a | Refs. |
---|---|---|---|---|---|---|---|---|
1 | 1-(Benzyl)-1H-4,5-dibenzoyl-1,2,3-triazole | BDBT | MS/1% HCl | 298 | 10–50 | 57.42–90.65 | [82,83] | |
2 | 1,2,3-triazole | TA | MS/0.05 M H2SO4 | 353 | 4.2 b | 67 | [84] | |
3 | Triazol-dicarbonic acid | TDA | MS/0.05 M H2SO4 | 353 | 0.1 b | 58 | [84] | |
4 | Butyl ether of triazol-dicarbonic acid | BEA | MS/0.05 M H2SO4 | 353 | 0.1 b | 46 | [84] | |
5 | N-(1H-benzotriazol-1-ylmethyl)-formamide | FMB | MS/1 M HCl | 298 | 17.6–1760 | 59.5–85.5 | [85] | |
6 | N-(1H-benzotriazol-1-ylmethyl)-formamide | FMB | MS/1 M HClO4 | 298 | 17.6–1760 | 62.5–76.8 | [85] | |
7 | 1H-Benzo-triazole-1-methanol | HBT | MS/1 M HCl | 298 | 14.9–1490 | 55.1–82.2 | [85] | |
8 | 1H-Benzo-triazole-1-methanol | HBT | MS/1 M HClO4 | 298 | 14.9–1490 | 33.7–67.6 | [85] | |
9 | 3-Amino-5-mercapto-1,2,3-triazole | AMTA | MS/0.05 M H2SO4 | 298 | 116–580 | 49.38–62.95 | [86] | |
10 | 4-[1-(4-Methoxy-phenyl)-1H-[1,2,3]triazol-4-ylmethyl]-morpholine | MPTM | MS/1 M HCl | 298 | 300–900 | 84.06–94 | [87] | |
11 | 2-Amino-3-{1-[2-(4-hydroxy-phenyl)-1-methoxycarbonyl-ethyl]-1H-[1,2,3]triazol-4-ylmethoxy}-propionic acid benzyl ester | n.g. | MS/1 M HCl | 298 | 4.54–454 | 73.1–91.8 | [88] | |
12 | 1,3-Bis[(1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl]pyrimidine- 2,4(1H,3H)-dione | B-X-BTMPD | API 5L X52 steel/1 M HCl | 298 | 5–200 | 96–98 | [89] | |
13 | 1,3-Bis((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methyl)-5-methylpyrimidine-2,4(1H,3H)-dione | B-X-BTMMPD | API 5L X52 steel/1 M HCl | 298 | 5–200 | 71–96 | [89] | |
14 | Ethyl-1-benzyl-5-methyl-1H-1,2,3-triazole-4-carboxylate | n.g. | CS/1wt% NaCl | 318 | 70 | 89.4 | [90] | |
15 | 1,1’-(4,4’-Sulfonyl bis(4,1phenylene)) bis (1H-1,2,3-triazole-4,5-di carboxylic acid) | T1 | MS/0.5 M HCl | 298 | 52.8 | 75.5 | [91] | |
16 | Dimethyl-1-(4-sulfamoyl-phenyl) -1H-1,2,3-triazole-4,5-dicarboxylate | T6 | MS/0.5 M HCl | 298 | 34 | 79 | [91] | |
17 | 2-[4-(2-Amino-2-benzyloxycarbonyl-ethoxymethyl)-[1,2,3]triazol-1-yl]-3-phenyl-propionic acid methyl ester | n.g. | MS/1 M HCl | 298 | 4.38–438 | 77.7–89.5 | [92] | |
18 | 1-((1-4-Bromobenzyl-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4(1H,3H)-dione | n.g. | API 5L X52 steel/1 M HCl | 298 | 25 | 96.1 | [93] | |
19 | 4-{4-[(4-n-Dodecyloxy-methyl-1H-1,2,3-tria-zol-1-yl)β-D-glucopyranosd-6-yloxy]methyl-1H-1,2,3-triazol-1-yl} benzenesulfonamide | n.g. | MS/1 M HCl | 298 | 665 | 87.3 | [94] | |
20 | 1-Benzyl-4-(2-methoxyphenyl)-1H-1,2,3-triazole | n.g | API 5L X70 steel/1 M HCl | 293 | 50 | 96.8 | [95] | |
21 | 4,5-Diethyl1-[(4-ethyl-2-phenyl-4,5-dihydro-1,3-oxazol-4-yl)methyl]-4,5-dihydro-1H-1,2,3-triazole-4,5-dicarboxylate | OxTDC | MS/1 M HCl | 298 | 0.4–400 | 53.8–92.5 | [96] | |
22 | 1,3-Bis((1-benzyl-1H-1,2,3-triazol-4-yl)methyl)pyrimidine-2,4-(1H,3H)-dione | n.g. | API 5L X52 steel/1 M HCl | 298 | 25 | 90 | [97] | |
23 | Ethyl 4-(4-((1-(4-chlorobenzyl)-1H-1,2,3-triazol-4-yl)methoxy)phenyl)-6-methyl-2oxo-1,2,3,4- tetrahydro-pyrimidine-5-carboxylate | n.g. | API 5L X52 steel/1 M HCl | 298 | 10 | 95.9 | [98] | |
24 | 1-[(1-Benzyl-1H-1,2,3-triazol-4-yl)methyl]-2-[(1-benzyl-1H-1,2,3-triazol-4-yl)methylthio]-1H-benzimidazole | n.g. | API 5L X52 steel/1 M HCl | 298 | 30 | 98 | [99] | |
25 | 2-{[1-(4-Fluorobenzyl)-1H-1,2,3-triazol-4-yl] methylthio}-1H-benzimidazole | n.g. | API 5L X52 steel/1 M HCl | 298 | 30 | 96 | [99] | |
26 | 7-((1-(4-Bromobenzyl)-1H-1,2,3-triazol-4-yl) methyl)-1,3-dimethyl-3,7-dihydro-1H-pu-rine-2,6-dione | n.g. | API 5L X52 steel/1 M HCl | 293 | 5–50 | 79.9–91.8 | [100] | |
27 | 1-(4-Iodobenzyl)-4-phenoxymethyl-1H-1,2,3-triazole | BPTI | API 5L X52 steel/1 M HCl | 298 | 5–100 | 85.2–96.1 | [101] | |
28 | 1-(Pyridin-4-ylmethyl)-1H-1,2,3-triazole-4-yl)methanol | BTM | MS/1 M HCl | 298 | 38–190 | 84.2–90.2 | [9] | |
29 | 1-Benzyl-1H-1,2,3-triazole-4-yl)methanol | PTM | MS/1 M HCl | 298 | 37.8–189 | 52.0–89.3 | [9] | |
30 | 1-(1-Benzyl-1H-[1,2,3] triazol-4ylmethyl)-3-hydroxy-5-methyl-3-(2-oxo-2-phenyl–ethyl)-1,3-dihydro-indol-2-one | n.g. | MS/1 M HCl | 298 | 452 | 73.7 | [102] | |
31 | 1-(1-(4-Aminophenyl)-5-methyl-1H-1,2,3-triazol-4-yl)ethanol | n.g. | CS/1 M HCl | 298 | 250–1000 | 94–98 | [103] | |
32 | 1-Benzyl-4-phenyl-1H-1,2,3-triazole | BPT | CS/1 M HCl | 298 | 9.4–500.55 | 52.9–81.8 | [104] | |
33 | [3-(4-Phenyl-[1,2,3]triazol-1-yl)-propyl]-phosphonic acid diethyl ester | PTP | CS/1 M HCl | 298 | 32.3–323 | 78.4–90.3 | [61] | |
34 | [3-[4-(4-Dimethylamino-phenyl)-[1,2,3]triazol-1-yl]-propyl-phosphonic acid diethyl ester | DMPTP | CS/1 M HCl | 298 | 36.6–366 | 80.1–93.0 | [61] | |
35 | Methyl 2-(benzanido)-2-(4-phenyl-1H-1, 2, 3-triazol-1-yl) acetate | MBPTA | CS/1 M H2SO4 | 298 | 32.1–160.5 | 66.95–88.51 | [105] | |
36 | Ethyl 2-(benzamido)-2-(4-p-tolyl-1H-1, 2, 3-triazol-1-yl) acetate | MBTTA | CS/1 M H2SO4 | 298 | 33.5–167.5 | 82.2–92.59 | [105] | |
37 | 1-p-Tolyl-1H-1,2,3-triazol-4-yl) methanol | TTM | CS/1 M HCl | 298 | 18.9–189 | 58–81.02 | [106] |
Enter | Inhibitor Name | Abb./Symbol | Molecular Structure | Metal/Corrosive Medium | T/K | Inhibitor Concentration (ppm) | IE (%) a | Refs. |
---|---|---|---|---|---|---|---|---|
1 | Benzotriazole | BTAH | Copper/CH3COOH | 298 | 119–1000 | 94–99 | [117,118,122] | |
2 | 2-[1-(Toluene-4-sulfonyl)-1H-[1,2,3]triazol-4-yl]-propan-2-ol | TTP | Copper/3wt% NaCl | 298 | 281 | 93.8 | [34,110] | |
3 | 2-(1-Tosyl-1H-1,2,3-triazol-4-yl)-ethanol | TTE | Copper/3wt% NaCl | 298 | 53.4–213.8 | 82.4–89.4 | [10] | |
4 | Tolyltriazole | TTA | pure Al/ 1 M HCl (pH = 0.5) | 288 | 3180 | 40 | [12] | |
Al-8%Si-3%Cu/1 M HCl (pH = 0.5) | 288 | 318–3180 | 94–96 | |||||
Al-8%Si-3%Cu/1 M NaCl (pH = 6) | 288 | 91–94 | ||||||
Al-4%Cu/1 M HCl (pH = 0.5) | 288 | 73–82 | ||||||
Al-4%Cu/1 M NaCl (pH = 6) | 288 | 90–94 | ||||||
Al-12%Cu/1 M HCl (pH = 0.5) | 288 | 81–87 | ||||||
Al-12%Cu/1 M NaCl (pH = 6) | 288 | 87–89 | ||||||
Al-22%Cu-4%Fe/1 M HCl (pH = 0.5) | 288 | 86–92 | ||||||
Al-22%Cu-4%Fe/1 M NaCl (pH = 6) | 288 | 89–91 | ||||||
5 | 5-Methyl-1H-benzotriazole | MBT | Al-bronze/3.5% NaCl | 298 | 0.665-66.5 | 32.3–94.2 | [123] | |
6 | Benzotriazole | BTZ | AA 2024-T3/3.5% NaCl | 298 | 0.595 | n.d. | [34] | |
7 | Benzotriazole | BTA | AA 2024/0.1 M Na2SO4 + 0.05 M NaCl | 293 | 1.19 | n.d. | [124] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hrimla, M.; Bahsis, L.; Laamari, M.R.; Julve, M.; Stiriba, S.-E. An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces. Int. J. Mol. Sci. 2022, 23, 16. https://doi.org/10.3390/ijms23010016
Hrimla M, Bahsis L, Laamari MR, Julve M, Stiriba S-E. An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces. International Journal of Molecular Sciences. 2022; 23(1):16. https://doi.org/10.3390/ijms23010016
Chicago/Turabian StyleHrimla, Meryem, Lahoucine Bahsis, My Rachid Laamari, Miguel Julve, and Salah-Eddine Stiriba. 2022. "An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces" International Journal of Molecular Sciences 23, no. 1: 16. https://doi.org/10.3390/ijms23010016
APA StyleHrimla, M., Bahsis, L., Laamari, M. R., Julve, M., & Stiriba, S. -E. (2022). An Overview on the Performance of 1,2,3-Triazole Derivatives as Corrosion Inhibitors for Metal Surfaces. International Journal of Molecular Sciences, 23(1), 16. https://doi.org/10.3390/ijms23010016