Availability of Arg, but Not tRNA, Is a Rate-Limiting Factor for Intracellular Arginylation
Abstract
:1. Introduction
2. Results
2.1. Small RNAs, including tRNAs, Can Specifically Inhibit Arginylation In Vitro
2.2. Increased tRNA Levels Do Not Affect Arginylation Efficiency In Vivo
2.3. Increased Levels of Arg in the Media Facilitate Arginylation
3. Discussion
4. Materials and Methods
4.1. tRNA Preparation and In Vitro Arginylation Reaction
4.2. Cell Culture, tRNA Transfection, and Arg Addition
4.3. Western Blotting and Quantification of Arginylation
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Han, X.; Wong, C.C.; Cheng, H.; Aslanian, A.; Xu, T.; Leavis, P.; Roder, H.; Hedstrom, L.; Yates, J.R.; et al. Arginyltransferase ATE1 Catalyzes Midchain Arginylation of Proteins at Side Chain Carboxylates In Vivo. Chem. Biol. 2014, 21, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Pejaver, V.R.; Dann, G.P.; Wolf, M.Y.; Kellis, M.; Huang, Y.; Garcia, B.A.; Radivojac, P.; Kashina, A. Target site specificity and in vivo complexity of the mammalian arginylome. Sci. Rep. 2018, 8, 16177. [Google Scholar] [CrossRef] [PubMed]
- Cornachione, A.S.; Leite, F.S.; Wang, J.; Leu, N.A.; Kalganov, A.; Volgin, D.; Han, X.; Xu, T.; Cheng, Y.-S.; Yates, J.R.; et al. Arginylation of Myosin Heavy Chain Regulates Skeletal Muscle Strength. Cell Rep. 2014, 8, 470–476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.; Wong, C.C.; Xu, T.; Namgoong, S.; Zebroski, H.; Yates, J.R.; Kashina, A. Arginylation and Methylation Double Up to Regulate Nuclear Proteins and Nuclear Architecture In Vivo. Chem. Biol. 2011, 18, 1369–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, R.; Wong, C.C.L.; Xu, T.; Leu, N.A.; Dong, D.W.; Guo, C.; McLaughlin, K.J.; Yates, J.R., III; Kashina, A. Arginyltransferase regulates alpha cardiac actin function, myofibril formation and contractility during heart development. Development 2008, 135, 3881–3889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, C.C.L.; Xu, T.; Rai, R.; Bailey, A.O.; Yates, J.R.; Wolf, Y.; Zebroski, H.; Kashina, A. Global Analysis of Posttranslational Protein Arginylation. PLoS Biol. 2007, 5, e258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karakozova, M.; Kozak, M.; Wong, C.C.L.; Bailey, A.O.; Yates, J.R.; Mogilner, A.; Zebroski, H.; Kashina, A. Arginylation of ß-Actin Regulates Actin Cytoskeleton and Cell Motility. Science 2006, 313, 192–196. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Patel, D.M.; Colavita, K.; Rodionova, I.; Buckley, B.; Scott, D.; Kumar, A.; Shabalina, S.A.; Saha, S.; Chernov, M.; et al. Arginylation regulates purine nucleotide biosynthesis by enhancing the activity of phosphoribosyl pyrophosphate synthase. Nat. Commun. 2015, 6, 7517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kwon, T.Y.; Kashina, A.S.; Varshavsky, A. Alternative splicing results in differential expression, activity, and localization of the two forms of arginyl-tRNA-protein transferase, a component of the N-end rule pathway. Mol. Cell Biol. 1999, 19, 182–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawa, S.; Demura, T.; Horiguchi, G.; Kubo, M.; Fukuda, H. The ATE Genes Are Responsible for Repression of Transdifferentiation into Xylem Cells in Arabidopsis. Plant Physiol. 2005, 137, 141–148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rai, R.; Kashina, A. Identification of mammalian arginyltransferases that modify a specific subset of protein substrates. Proc. Natl. Acad. Sci. USA 2005, 102, 10123–10128. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Han, X.; Saha, S.; Xu, T.; Rai, R.; Zhang, F.; Wolf, Y.I.; Wolfson, A.; Yates, J.R.; Kashina, A. Arginyltransferase Is an ATP-Independent Self-Regulating Enzyme that Forms Distinct Functional Complexes In Vivo. Chem. Biol. 2011, 18, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avcilar-Kucukgoze, I.; Gamper, H.; Polte, C.; Ignatova, Z.; Kraetzner, R.; Shtutman, M.; Hou, Y.; Dong, D.W.; Kashina, A. tRNA(Arg)-Derived Fragments Can Serve as Arginine Donors for Protein Arginylation. Cell Chem. Biol. 2020, 27, 839–849e4. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Birnbaum, M.D.; Patel, D.M.; Morgan, W.M.; Singh, J.; Barrientos, A.; Zhang, F. Posttranslational arginylation enzyme Ate1 affects DNA mutagenesis by regulating stress response. Cell Death Dis. 2016, 7, e2378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Kashina, A. Quantification of intracellular N-terminal β-actin arginylation. Sci. Rep. 2019, 9, 16669. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, S.; Cai, Z.; Rauscher, R.; Kastelic, N.; Anding, M.; Czech, A.; Kleizen, B.; Ostedgaard, L.; Braakman, I.; Sheppard, D.N.; et al. Alteration of protein function by a silent polymorphism linked to tRNA abundance. PLoS Biol. 2017, 15, e2000779. [Google Scholar] [CrossRef] [PubMed]
- Avcilar-Kucukgoze, I.; Gamper, H.; Hou, Y.-M.; Kashina, A. Purification and Use of tRNA for Enzymatic Post-translational Addition of Amino Acids to Proteins. STAR Protoc. 2020, 1, 100207. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avcilar-Kucukgoze, I.; MacTaggart, B.; Kashina, A. Availability of Arg, but Not tRNA, Is a Rate-Limiting Factor for Intracellular Arginylation. Int. J. Mol. Sci. 2022, 23, 314. https://doi.org/10.3390/ijms23010314
Avcilar-Kucukgoze I, MacTaggart B, Kashina A. Availability of Arg, but Not tRNA, Is a Rate-Limiting Factor for Intracellular Arginylation. International Journal of Molecular Sciences. 2022; 23(1):314. https://doi.org/10.3390/ijms23010314
Chicago/Turabian StyleAvcilar-Kucukgoze, Irem, Brittany MacTaggart, and Anna Kashina. 2022. "Availability of Arg, but Not tRNA, Is a Rate-Limiting Factor for Intracellular Arginylation" International Journal of Molecular Sciences 23, no. 1: 314. https://doi.org/10.3390/ijms23010314
APA StyleAvcilar-Kucukgoze, I., MacTaggart, B., & Kashina, A. (2022). Availability of Arg, but Not tRNA, Is a Rate-Limiting Factor for Intracellular Arginylation. International Journal of Molecular Sciences, 23(1), 314. https://doi.org/10.3390/ijms23010314