High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation
Abstract
:1. Introduction
2. Results
2.1. Patients with Lung Cancer Displaying High Stau1 Expression Have Longer Recurrence Free Survival Probability
2.2. Stau1 Depletion Does Not Impair Cell Proliferation
2.3. Stau1 Depletion Enhances Cell Migration of H460 Cells
2.4. Stau1 Knock-Down Inhibits Compact Tumor Spheroid Formation but Has No Effect on Anchorage-Independent Cell Growth
2.5. Stau1 Depletion Favors Tumor Progression and Metastasis Development
2.6. Stau1 Depletion Impairs Tumor Vessels Maturation In Vivo
2.7. Stau1 Depletion Impairs Expression of Genes Involved in Cell Adhesion
2.8. The THBS1 mRNA 3′UTR Contains an Intramolecular Hairpin Structure That Recruits Stau1
2.9. THBS1 Is a Target of the Stau1 mRNA-Mediated Decay
3. Discussion
3.1. Levels of Stau1 Influence Tumor-Related Phenotypes of H460 Cancer Cells In Vitro
3.2. Stau1 Favors the Maturation of Efficient Blood Vessels
3.3. Stau1 Controls a Novel RNA Regulon Involving the THBS1 mRNA
4. Material and Method
4.1. Database Retrieval
4.2. Western Blot Analysis and Antibodies
4.3. Human Tissue Samples and Protein Extracts
4.4. Cell Culture
4.5. Generation of Stable Stau1-KD Cell Lines
4.6. siRNA and DNA Transfections
4.7. Plasmids and Cloning Strategies
4.8. Total mRNA Extracts Purification, RT-qPCR and RT-ddPCR Analysis
4.9. RNA Immunoprecipitation and RNA Chromatography Assays
4.10. Analysis of THBS1 mRNA Half-Life and Stability upon Stau1 Expression
4.11. Luciferase Reporter Assays
4.12. Migration, Invasion and Proliferation Assays
4.13. Soft Agar Assay for Anchorage-Independent Growth and Spheroid Formation Assays
4.14. In Vivo Metastasis Assays
4.15. Flow-Cytometry Analysis
4.16. Epifluorescence Microscopy and Immunohistochemistry
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Nostrand, E.L.; Pratt, G.A.; Yee, B.A.; Wheeler, E.C.; Blue, S.M.; Mueller, J.; Park, S.S.; Garcia, K.E.; Gelboin-Burkhart, C.; Nguyen, T.B.; et al. Principles of RNA Processing from Analysis of Enhanced CLIP Maps for 150 RNA Binding Proteins. Genome Biol. 2020, 21, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keene, J.D. RNA Regulons: Coordination of Post-Transcriptional Events. Nat. Rev. Genet. 2007, 8, 533–543. [Google Scholar] [CrossRef]
- Sternburg, E.L.; Karginov, F.V. Global Approaches in Studying RNA-Binding Protein Interaction Networks. Trends Biochem. Sci. 2020, 45, 593–603. [Google Scholar] [CrossRef] [PubMed]
- Hong, S. RNA Binding Protein as an Emerging Therapeutic Target for Cancer Prevention and Treatment. J. Cancer Prev. 2017, 22, 203–210. [Google Scholar] [CrossRef] [Green Version]
- Moore, S.; Järvelin, A.I.; Davis, I.; Bond, G.L.; Castello, A. Expanding Horizons: New Roles for Non-Canonical RNA-Binding Proteins in Cancer. Curr. Opin. Genet. Dev. 2018, 48, 112–120. [Google Scholar] [CrossRef]
- Pereira, B.; Billaud, M.; Almeida, R. RNA-Binding Proteins in Cancer: Old Players and New Actors. Trends Cancer 2017, 3, 506–528. [Google Scholar] [CrossRef] [PubMed]
- Bonnet-Magnaval, F.; DesGroseillers, L. The Staufen1-Dependent Cell Cycle Regulon or How a Misregulated RNA-Binding Protein Leads to Cancer. Biol. Rev. Camb. Philos. Soc. 2021, 96, 2192–2208. [Google Scholar] [CrossRef]
- Dugré-Brisson, S.; Elvira, G.; Boulay, K.; Chatel-Chaix, L.; Mouland, A.J.; DesGroseillers, L. Interaction of Staufen1 with the 5’ End of MRNA Facilitates Translation of These RNAs. Nucleic Acids Res. 2005, 33, 4797–4812. [Google Scholar] [CrossRef] [Green Version]
- Ricci, E.P.; Kucukural, A.; Cenik, C.; Mercier, B.C.; Singh, G.; Heyer, E.E.; Ashar-Patel, A.; Peng, L.; Moore, M.J. Staufen1 Senses Overall Transcript Secondary Structure to Regulate Translation. Nat. Struct. Mol. Biol. 2014, 21, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Sugimoto, Y.; Vigilante, A.; Darbo, E.; Zirra, A.; Militti, C.; D’Ambrogio, A.; Luscombe, N.M.; Ule, J. HiCLIP Reveals the in Vivo Atlas of MRNA Secondary Structures Recognized by Staufen 1. Nature 2015, 519, 491–494. [Google Scholar] [CrossRef] [Green Version]
- Jeong, K.; Ryu, I.; Park, J.; Hwang, H.J.; Ha, H.; Park, Y.; Oh, S.T.; Kim, Y.K. Staufen1 and UPF1 Exert Opposite Actions on the Replacement of the Nuclear Cap-Binding Complex by EIF4E at the 5’ End of MRNAs. Nucleic Acids Res. 2019, 47, 9313–9328. [Google Scholar] [CrossRef] [Green Version]
- Marión, R.M.; Fortes, P.; Beloso, A.; Dotti, C.; Ortín, J. A Human Sequence Homologue of Staufen Is an RNA-Binding Protein That Is Associated with Polysomes and Localizes to the Rough Endoplasmic Reticulum. Mol. Cell Biol. 1999, 19, 2212–2219. [Google Scholar] [CrossRef] [Green Version]
- Kanai, Y.; Dohmae, N.; Hirokawa, N. Kinesin Transports RNA: Isolation and Characterization of an RNA-Transporting Granule. Neuron 2004, 43, 513–525. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Carbente, M.D.R.; Desgroseillers, L. Understanding the Importance of MRNA Transport in Memory. Prog. Brain Res. 2008, 169, 41–58. [Google Scholar] [CrossRef]
- Ravel-Chapuis, A.; Bélanger, G.; Yadava, R.S.; Mahadevan, M.S.; DesGroseillers, L.; Côté, J.; Jasmin, B.J. The RNA-Binding Protein Staufen1 Is Increased in DM1 Skeletal Muscle and Promotes Alternative Pre-MRNA Splicing. J. Cell Biol. 2012, 196, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Elbarbary, R.A.; Li, W.; Tian, B.; Maquat, L.E. STAU1 Binding 3’ UTR IRAlus Complements Nuclear Retention to Protect Cells from PKR-Mediated Translational Shutdown. Genes Dev. 2013, 27, 1495–1510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.K.; Furic, L.; Desgroseillers, L.; Maquat, L.E. Mammalian Staufen1 Recruits Upf1 to Specific MRNA 3’UTRs so as to Elicit MRNA Decay. Cell 2005, 120, 195–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duchaîne, T.; Wang, H.J.; Luo, M.; Steinberg, S.V.; Nabi, I.R.; DesGroseillers, L. A Novel Murine Staufen Isoform Modulates the RNA Content of Staufen Complexes. Mol. Cell Biol. 2000, 20, 5592–5601. [Google Scholar] [CrossRef] [Green Version]
- Monshausen, M.; Putz, U.; Rehbein, M.; Schweizer, M.; DesGroseillers, L.; Kuhl, D.; Richter, D.; Kindler, S. Two Rat Brain Staufen Isoforms Differentially Bind RNA. J. Neurochem. 2001, 76, 155–165. [Google Scholar] [CrossRef]
- Wickham, L.; Duchaîne, T.; Luo, M.; Nabi, I.R.; DesGroseillers, L. Mammalian Staufen Is a Double-Stranded-RNA- and Tubulin-Binding Protein Which Localizes to the Rough Endoplasmic Reticulum. Mol. Cell Biol. 1999, 19, 2220–2230. [Google Scholar] [CrossRef] [Green Version]
- Boulay, K.; Ghram, M.; Viranaicken, W.; Trépanier, V.; Mollet, S.; Fréchina, C.; DesGroseillers, L. Cell Cycle-Dependent Regulation of the RNA-Binding Protein Staufen1. Nucleic Acids Res. 2014, 42, 7867–7883. [Google Scholar] [CrossRef] [Green Version]
- Ghram, M.; Bonnet-Magnaval, F.; Hotea, D.I.; Doran, B.; Ly, S.; DesGroseillers, L. Staufen1 Is Essential for Cell-Cycle Transitions and Cell Proliferation Via the Control of E2F1 Expression. J. Mol. Biol. 2020, 432, 3881–3897. [Google Scholar] [CrossRef]
- Nourreddine, S.; Lavoie, G.; Paradis, J.; Ben el Kadhi, K.; Méant, A.; Aubert, L.; Grondin, B.; Gendron, P.; Chabot, B.; Bouvier, M.; et al. NF45 and NF90 Regulate Mitotic Gene Expression by Competing with Staufen-Mediated MRNA Decay. Cell Rep. 2020, 31, 107660. [Google Scholar] [CrossRef]
- Allison, R.; Czaplinski, K.; Git, A.; Adegbenro, E.; Stennard, F.; Houliston, E.; Standart, N. Two Distinct Staufen Isoforms in Xenopus Are Vegetally Localized during Oogenesis. RNA 2004, 10, 1751–1763. [Google Scholar] [CrossRef] [Green Version]
- Bateman, M.J.; Cornell, R.; d’Alencon, C.; Sandra, A. Expression of the Zebrafish Staufen Gene in the Embryo and Adult. Gene Expr. Patterns 2004, 5, 273–278. [Google Scholar] [CrossRef]
- Brevini, T.A.L.; Cillo, F.; Antonini, S.; Gandolfi, F. Cytoplasmic Remodelling and the Acquisition of Developmental Competence in Pig Oocytes. Anim. Reprod. Sci. 2007, 98, 23–38. [Google Scholar] [CrossRef]
- Calder, M.D.; Madan, P.; Watson, A.J. Bovine Oocytes and Early Embryos Express Staufen and ELAVL RNA-Binding Proteins. Zygote 2008, 16, 161–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramasamy, S.; Wang, H.; Quach, H.N.B.; Sampath, K. Zebrafish Staufen1 and Staufen2 Are Required for the Survival and Migration of Primordial Germ Cells. Dev. Biol. 2006, 292, 393–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, C.; Kim, Y.K.; Woeller, C.F.; Tang, Y.; Maquat, L.E. SMD and NMD Are Competitive Pathways That Contribute to Myogenesis: Effects on PAX3 and Myogenin MRNAs. Genes Dev. 2009, 23, 54–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gandelman, M.; Dansithong, W.; Figureueroa, K.P.; Paul, S.; Scoles, D.R.; Pulst, S.M. Staufen 1 Amplifies Proapoptotic Activation of the Unfolded Protein Response. Cell Death Differ. 2020, 27, 2942–2951. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, M.; Shiromoto, Y.; Ota, H.; Song, C.; Kossenkov, A.V.; Wickramasinghe, J.; Showe, L.C.; Skordalakes, E.; Tang, H.-Y.; Speicher, D.W.; et al. ADAR1 Controls Apoptosis of Stressed Cells by Inhibiting Staufen1-Mediated MRNA Decay. Nat. Struct. Mol. Biol. 2017, 24, 534–543. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.-P.; Liu, X.-X.; Xia, R.; Yin, L.; Kong, R.; Chen, W.-M.; Huang, M.-D.; Shu, Y.-Q. SP1-Induced Upregulation of the Long Noncoding RNA TINCR Regulates Cell Proliferation and Apoptosis by Affecting KLF2 MRNA Stability in Gastric Cancer. Oncogene 2015, 34, 5648–5661. [Google Scholar] [CrossRef] [PubMed]
- Ravel-Chapuis, A.; Klein Gunnewiek, A.; Bélanger, G.; Crawford Parks, T.E.; Côté, J.; Jasmin, B.J. Staufen1 Impairs Stress Granule Formation in Skeletal Muscle Cells from Myotonic Dystrophy Type 1 Patients. Mol. Biol. Cell 2016, 27, 1728–1739. [Google Scholar] [CrossRef]
- Shaked, Y.; Bertolini, F.; Man, S.; Rogers, M.S.; Cervi, D.; Foutz, T.; Rawn, K.; Voskas, D.; Dumont, D.J.; Ben-David, Y.; et al. Genetic Heterogeneity of the Vasculogenic Phenotype Parallels Angiogenesis; Implications for Cellular Surrogate Marker Analysis of Antiangiogenesis. Cancer Cell 2005, 7, 101–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, M.G.; Martinez Tosar, L.J.; Desbats, M.A.; Leishman, C.C.; Boccaccio, G.L. Mammalian Staufen 1 Is Recruited to Stress Granules and Impairs Their Assembly. J. Cell Sci. 2009, 122, 563–573. [Google Scholar] [CrossRef] [Green Version]
- Lebeau, G.; Maher-Laporte, M.; Topolnik, L.; Laurent, C.E.; Sossin, W.; Desgroseillers, L.; Lacaille, J.-C. Staufen1 Regulation of Protein Synthesis-Dependent Long-Term Potentiation and Synaptic Function in Hippocampal Pyramidal Cells. Mol. Cell Biol. 2008, 28, 2896–2907. [Google Scholar] [CrossRef] [Green Version]
- Vessey, J.P.; Macchi, P.; Stein, J.M.; Mikl, M.; Hawker, K.N.; Vogelsang, P.; Wieczorek, K.; Vendra, G.; Riefler, J.; Tübing, F.; et al. A Loss of Function Allele for Murine Staufen1 Leads to Impairment of Dendritic Staufen1-RNP Delivery and Dendritic Spine Morphogenesis. Proc. Natl. Acad. Sci. USA 2008, 105, 16374–16379. [Google Scholar] [CrossRef] [Green Version]
- Abrahamyan, L.G.; Chatel-Chaix, L.; Ajamian, L.; Milev, M.P.; Monette, A.; Clément, J.-F.; Song, R.; Lehmann, M.; DesGroseillers, L.; Laughrea, M.; et al. Novel Staufen1 Ribonucleoproteins Prevent Formation of Stress Granules but Favour Encapsidation of HIV-1 Genomic RNA. J. Cell Sci. 2010, 123, 369–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blackham, S.L.; McGarvey, M.J. A Host Cell RNA-Binding Protein, Staufen1, Has a Role in Hepatitis C Virus Replication before Virus Assembly. J. Gen. Virol. 2013, 94, 2429–2436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chatel-Chaix, L.; Boulay, K.; Mouland, A.J.; Desgroseillers, L. The Host Protein Staufen1 Interacts with the Pr55Gag Zinc Fingers and Regulates HIV-1 Assembly via Its N-Terminus. Retrovirology 2008, 5, 41. [Google Scholar] [CrossRef] [Green Version]
- Chatel-Chaix, L.; Clément, J.-F.; Martel, C.; Bériault, V.; Gatignol, A.; DesGroseillers, L.; Mouland, A.J. Identification of Staufen in the Human Immunodeficiency Virus Type 1 Gag Ribonucleoprotein Complex and a Role in Generating Infectious Viral Particles. Mol. Cell Biol. 2004, 24, 2637–2648. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Lucas, S.; Peredo, J.; Marión, R.M.; Sánchez, C.; Ortín, J. Human Staufen1 Protein Interacts with Influenza Virus Ribonucleoproteins and Is Required for Efficient Virus Multiplication. J. Virol. 2010, 84, 7603–7612. [Google Scholar] [CrossRef] [Green Version]
- Dixit, U.; Pandey, A.K.; Mishra, P.; Sengupta, A.; Pandey, V.N. Staufen1 Promotes HCV Replication by Inhibiting Protein Kinase R and Transporting Viral RNA to the Site of Translation and Replication in the Cells. Nucleic Acids Res. 2016, 44, 5271–5287. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Pietzsch, C.; Ramanathan, P.; Santos, R.I.; Ilinykh, P.A.; Garcia-Blanco, M.A.; Bukreyev, A.; Bradrick, S.S. Staufen1 Interacts with Multiple Components of the Ebola Virus Ribonucleoprotein and Enhances Viral RNA Synthesis. mBio 2018, 9, e01771-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravel-Chapuis, A.; Crawford, T.E.; Blais-Crépeau, M.-L.; Bélanger, G.; Richer, C.T.; Jasmin, B.J. The RNA-Binding Protein Staufen1 Impairs Myogenic Differentiation via a c-Myc-Dependent Mechanism. Mol. Biol. Cell 2014, 25, 3765–3778. [Google Scholar] [CrossRef] [Green Version]
- de Morrée, A.; van Velthoven, C.T.J.; Gan, Q.; Salvi, J.S.; Klein, J.D.D.; Akimenko, I.; Quarta, M.; Biressi, S.; Rando, T.A. Staufen1 Inhibits MyoD Translation to Actively Maintain Muscle Stem Cell Quiescence. Proc. Natl. Acad. Sci. USA 2017, 114, E8996–E9005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.; Kim, K.M.; Han, S.; Choe, J.; Park, S.G.; Choi, S.S.; Kim, Y.K. Staufen1-Mediated MRNA Decay Functions in Adipogenesis. Mol. Cell 2012, 46, 495–506. [Google Scholar] [CrossRef] [Green Version]
- Gong, C.; Tang, Y.; Maquat, L.E. MRNA-MRNA Duplexes That Autoelicit Staufen1-Mediated MRNA Decay. Nat. Struct. Mol. Biol. 2013, 20, 1214–1220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, Y.K.; Furic, L.; Parisien, M.; Major, F.; DesGroseillers, L.; Maquat, L.E. Staufen1 Regulates Diverse Classes of Mammalian Transcripts. EMBO J. 2007, 26, 2670–2681. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Gleghorn, M.L.; Maquat, L.E. Staufen2 Functions in Staufen1-Mediated MRNA Decay by Binding to Itself and Its Paralog and Promoting UPF1 Helicase but Not ATPase Activity. Proc. Natl. Acad. Sci. USA 2013, 110, 405–412. [Google Scholar] [CrossRef] [Green Version]
- Park, E.; Maquat, L.E. Staufen-Mediated MRNA Decay. Wiley Interdiscip. Rev. RNA 2013, 4, 423–435. [Google Scholar] [CrossRef] [Green Version]
- Su, R.; Ma, J.; Zheng, J.; Liu, X.; Liu, Y.; Ruan, X.; Shen, S.; Yang, C.; Wang, D.; Cai, H.; et al. PABPC1-Induced Stabilization of BDNF-AS Inhibits Malignant Progression of Glioblastoma Cells through STAU1-Mediated Decay. Cell Death Dis. 2020, 11, 81. [Google Scholar] [CrossRef]
- Yamaguchi, Y.; Oohinata, R.; Naiki, T.; Irie, K. Stau1 Negatively Regulates Myogenic Differentiation in C2C12 Cells. Genes Cells 2008, 13, 583–592. [Google Scholar] [CrossRef]
- Gowravaram, M.; Schwarz, J.; Khilji, S.K.; Urlaub, H.; Chakrabarti, S. Insights into the Assembly and Architecture of a Staufen-Mediated MRNA Decay (SMD)-Competent MRNP. Nat. Commun. 2019, 10, 5054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damas, N.D.; Marcatti, M.; Côme, C.; Christensen, L.L.; Nielsen, M.M.; Baumgartner, R.; Gylling, H.M.; Maglieri, G.; Rundsten, C.F.; Seemann, S.E.; et al. SNHG5 Promotes Colorectal Cancer Cell Survival by Counteracting STAU1-Mediated MRNA Destabilization. Nat. Commun. 2016, 7, 13875. [Google Scholar] [CrossRef]
- Bell, L.A.; Ryan, K.M. Life and Death Decisions by E2F-1. Cell Death Differ. 2004, 11, 137–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.-Z.; Tsai, S.-Y.; Leone, G. Emerging Roles of E2Fs in Cancer: An Exit from Cell Cycle Control. Nat. Rev. Cancer 2009, 9, 785–797. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmrich, S.; Pützer, B.M. Checks and Balances: E2F-MicroRNA Crosstalk in Cancer Control. Cell Cycle 2010, 9, 2555–2567. [Google Scholar] [CrossRef]
- García-Martínez, A.; López-Muñoz, B.; Fajardo, C.; Cámara, R.; Lamas, C.; Silva-Ortega, S.; Aranda, I.; Picó, A. Increased E2F1 MRNA and MiR-17-5p Expression Is Correlated to Invasiveness and Proliferation of Pituitary Neuroendocrine Tumours. Diagnostics 2020, 10, 227. [Google Scholar] [CrossRef] [Green Version]
- Hallstrom, T.C.; Nevins, J.R. Balancing the Decision of Cell Proliferation and Cell Fate. Cell Cycle 2009, 8, 532–535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knoll, S.; Emmrich, S.; Pützer, B.M. The E2F1-MiRNA Cancer Progression Network. Adv. Exp. Med. Biol. 2013, 774, 135–147. [Google Scholar] [CrossRef]
- Zhang, X.; Ni, Z.; Duan, Z.; Xin, Z.; Wang, H.; Tan, J.; Wang, G.; Li, F. Overexpression of E2F MRNAs Associated with Gastric Cancer Progression Identified by the Transcription Factor and MiRNA Co-Regulatory Network Analysis. PLoS ONE 2015, 10, e0116979. [Google Scholar] [CrossRef]
- Alexandrow, M.G.; Moses, H.L. C-Myc-Enhanced S Phase Entry in Keratinocytes Is Associated with Positive and Negative Effects on Cyclin-Dependent Kinases. J. Cell Biochem. 1998, 70, 528–542. [Google Scholar] [CrossRef]
- Benaud, C.M.; Dickson, R.B. Adhesion-Regulated G1 Cell Cycle Arrest in Epithelial Cells Requires the Downregulation of c-Myc. Oncogene 2001, 20, 4554–4567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, T.-P.; Wang, Y.-F.; Xiong, W.-L.; Ma, P.; Wang, W.-Y.; Chen, W.-M.; Huang, M.-D.; Xia, R.; Wang, R.; Zhang, E.-B.; et al. E2F1 Induces TINCR Transcriptional Activity and Accelerates Gastric Cancer Progression via Activation of TINCR/STAU1/CDKN2B Signaling Axis. Cell Death Dis. 2017, 8, e2837. [Google Scholar] [CrossRef] [Green Version]
- Sherr, C.J.; Roberts, J.M. Inhibitors of Mammalian G1 Cyclin-Dependent Kinases. Genes Dev. 1995, 9, 1149–1163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Z.; Chen, Z.; Fan, R.; Jiang, B.; Chen, X.; Chen, Q.; Nie, F.; Lu, K.; Sun, M. Over-Expressed Long Noncoding RNA HOXA11-AS Promotes Cell Cycle Progression and Metastasis in Gastric Cancer. Mol. Cancer 2017, 16, 82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruan, X.; Zheng, J.; Liu, X.; Liu, Y.; Liu, L.; Ma, J.; He, Q.; Yang, C.; Wang, D.; Cai, H.; et al. LncRNA LINC00665 Stabilized by TAF15 Impeded the Malignant Biological Behaviors of Glioma Cells via STAU1-Mediated MRNA Degradation. Mol. Ther. Nucleic Acids 2020, 20, 823–840. [Google Scholar] [CrossRef]
- Yang, C.; Zheng, J.; Liu, X.; Xue, Y.; He, Q.; Dong, Y.; Wang, D.; Li, Z.; Liu, L.; Ma, J.; et al. Role of ANKHD1/LINC00346/ZNF655 Feedback Loop in Regulating the Glioma Angiogenesis via Staufen1-Mediated MRNA Decay. Mol. Ther. Nucleic Acids 2020, 20, 866–878. [Google Scholar] [CrossRef] [PubMed]
- Jing, F.; Ruan, X.; Liu, X.; Yang, C.; Wang, D.; Zheng, J.; Xue, Y.; Shen, S.; Shao, L.; Yang, Y.; et al. The PABPC5/HCG15/ZNF331 Feedback Loop Regulates Vasculogenic Mimicry of Glioma via STAU1-Mediated MRNA Decay. Mol. Ther. Oncolytics 2020, 17, 216–231. [Google Scholar] [CrossRef]
- Shen, S.; Yang, C.; Liu, X.; Zheng, J.; Liu, Y.; Liu, L.; Ma, J.; Ma, T.; An, P.; Lin, Y.; et al. RBFOX1 Regulates the Permeability of the Blood-Tumor Barrier via the LINC00673/MAFF Pathway. Mol. Ther. Oncolytics 2020, 17, 138–152. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Aerts, J.; den Hamer, B.; van Ijcken, W.; den Bakker, M.; Riegman, P.; van der Leest, C.; van der Spek, P.; Foekens, J.A.; Hoogsteden, H.C.; et al. Gene Expression-Based Classification of Non-Small Cell Lung Carcinomas and Survival Prediction. PLoS ONE 2010, 5, e10312. [Google Scholar] [CrossRef]
- Nagy, Á.; Munkácsy, G.; Győrffy, B. Pancancer Survival Analysis of Cancer Hallmark Genes. Sci. Rep. 2021, 11, 6047. [Google Scholar] [CrossRef] [PubMed]
- Hassine, S.; Bonnet-Magnaval, F.; Benoit Bouvrette, L.P.; Doran, B.; Ghram, M.; Bouthillette, M.; Lecuyer, E.; DesGroseillers, L. Staufen1 Localizes to the Mitotic Spindle and Controls the Localization of RNA Populations to the Spindle. J. Cell Sci. 2020, 133, jcs247155. [Google Scholar] [CrossRef] [PubMed]
- Dahn, M.L.; Dean, C.A.; Jo, D.B.; Coyle, K.M.; Marcato, P. Human-Specific GAPDH QRT-PCR Is an Accurate and Sensitive Method of Xenograft Metastasis Quantification. Mol. Ther.-Methods Clin. Dev. 2021, 20, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Catalano, V.; Turdo, A.; Di Franco, S.; Dieli, F.; Todaro, M.; Stassi, G. Tumor and Its Microenvironment: A Synergistic Interplay. Semin. Cancer Biol. 2013, 23, 522–532. [Google Scholar] [CrossRef]
- de Lucas, S.; Oliveros, J.C.; Chagoyen, M.; Ortín, J. Functional Signature for the Recognition of Specific Target MRNAs by Human Staufen1 Protein. Nucleic Acids Res. 2014, 42, 4516–4526. [Google Scholar] [CrossRef]
- Furic, L.; Maher-Laporte, M.; DesGroseillers, L. A Genome-Wide Approach Identifies Distinct but Overlapping Subsets of Cellular MRNAs Associated with Staufen1- and Staufen2-Containing Ribonucleoprotein Complexes. RNA 2008, 14, 324–335. [Google Scholar] [CrossRef] [Green Version]
- Zheng, D.; Cho, H.; Wang, W.; Rambout, X.; Tian, B.; Maquat, L.E. 3′READS + RIP Defines Differential Staufen1 Binding to Alternative 3’UTR Isoforms and Reveals Structures and Sequence Motifs Influencing Binding and Polysome Association. RNA 2020, 26, 1621–1636. [Google Scholar] [CrossRef]
- Crawford Parks, T.E.; Marcellus, K.A.; Langill, J.; Ravel-Chapuis, A.; Michaud, J.; Cowan, K.N.; Côté, J.; Jasmin, B.J. Novel Roles for Staufen1 in Embryonal and Alveolar Rhabdomyosarcoma via C-Myc-Dependent and -Independent Events. Sci. Rep. 2017, 7, 42342. [Google Scholar] [CrossRef]
- Marcellus, K.A.; Crawford Parks, T.E.; Almasi, S.; Jasmin, B.J. Distinct Roles for the RNA-Binding Protein Staufen1 in Prostate Cancer. BMC Cancer 2021, 21, 120. [Google Scholar] [CrossRef]
- Ramis-Conde, I.; Chaplain, M.A.J.; Anderson, A.R.A.; Drasdo, D. Multi-Scale Modelling of Cancer Cell Intravasation: The Role of Cadherins in Metastasis. Phys. Biol. 2009, 6, 016008. [Google Scholar] [CrossRef] [PubMed]
- Blaschuk, O.W. N-Cadherin Antagonists as Oncology Therapeutics. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 2015, 370, 20140039. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhardt, H.; Wolburg, H.; Redies, C. N-Cadherin Mediates Pericytic-Endothelial Interaction during Brain Angiogenesis in the Chicken. Dev. Dyn. 2000, 218, 472–479. [Google Scholar] [CrossRef]
- Paik, J.-H.; Skoura, A.; Chae, S.-S.; Cowan, A.E.; Han, D.K.; Proia, R.L.; Hla, T. Sphingosine 1-Phosphate Receptor Regulation of N-Cadherin Mediates Vascular Stabilization. Genes Dev. 2004, 18, 2392–2403. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Zhang, S.; Dong, X.; Tian, D.; Cui, Z.; Qiu, X. Prognostic Significance of Twist and N-Cadherin Expression in NSCLC. PLoS ONE 2013, 8, e62171. [Google Scholar] [CrossRef] [Green Version]
- Hulit, J.; Suyama, K.; Chung, S.; Keren, R.; Agiostratidou, G.; Shan, W.; Dong, X.; Williams, T.M.; Lisanti, M.P.; Knudsen, K.; et al. N-Cadherin Signaling Potentiates Mammary Tumor Metastasis via Enhanced Extracellular Signal-Regulated Kinase Activation. Cancer Res. 2007, 67, 3106–3116. [Google Scholar] [CrossRef] [Green Version]
- Jennbacken, K.; Tesan, T.; Wang, W.; Gustavsson, H.; Damber, J.-E.; Welén, K. N-Cadherin Increases after Androgen Deprivation and Is Associated with Metastasis in Prostate Cancer. Endocr. Relat. Cancer 2010, 17, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Ren, D.; Guo, W.; Huang, S.; Wang, Z.; Li, Q.; Du, H.; Song, L.; Peng, X. N-Cadherin Promotes Epithelial-Mesenchymal Transition and Cancer Stem Cell-like Traits via ErbB Signaling in Prostate Cancer Cells. Int. J. Oncol. 2016, 48, 595–606. [Google Scholar] [CrossRef] [Green Version]
- Amagasaki, K.; Sasaki, A.; Kato, G.; Maeda, S.; Nukui, H.; Naganuma, H. Antisense-Mediated Reduction in Thrombospondin-1 Expression Reduces Cell Motility in Malignant Glioma Cells. Int. J. Cancer 2001, 94, 508–512. [Google Scholar] [CrossRef]
- Filleur, S.; Volpert, O.V.; Degeorges, A.; Voland, C.; Reiher, F.; Clézardin, P.; Bouck, N.; Cabon, F. In Vivo Mechanisms by Which Tumors Producing Thrombospondin 1 Bypass Its Inhibitory Effects. Genes Dev. 2001, 15, 1373–1382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Firlej, V.; Mathieu, J.R.R.; Gilbert, C.; Lemonnier, L.; Nakhlé, J.; Gallou-Kabani, C.; Guarmit, B.; Morin, A.; Prevarskaya, N.; Delongchamps, N.B.; et al. Thrombospondin-1 Triggers Cell Migration and Development of Advanced Prostate Tumors. Cancer Res. 2011, 71, 7649–7658. [Google Scholar] [CrossRef] [Green Version]
- Fontanini, G.; Boldrini, L.; Calcinai, A.; Chinè, S.; Lucchi, M.; Mussi, A.; Angeletti, C.A.; Basolo, F.; Bevilacqua, G. Thrombospondins I and II Messenger RNA Expression in Lung Carcinoma: Relationship with P53 Alterations, Angiogenic Growth Factors, and Vascular Density. Clin. Cancer Res. 1999, 5, 155–161. [Google Scholar]
- Grossfeld, G.D.; Ginsberg, D.A.; Stein, J.P.; Bochner, B.H.; Esrig, D.; Groshen, S.; Dunn, M.; Nichols, P.W.; Taylor, C.R.; Skinner, D.G.; et al. Thrombospondin-1 Expression in Bladder Cancer: Association with P53 Alterations, Tumor Angiogenesis, and Tumor Progression. J. Natl. Cancer Inst. 1997, 89, 219–227. [Google Scholar] [CrossRef] [Green Version]
- Grutzmacher, C.; Park, S.; Zhao, Y.; Morrison, M.E.; Sheibani, N.; Sorenson, C.M. Aberrant Production of Extracellular Matrix Proteins and Dysfunction in Kidney Endothelial Cells with a Short Duration of Diabetes. Am. J. Physiol. Renal. Physiol. 2013, 304, F19–F30. [Google Scholar] [CrossRef] [Green Version]
- Mumby, S.M.; Abbott-Brown, D.; Raugi, G.J.; Bornstein, P. Regulation of Thrombospondin Secretion by Cells in Culture. J. Cell Physiol. 1984, 120, 280–288. [Google Scholar] [CrossRef] [PubMed]
- Rafii, D.C.; Psaila, B.; Butler, J.; Jin, D.K.; Lyden, D. Regulation of Vasculogenesis by Platelet-Mediated Recruitment of Bone Marrow-Derived Cells. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 217–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, D.D. Thrombospondins: From Structure to Therapeutics. Cell Mol. Life Sci. 2008, 65, 669–671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sid, B.; Sartelet, H.; Bellon, G.; El Btaouri, H.; Rath, G.; Delorme, N.; Haye, B.; Martiny, L. Thrombospondin 1: A Multifunctional Protein Implicated in the Regulation of Tumor Growth. Crit. Rev. Oncol. Hematol. 2004, 49, 245–258. [Google Scholar] [CrossRef] [PubMed]
- Streit, M.; Velasco, P.; Brown, L.F.; Skobe, M.; Richard, L.; Riccardi, L.; Lawler, J.; Detmar, M. Overexpression of Thrombospondin-1 Decreases Angiogenesis and Inhibits the Growth of Human Cutaneous Squamous Cell Carcinomas. Am. J. Pathol. 1999, 155, 441–452. [Google Scholar] [CrossRef] [Green Version]
- Tanaka, K.; Sonoo, H.; Kurebayashi, J.; Nomura, T.; Ohkubo, S.; Yamamoto, Y.; Yamamoto, S. Inhibition of Infiltration and Angiogenesis by Thrombospondin-1 in Papillary Thyroid Carcinoma. Clin. Cancer Res. 2002, 8, 1125–1131. [Google Scholar] [PubMed]
- Houlard, M.; Romero-Portillo, F.; Germani, A.; Depaux, A.; Regnier-Ricard, F.; Gisselbrecht, S.; Varin-Blank, N. Characterization of VIK-1: A New Vav-Interacting Kruppel-like Protein. Oncogene 2005, 24, 28–38. [Google Scholar] [CrossRef] [Green Version]
- Machado-Neto, J.A.; Lazarini, M.; Favaro, P.; de Melo Campos, P.; Scopim-Ribeiro, R.; Franchi Junior, G.C.; Nowill, A.E.; Lima, P.R.M.; Costa, F.F.; Benichou, S.; et al. ANKHD1 Silencing Inhibits Stathmin 1 Activity, Cell Proliferation and Migration of Leukemia Cells. Biochim. Biophys. Acta 2015, 1853, 583–593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, T.; Ding, W.; Wang, N.; Huang, H.; Pan, Y.; Wei, A. Long Noncoding RNA Linc00346 Promotes the Malignant Phenotypes of Bladder Cancer. Biochem. Biophys. Res. Commun. 2017, 491, 79–84. [Google Scholar] [CrossRef]
- Gubin, M.M.; Calaluce, R.; Davis, J.W.; Magee, J.D.; Strouse, C.S.; Shaw, D.P.; Ma, L.; Brown, A.; Hoffman, T.; Rold, T.L.; et al. Overexpression of the RNA Binding Protein HuR Impairs Tumor Growth in Triple Negative Breast Cancer Associated with Deficient Angiogenesis. Cell Cycle 2010, 9, 3337–3346. [Google Scholar] [CrossRef] [Green Version]
- Mazan-Mamczarz, K.; Hagner, P.R.; Corl, S.; Srikantan, S.; Wood, W.H.; Becker, K.G.; Gorospe, M.; Keene, J.D.; Levenson, A.S.; Gartenhaus, R.B. Post-Transcriptional Gene Regulation by HuR Promotes a More Tumorigenic Phenotype. Oncogene 2008, 27, 6151–6163. [Google Scholar] [CrossRef] [Green Version]
- Tong, X.; Mirzoeva, S.; Veliceasa, D.; Bridgeman, B.B.; Fitchev, P.; Cornwell, M.L.; Crawford, S.E.; Pelling, J.C.; Volpert, O.V. Chemopreventive Apigenin Controls UVB-Induced Cutaneous Proliferation and Angiogenesis through HuR and Thrombospondin-1. Oncotarget 2014, 5, 11413–11427. [Google Scholar] [CrossRef] [Green Version]
- Doçi, C.L.; Zhou, G.; Lingen, M.W. The Novel Tumor Suppressor NOL7 Post-Transcriptionally Regulates Thrombospondin-1 Expression. Oncogene 2013, 32, 4377–4386. [Google Scholar] [CrossRef] [Green Version]
- McGray, A.J.R.; Gingerich, T.; Petrik, J.J.; Lamarre, J. Regulation of Thrombospondin-1 Expression through AU-Rich Elements in the 3’UTR of the MRNA. Cell Mol. Biol. Lett. 2011, 16, 55–68. [Google Scholar] [CrossRef] [PubMed]
- Győrffy, B.; Surowiak, P.; Budczies, J.; Lánczky, A. Online Survival Analysis Software to Assess the Prognostic Value of Biomarkers Using Transcriptomic Data in Non-Small-Cell Lung Cancer. PLoS ONE 2013, 8, e82241. [Google Scholar] [CrossRef] [Green Version]
- Rhodes, D.R.; Yu, J.; Shanker, K.; Deshpande, N.; Varambally, R.; Ghosh, D.; Barrette, T.; Pandey, A.; Chinnaiyan, A.M. ONCOMINE: A Cancer Microarray Database and Integrated Data-Mining Platform. Neoplasia 2004, 6, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lamaa, A.; Le Bras, M.; Skuli, N.; Britton, S.; Frit, P.; Calsou, P.; Prats, H.; Cammas, A.; Millevoi, S. A Novel Cytoprotective Function for the DNA Repair Protein Ku in Regulating P53 MRNA Translation and Function. EMBO Rep. 2016, 17, 508–518. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, F.; Duplantier, M.-M.; Trempat, P.; Hieblot, C.; Lamant, L.; Espinos, E.; Racaud-Sultan, C.; Allouche, M.; Campo, E.; Delsol, G.; et al. Differential Effects of X-ALK Fusion Proteins on Proliferation, Transformation, and Invasion Properties of NIH3T3 Cells. Oncogene 2004, 23, 6071–6082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darzynkiewicz, Z.; Juan, G.; Bedner, E. Determining Cell Cycle Stages by Flow Cytometry. Curr. Protoc. Cell Biol. 1999, 1, 8.4.1–8.4.18. [Google Scholar] [CrossRef]
- Hofman, F.M.; Taylor, C.R. Immunohistochemistry. Curr. Protoc. Immunol. 2013, 103, 21.4.1–21.4.26. [Google Scholar] [CrossRef] [PubMed]
- Schindelin, J.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.; Saalfeld, S.; Schmid, B.; et al. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
Primer | Sequence |
---|---|
THBS1 3′UTR forward | 5′-GTAATACGACTCACTATAGGGGCAGTCTAGAGTCGGGGCGG-3′ |
THBS1 FL reverse | 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTACAAGGAACAACAATAAATCATATGG-3′ |
Δ1 reverse | 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCAGAAGTCAGATGCTCAAGGGGC-3′ |
Δ2 reverse | 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTCCAACAATTCTTCAATTCAGTGTGC-3′ |
Δ3 reverse | 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGCACTGCCTTACACTGGTTTG-3′ |
Δ4 reverse | 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTGCCCTCCCCTTAGTGCTTTG-3′ |
Constructions | Primer | Sequence |
---|---|---|
a | forward | 5′-GTAATACGACTCACTATAGGGGCAGTCTAGAGTCGGGGCGG-3′ |
reverse | 5’-GCACTGCCTTACACTGGTTTG-3′ | |
b | forward | 5′-AAAGTAATACGACTCACTATAGGGCAAACCAGTGTAAGGCAGTGC-3′ |
reverse | 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTACAAGGAACAACAATAAATCATATGG-3′ | |
c | forward | 5′-AAAGTAATACGACTCACTATAGGGCAAACCAGTGTAAGGCAGTGC-3′ |
reverse | 5′-GAGCACAAGGGGCAGAGCAG-3′ | |
d | forward | 5′-AAAGTAATACGACTCACTATAGGGCTGCTCTGCCCCTTGTGCTC-3′ |
reverse | 5′-TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTACAAGGAACAACAATAAATCATATGG-3′ | |
e | forward | 5′-AAAGTAATACGACTCACTATAGGGCAAACCAGTGTAAGGCAGTGC-3′ |
reverse | 5′-GGTTGATAATAATTTTGTGCCATTGT-3′ | |
f | forward | 5′-AAAGTAATACGACTCACTATAGGGACAATGGCACAAAATTATTATCAACC-3′ |
reverse | 5′-GAGCACAAGGGGCAGAGCAG-3′ |
Gene ID | Primer | Sequence |
---|---|---|
HPRT | forward | 5′-TGCTTTCCTTGGTCAGGCAGT-3′ |
reverse | 5′-CTTCGTGGGGTCCTTTTCACC-3′ | |
Stau1 | forward | 5′-GATCCTGCAGAATGAGCCCC-3′ |
reverse | 5′-CACCTCGAAATTCACAGGCAA-3′ | |
CDH2 | forward | 5′-GATCCTGCAGAATGAGCCCC-3′ |
reverse | 5′-CACCTCGAAATTCACAGGCAA-3′ | |
THBS1 | forward | 5′-GGGGCGTCAATGACAATTTCCAG-3′ |
reverse | 5′-TCACCACGTTGTTGTCAAGGGT-3′ | |
TWIST1 | forward | 5′-GCAGGGCCGGAGACCTA-3′ |
reverse | 5′-TTGGATTTTGCTCTTCTAATTTCCA-3′ | |
SNAI2 (SLUG) | forward | 5′-GCGGCAAGGCGTTTTCCAGA-3′ |
reverse | 5′-GCAGTGAGGGCAAGAAAAAGGC-3′ | |
VIM (Vimentin) | forward | 5′-CATGCGCCTCCGGGAGAAAT-3′ |
reverse | 5′-TCAAGACGTGCCAGAGACG-3′ | |
ZEB1 | forward | 5′-TAAGCGCAGAAAGCAGGCGA-3′ |
reverse | 5′-ACAGTCAGCTGCATCTGTAACACT-3′ | |
SNAI1 | forward | 5′-AGTGCCTCGACCACTATGCC-3′ |
reverse | 5′-TCGTAGGGCTGCTGGAAGGTA-3′ | |
ZEB2 | forward | 5′-GCCATCTGATCCGCTCTTATC-3′ |
reverse | 5′-ACCTGTGTCCACTACATTGTC-3′ | |
SERPINE | forward | 5′-GTGGACTTTTCAGAGGTGGAG-3′ |
reverse | 5′-GAAGTAGAGGGCATTCACCAG-3′ | |
KRT19 | forward | 5′-GCGAGCTAGAGGTGAAGATC-3′ |
reverse | 5′-AATCCTGGAGTTCTCAATGGTG-3′ | |
CAV2 | forward | 5′-TCAACTCGCATCTCAAGCTG-3′ |
reverse | 5′-GATTTCAAAGAGGGCATGGC-3′ | |
CALD1 | forward | 5′-TGTGGGAGAAAGGGAATGTG-3′ |
reverse | 5′-AAGGTTTGGGAGCAGGTG-3′ | |
NOTCH1 | forward | 5′-TGCCTGGACAAGATCAATGAG-3′ |
reverse | 5′-CAGGTGTAAGTGTTGGGTCC-3′ | |
MET | forward | 5′-GCCCAAACCATTTCAACTGAG-3′ |
reverse | 5′-ACCTGTTATTGTGCTCCCAC-3′ | |
EGFR | forward | 5′-AAGCCATATGACGGAATCCC-3′ |
reverse | 5′-GGAACTTTGGGCGACTATCTG-3′ | |
SMAD2 | forward | 5′-GATCCTAACAGAACTTCCGCC-3′ |
reverse | 5′-CACTTGTTTCTCCATCTTCACTG-3′ | |
BMP1 | forward | 5′-CTCCCCTGAATACCCCAATG-3′ |
reverse | 5′-ACCTCCACATAGTCGTACCAG-3′ | |
PLEK2 | forward | 5′-ACTGTGGAGTTAAGTGGCAC-3′ |
reverse | 5′-GGAAGGGTCATAGTAATGCAGG-3′ | |
SNAI1 | forward | 5′-GGAAGCCTAACTACAGCGAG-3′ |
reverse | 5′-CAGAGTCCCAGATGAGCATTG-3′ | |
MSN | forward | 5′-TCGCAAGCCTGATACCATTG-3′ |
reverse | 5′-TTCTCTTTCTCCTTCTCTGCC-3′ | |
NUDT13 | forward | 5′-CCTCTTTCATAGTCTGGCTCC-3′ |
reverse | 5′-GCATCCAATCAGCACAGAATC-3′ | |
STAU2 | forward | 5′-ATCTACGCTTCCCAAACCAG-3′ |
reverse | 5′-GAATGGCTTTGGATCTAATGGC-3′ | |
DESM1 | forward | 5′-GATCAATCTCCCCATCCAGAC-3′ |
reverse | 5′-GACCTCAGAACCCCTTTGC-3′ | |
ITGAV | forward | 5′-AGAATCAAGGAGAAGGTGCC-3′ |
reverse | 5′-GGCGAGTTTGGTTTTCTGTC-3′ | |
ILK | forward | 5′-CAAACACTCTGGCATTGACTTC-3′ |
reverse | 5′-CTGCTCTTCCTTGTACTCCAG-3′ | |
IL1RN | forward | 5′-CCTCATGCTCTGTTCTTGGG-3′ |
reverse | 5′-TGTCCTGCTTTCTGTTCTCG-3′ | |
VCAN | forward | 5′-CAGTCATAGCAACTCCAGAGC-3′ |
reverse | 5′-CTCCTGCCTTTCCCATCTTATC-3′ | |
MMP2 | forward | 5′-ACCCATTTACACCTACACCAAG-3′ |
reverse | 5′-TGTTTGCAGATCTCAGGAGTG-3′ | |
ITGA5 | forward | 5′-ATACTCTGTGGCTGTTGGTG-3′ |
reverse | 5′-CTGTTCCCCTGAGAAGTTGTAG-3′ | |
STAT3 | forward | 5′-TTCTGGGCACAAACACAAAAG-3′ |
reverse | 5′-TCAGTCACAATCAGGGAAGC-3′ | |
MST1R | forward | 5′-ATGTGCTGATTCCCCATGAG-3′ |
reverse | 5′-TGCGACTTAGTGACTTGATGG-3′ | |
JAG1 | forward | 5′-GGACTATGAGGGCAAGAACTG-3′ |
reverse | 5′-AAATATACCGCACCCCTTCAG-3′ | |
FGFBP1 | forward | 5′-ACCCAGATATGGCAAACCAG-3′ |
reverse | 5′-ACCCGTTCTCTTTTGACCTC-3′ | |
OCLN | forward | 5′-GCAAAGTGAATGACAAGCGG-3′ |
reverse | 5′-CACAGGCGAAGTTAATGGAAG-3′ | |
TIMP1 | forward | 5′-TTCTGCAATTCCGACCTCG-3′ |
reverse | 5′-TCATAACGCTGGTATAAGGTGG-3′ | |
DSP | forward | 5′-ACCAGAACCAGAACACCATC-3′ |
reverse | 5′-GGGCAAAACACTCATCCAATTC-3′ | |
SPARC | forward | 5′-CGACTCTTCCTGCCACTTC-3′ |
reverse | 5′-GGAATTCGGTCAGCTCAGAG-3′ | |
IGFBP | forward | 5′-CACAGGAGACATCAGGAGAAG-3′ |
reverse | 5′-GATCCTCTTCCCATTCCAAGG-3′ | |
Pac | forward | 5′-GCTCGACATCGGCAAGGTGT-3′ |
reverse | 5′-GAACCGCTCAACTCGGCCAT-3′ | |
GAPDH | forward | 5′-TCAAGGCTGAGAACGGGAAG-3′ |
reverse | 5′-CGCCCCACTTGATTTTGGAG-3′ | |
CDH1 | forward | 5′-CCCAATACATCTCCCTTCACAG-3′ |
reverse | 5′-CCACCTCTAAGGCCATCTTTG-3′ | |
ANKRD57 | forward | 5′-AGGAACGACCTGTTAAAGGC-3′ |
reverse | 5′-TTCTGGTCTCACTTCCTTACAAC-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonnet-Magnaval, F.; Diallo, L.H.; Brunchault, V.; Laugero, N.; Morfoisse, F.; David, F.; Roussel, E.; Nougue, M.; Zamora, A.; Marchaud, E.; et al. High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. Int. J. Mol. Sci. 2022, 23, 215. https://doi.org/10.3390/ijms23010215
Bonnet-Magnaval F, Diallo LH, Brunchault V, Laugero N, Morfoisse F, David F, Roussel E, Nougue M, Zamora A, Marchaud E, et al. High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. International Journal of Molecular Sciences. 2022; 23(1):215. https://doi.org/10.3390/ijms23010215
Chicago/Turabian StyleBonnet-Magnaval, Florence, Leïla Halidou Diallo, Valérie Brunchault, Nathalie Laugero, Florent Morfoisse, Florian David, Emilie Roussel, Manon Nougue, Audrey Zamora, Emmanuelle Marchaud, and et al. 2022. "High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation" International Journal of Molecular Sciences 23, no. 1: 215. https://doi.org/10.3390/ijms23010215
APA StyleBonnet-Magnaval, F., Diallo, L. H., Brunchault, V., Laugero, N., Morfoisse, F., David, F., Roussel, E., Nougue, M., Zamora, A., Marchaud, E., Tatin, F., Prats, A. -C., Garmy-Susini, B., DesGroseillers, L., & Lacazette, E. (2022). High Level of Staufen1 Expression Confers Longer Recurrence Free Survival to Non-Small Cell Lung Cancer Patients by Promoting THBS1 mRNA Degradation. International Journal of Molecular Sciences, 23(1), 215. https://doi.org/10.3390/ijms23010215