Novel Insights into Anthocyanin Metabolism and Molecular Characterization of Associated Genes in Sugarcane Rinds Using the Metabolome and Transcriptome
Abstract
:1. Introduction
2. Results
2.1. Quantification of Anthocyanins in Six Distinct Cultivars Revealed Thirty Novel Compounds in Sugarcane
2.2. Grouping the Cultivars and Anthocyanin Compounds by Hierarchical Cluster Analysis and Principal Component Analysis
2.3. Relative Abundance of Major Anthocyanins Found in the Rinds of Six Sugarcane Cultivars
2.4. Venn Analysis and Biosynthesis Pathway for the Major Anthocyanins of Interest
2.5. Transcriptomic Analysis of Regulatory and Anthocyanin Biosynthesis Genes
2.6. Overexpression of Sugarcane MYB(t) Gene Accumulates Anthocyanin in Transgenic Arabidopsis Hypocotyls
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Anthocyanins Extraction and Multiple Reactions Monitoring (MRM)
4.3. Qualitative and Quantitative Analysis of Metabolites
4.4. RNA-seq Analysis
4.5. qRT-PCR Analysis
4.6. Agrobacterium Mediated Transformation
4.7. Phylogenetic, Protein Sequence Alignment and Total Anthocyanins Analysis
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mannino, G.; Gentile, C.; Ertani, A.; Serio, G.; Bertea, C.M. Anthocyanins: Biosynthesis, Distribution, Ecological Role, and Use of Biostimulants to Increase Their Content in Plant Foods—A Review. Agriculture 2021, 11, 212. [Google Scholar] [CrossRef]
- Rao, M.J.; Wu, S.; Duan, M.; Wang, L. Antioxidant metabolites in primitive, wild, and cultivated citrus and their role in stress tolerance. Molecules 2021, 26, 5801. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, C.K. Abiotic stress-induced anthocyanins in plants: Their role in tolerance to abiotic stresses. Physiol. Plant. 2021, 172, 1711–1723. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Xu, Y.; Huang, Y.; Tang, X.; Deng, X.; Xu, Q. Ectopic expression of citrus UDP-GLUCOSYL TRANSFERASE gene enhances anthocyanin and proanthocyanidins contents and confers high light tolerance in Arabidopsis. BMC Plant Biol. 2019, 19, 603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonçalves, A.C.; Nunes, A.R.; Falcão, A.; Alves, G.; Silva, L.R. Dietary effects of anthocyanins in human health: A comprehensive review. Pharmaceuticals 2021, 14, 690. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Chen, H.; Liu, D.; Zeng, L.; Chen, P.; Liu, C. Discovery of genes involved in anthocyanin biosynthesis from the rind and pith of three sugarcane varieties using integrated metabolic profiling and RNA-seq analysis. BMC Plant Biol. 2021, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Jiu, S.; Guan, L.; Leng, X.; Zhang, K.; Haider, M.S.; Yu, X.; Zhu, X.; Zheng, T.; Ge, M.; Wang, C. The role of VvMYBA2r and VvMYBA2w alleles of the MYBA2 locus in the regulation of anthocyanin biosynthesis for molecular breeding of grape (Vitis spp.) skin coloration. Plant Biotechnol. J. 2021, 19, 1216–1239. [Google Scholar] [CrossRef]
- Qin, L.; Sun, L.; Wei, L.; Yuan, J.; Kong, F.; Zhang, Y.; Miao, X.; Xia, G.; Liu, S. Maize SRO1e represses anthocyanin synthesis through regulating the MBW complex in response to abiotic stress. Plant J. 2021, 105, 1010–1025. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kou, M.; Li, C.; Zhang, Y.-G. Comparative transcriptome analysis reveals candidate genes involved in anthocyanin biosynthesis in sweetpotato (Ipomoea batatas L.). Plant Physiol. Biochem. 2021, 158, 508–517. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Zheng, Z.; Zhou, Y.; Pu, X.; Su, W.; Guo, H.; Wang, J. The MYB transcription factor LrAN2, from Lycium ruthenicum, led to enhanced accumulation of anthocyanins and modified profile of the total glycoalkaloids in potato. Plant Cell Tissue Organ Cult. 2021, 147, 519–528. [Google Scholar] [CrossRef]
- Luo, D.; Xiong, C.; Lin, A.; Zhang, C.; Sun, W.; Zhang, J.; Yang, C.; Lu, Y.; Li, H.; Ye, Z. SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2 to regulate anthocyanin biosynthesis by activating SlDFR expression in tomato. Hortic. Res. 2021, 8, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Zhao, Y.; Ma, X.; Jiao, X.; Fang, Y.; Zhang, Z.; Ju, Y. Effects of leaf removal on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in Cabernet Sauvignon (Vitis vinifera L.) grapes. J. Sci. Food Agric. 2021, 101, 3214–3224. [Google Scholar] [CrossRef]
- Qin, J.; Zhao, C.; Wang, S.; Gao, N.; Wang, X.; Na, X.; Wang, X.; Bi, Y. PIF4-PAP1 interaction affects MYB-bHLH-WD40 complex formation and anthocyanin accumulation in Arabidopsis. J. Plant Physiol. 2021, 268, 153558. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Zuo, H.; Xu, Q. Genomic insights into citrus domestication and its important agronomic traits. Plant Commun. 2021, 2, 100138. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.J.; Ahmed, U.; Ahmed, M.H.; Duan, M.; Wang, J.; Wang, Y.; Wang, L. Comparison and quantification of metabolites and their antioxidant activities in young and mature leaves of sugarcane. ACS Food Sci. Technol. 2021, 1, 362–373. [Google Scholar] [CrossRef]
- Li, X.; Ma, Z.; Yao, S. Bioactivity-guided systematic extraction and purification supported by multitechniques for sugarcane flavonoids and anthocyanins. Food Bioprod. Process. 2015, 94, 547–554. [Google Scholar] [CrossRef]
- Li, X.; Yao, S.; Tu, B.; Li, X.; Jia, C.; Song, H. Determination and comparison of flavonoids and anthocyanins in Chinese sugarcane tips, stems, roots and leaves. J. Sep. Sci. 2010, 33, 1216–1223. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yan, H.; Zheng, R.; Khan, M.S.; Fu, X.; Tao, Z.; Zhang, Z. Anthocyanins characterization and antioxidant activities of sugarcane (Saccharum officinarum L.) rind extracts. Ind. Crops Prod. 2018, 113, 38–45. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Shang, H.; Hu, R.; Fu, H.; Xiao, X. A high-throughput and untargeted lipidomics approach reveals new mechanistic insight and the effects of salvianolic acid B on the metabolic profiles in coronary heart disease rats using ultra-performance liquid chromatography with mass spectrometry. RSC Adv. 2020, 10, 17101–17113. [Google Scholar] [CrossRef]
- Chen, W.; Gong, L.; Guo, Z.; Wang, W.; Zhang, H.; Liu, X.; Yu, S.; Xiong, L.; Luo, J. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: Application in the study of rice metabolomics. Mol. Plant 2013, 6, 1769–1780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, U.K.; Muhammad, I.I.; Salleh, R.M. The effect of pH on color behavior of Brassica oleracea anthocyanin. J. Appl. Sci. 2011, 11, 2406–2410. [Google Scholar]
- Öhman, D.; Demedts, B.; Kumar, M.; Gerber, L.; Gorzsás, A.; Goeminne, G.; Hedenström, M.; Ellis, B.; Boerjan, W.; Sundberg, B. MYB 103 is required for FERULATE-5-HYDROXYLASE expression and syringyl lignin biosynthesis in A rabidopsis stems. Plant J. 2013, 73, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Khoo, H.E.; Azlan, A.; Tang, S.T.; Lim, S.M. Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutr. Res. 2017, 61, 1361779. [Google Scholar] [CrossRef] [Green Version]
- De Villena, F.A.; Fritz, V.A.; Cohen, J.D.; Hutchison, W.D. Changes in gluconasturtiin concentration in Chinese cabbage with increasing cabbage looper density. HortScience 2007, 42, 1337–1340. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Li, Y.; Zhang, F.; Zhang, G.; Jiang, X.; Yu, H.; Hou, B. The Arabidopsis UDP-glycosyltransferases UGT79B2 and UGT79B3, contribute to cold, salt and drought stress tolerance via modulating anthocyanin accumulation. Plant J. 2017, 89, 85–103. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.J.; Xu, Y.; Tang, X.; Huang, Y.; Liu, J.; Deng, X.; Qiang, X. CsCYT75B1, a Citrus CYTOCHROME P450 gene, is involved in accumulation of antioxidant flavonoids and induces drought tolerance in transgenic Arabidopsis. Antioxidants 2020, 9, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mackon, E.; Jeazet Dongho Epse Mackon, G.C.; Ma, Y.; Haneef Kashif, M.; Ali, N.; Usman, B.; Liu, P. Recent insights into anthocyanin pigmentation, synthesis, trafficking, and regulatory mechanisms in rice (Oryza sativa L.) Caryopsis. Biomolecules 2021, 11, 394. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, J.; Xia, X.; Zhang, Z.; He, J.; Nong, B.; Luo, T.; Feng, R.; Wu, Y.; Pan, Y.; et al. OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice. Plant J. 2021, 107, 198–214. [Google Scholar] [CrossRef]
- Zhou, L.; He, Y.; Li, J.; Liu, Y.; Chen, H. CBFs Function in Anthocyanin Biosynthesis by Interacting with MYB113 in Eggplant (Solanum melongena L.). Plant Cell Physiol. 2020, 61, 416–426. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.-S.; Feng, K.; Que, F.; Wang, F.; Xiong, A.-S. A MYB transcription factor, DcMYB6, is involved in regulating anthocyanin biosynthesis in purple carrot taproots. Sci. Rep. 2017, 7, 45324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, J.; Wu, H.; Zhao, M.; Yang, Z.; Zhou, Z.; Guo, Y.; Lin, Y.; Chen, H. OsMYB3 is a R2R3-MYB gene responsible for anthocyanin biosynthesis in black rice. Mol. Breed. 2021, 41, 1–15. [Google Scholar] [CrossRef]
- Koo, Y.; Poethig, R.S. Expression pattern analysis of three R2R3-MYB transcription factors for the production of anthocyanin in different vegetative stages of Arabidopsis leaves. Appl. Biol. Chem. 2021, 64, 5. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential expression of RNA-Seq data at the gene level–the DESeq package. Eur. Mol. Biol. Lab. 2012, 10, f1000research. [Google Scholar]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3783–3793. [Google Scholar] [CrossRef] [PubMed]
- Karimi, M.; Inzé, D.; Depicker, A. GATEWAYTM vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 2002, 7, 193–195. [Google Scholar] [CrossRef]
- Clough, S.J.; Bent, A.F. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant. J. 1998, 16, 735–743. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakata, M.; Ohme-Takagi, M. Quantification of anthocyanin content. Bio-Protocol 2014, 4, e1098. [Google Scholar] [CrossRef]
Sr No | Compound Name | Index Name | RT | Molecular Weight (Da) | Ionization | Q1 (Da)/Q3 (Da) | Standard Equation | R2 |
---|---|---|---|---|---|---|---|---|
1 | Cyanidin-3-rutinoside-5-glucoside | Cya-3-O-rut-5-O-glu | 4.00 | 757.21 | [M]+ | 757.22/287.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
2 | Cyanidin-3,5-O-diglucoside | Cya-3,5-O-diglu | 4.26 | 611.16 | [M]+ | 611.2/287.1 | y = 8.26578e4 x + 8484.77433 | 0.999 |
3 | Cyanidin-3-O-sophoroside | Cya-3-O-sop | 5.13 | 611.16 | [M]+ | 611.2/287.15 | y = 8.75982e4 x + 130.25715 | 0.994 |
4 | Cyanidin-3-O-glucoside | Cya-3-O-glu | 5.74 | 449.10 | [M]+ | 449.1/287.1 | y = 17186.60255 x − 3.63854e4 | 0.997 |
5 | Cyanidin-3-O-sambubioside | Cya-3-O-sam | 5.77 | 581.15 | [M]+ | 581.1/287.1 | y = 1.08732e5 x − 9068.60398 | 0.995 |
6 | Cyanidin-3-O-arabinoside | Cya-3-O-ara | 6.17 | 419.09 | [M]+ | 419.1/287.1 | y = 1.64382e5 x − 4.68225e4 | 0.991 |
7 | Cyanidin-3-O-rutinoside | Cya-3-O-rut | 6.37 | 595.16 | [M]+ | 595.1/287.17 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
8 | Cyanidin-3-O-xyloside | Cya-3-O-xyl | 7.93 | 419.09 | [M]+ | 419.1/287.1 | y = 1.10453e5 x − 9603.47439 | 0.993 |
9 | Cyanidin-3-O-(6-O-malonyl-beta-D-glucoside) | Cya-3-O-(6-O-malonyl)-glu | 8.44 | 535.10 | [M]+ | 535.1/287.1 | y = 1200.53658 x − 240.15147 | 0.998 |
10 | Cyanidin-3-(6-caffeoyl)-glucoside | Cya-3-(6-caf)-glu | 9.38 | 611.14 | [M]+ | 611.14/287.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
11 | Delphinidin-3-O-sophoroside | Del-3-O-sop | 4.20 | 627.15 | [M]+ | 627.15/303.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
12 | Delphinidin-3-O-galactoside | Del-3-O-gal | 4.22 | 465.10 | [M]+ | 465.1/303.1 | y = 1.01025e5 x − 3.03078e6 | 0.997 |
13 | Delphinidin-3-O-glucoside | Del-3-O-glu | 4.72 | 465.10 | [M]+ | 465.1/303.1 | y = 4.64005e4 x − 1.47734e6 | 0.992 |
14 | Delphinidin-3-O-(6-O-malonyl-beta-D-glucoside) | Del-3-O-(6-O-malonyl)-glu | 7.33 | 551.10 | [M]+ | 551.05/303.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
15 | Naringenin | Fla_naringenin | 12.66 | 272.06 | [M+H]+ | 273/153.1 | y = 4.33270e4 x + 5542.40657 | 0.991 |
16 | Dihydromyricetin | Fla_dihydromyricetin | 3.56 | 320.05 | [M+H]+ | 321.1/139 | y = 1493.89675 x − 28326.50797 | 0.999 |
17 | Dihydrokaempferol | Fla_dihydrokaempferol | 8.37 | 288.06 | [M+H]+ | 289.2/243.1 | y = 9921.60003 x − 5702.67861 | 0.997 |
18 | Quercetin-3-O-glucoside | Fla_quercetin-glu | 8.98 | 464.09 | [M+H]+ | 465.1/303.1 | y = 3986.76471 x + 20305.1139 | 0.994 |
19 | Rutin | Fla_rutin | 9.05 | 610.15 | [M+H]+ | 611.2/303.1 | y = 1965.12178 x + 21723.4931 | 0.993 |
20 | Naringenin-7-O-glucoside | Fla_naringenin-7-O-glu | 9.48 | 434.12 | [M+H]+ | 435.1/273.1 | y = 4113.16306 x + 3592.81947 | 0.998 |
21 | Malvidin-3-O-(6-O-malonyl-beta-D-glucoside) | Mal-3-O-(6-O-malonyl)-glu | 10.29 | 579.13 | [M]+ | 579.06/331.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
22 | Malvidin-3-O-(coumaryl)-glucoside | Mal-3-O-(coumaryl)-glu | 11.12 | 595.14 | [M]+ | 639.17/331.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
23 | Malvidin-3-O-5-O-(6-O-coumaroyl)-diglucoside | Mal-3-O-5-O-(6-O-coumaroyl)-diglu | 11.45 | 801.22 | [M]+ | 801.22/331.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
24 | Malvidin-3-O-sophoroside | Mal-3-O-sop | 7.33 | 655.18 | [M]+ | 655.2/331.3 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
25 | Malvidin-3-O-glucoside | Mal-3-O-glu | 7.99 | 493.13 | [M]+ | 493.1/331.1 | y = 1.45124e5 x − 5794.19207 | 0.995 |
26 | Pelargonidin-3-O-5-O-(6-O-coumaryl)-diglucoside | Pel-3-O-5-O-(6-O-coumaryl)-diglu | 10.84 | 741.20 | [M]+ | 741.2/271.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
27 | Pelargonidin-3-O-(coumaryl)-glucoside | Pel-3-(6-p-coumaroyl)-glu | 11.07 | 579.15 | [M]+ | 579.15/271.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
28 | Pelnidin-3,5-O-diglucoside | Pel-3,5-O-diglu | 5.07 | 595.16 | [M]+ | 595.1/271.1 | y = 7.53387e4 x + 2076.55736 | 0.998 |
29 | Pelargonidin-3-O-galactoside | Pel-3-O-gal | 5.97 | 433.11 | [M]+ | 433.2/271.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
30 | Pelargonidin-3-O-sophoroside | Pel-3-O-sop | 5.98 | 595.16 | [M]+ | 595.1/271.14 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
31 | Pelargonidin-3-O-glucoside | Pel-3-O-glu | 6.72 | 433.11 | [M]+ | 433.2/271.1 | y = 1.34879e5 x + 10682.78547 | 0.996 |
32 | Pelargonidin-3-O-arabinoside | Pel-3-O-ara | 7.00 | 403.10 | [M]+ | 403.1/271.06 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
33 | Pelargonidin-3-O-sambubioside | Pel-3-O-sam | 7.02 | 565.15 | [M]+ | 565.2/271.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
34 | Pelargonidin-3-O-rutinoside | Pel-3-O-rut | 7.40 | 579.17 | [M]+ | 579.06/271.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
35 | Pelargonidin-3-rutinoside-5-glucoside | Pel-3-O-rut-5-O-glu | 7.76 | 741.22 | [M]+ | 741.22/271.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
36 | Pelargonidin-3-O-(6-O-malonyl-beta-D-glucoside) | Pel-3-O-(6-O-malonyl)-glu | 9.41 | 519.11 | [M]+ | 519.06/271.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
37 | Peonidin-3-O-(6-O-p-coumaryl)-glucoside | Peo-3-O-(6-O-p-coumaryl)-glu | 11.51 | 609.16 | [M]+ | 609.16/301.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
38 | Peonidin-3,5-O-diglucoside | Peo-3,5-O-diglu | 5.67 | 625.17 | [M]+ | 625.2/301.1 | y = 9.22018e4 x + 1625.33429 | 0.995 |
39 | Peonidin-3-O-sophoroside | Peo-3-O-sop | 6.77 | 625.17 | [M]+ | 625.1/301.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
40 | Peonidin-3-O-galactoside | Peo-3-O-gal | 6.91 | 463.1 | [M]+ | 463.3/301.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
41 | Peonidin-3-O-sambubioside | Peo-3-O-sam | 7.29 | 595.16 | [M]+ | 595.19/301.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
42 | Peonidin-3-O-glucoside | Peo-3-O-glu | 7.47 | 463.1 | [M]+ | 463.3/301.1 | y = 8108.51595 x + 207.71412 | 0.997 |
43 | Peonidin-3-O-arabinoside | Peo-3-O-ara | 7.89 | 433.11 | [M]+ | 433.2/301.1 | y = 1.98126e5 x − 140.92526 | 0.994 |
44 | Peonidin-3-O-rutinoside | Peo-3-O-rut | 8.01 | 609.18 | [M]+ | 609.5/301.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
45 | Peonidin-3-O-(6-O-malonyl-beta-D-glucoside) | Peo-3-O-(6-O-malonyl)-glu | 9.95 | 549.12 | [M]+ | 549.5/301.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
46 | Petunidin-3-O-(coumaryl)-glucoside | Pet-3-O-(coumaryl)-glu | 10.91 | 625.15 | [M]+ | 625.18/317.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
47 | Petunidin-3-O-glucoside | Pet-3-O-glu | 6.51 | 479.11 | [M]+ | 479.1/317.1 | y = 1.28059e5 x − 5.46662e5 | 0.997 |
48 | Petunidin-3-O-arabinoside | Pet-3-O-ara | 6.89 | 449.10 | [M]+ | 449.1/317.06 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
49 | Petunidin-3-O-(6-O-malonyl-beta-D-glucoside) | Pet-3-O-(6-O-malonyl)-glu | 8.41 | 565.11 | [M]+ | 565.06/317.1 | y = 4.65992e4 x − 1.35033e6 | 0.994 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rao, M.J.; Duan, M.; Yang, M.; Fan, H.; Shen, S.; Hu, L.; Wang, L. Novel Insights into Anthocyanin Metabolism and Molecular Characterization of Associated Genes in Sugarcane Rinds Using the Metabolome and Transcriptome. Int. J. Mol. Sci. 2022, 23, 338. https://doi.org/10.3390/ijms23010338
Rao MJ, Duan M, Yang M, Fan H, Shen S, Hu L, Wang L. Novel Insights into Anthocyanin Metabolism and Molecular Characterization of Associated Genes in Sugarcane Rinds Using the Metabolome and Transcriptome. International Journal of Molecular Sciences. 2022; 23(1):338. https://doi.org/10.3390/ijms23010338
Chicago/Turabian StyleRao, Muhammad Junaid, Mingzheng Duan, Mingchong Yang, Hongzeng Fan, Songhao Shen, Lihua Hu, and Lingqiang Wang. 2022. "Novel Insights into Anthocyanin Metabolism and Molecular Characterization of Associated Genes in Sugarcane Rinds Using the Metabolome and Transcriptome" International Journal of Molecular Sciences 23, no. 1: 338. https://doi.org/10.3390/ijms23010338
APA StyleRao, M. J., Duan, M., Yang, M., Fan, H., Shen, S., Hu, L., & Wang, L. (2022). Novel Insights into Anthocyanin Metabolism and Molecular Characterization of Associated Genes in Sugarcane Rinds Using the Metabolome and Transcriptome. International Journal of Molecular Sciences, 23(1), 338. https://doi.org/10.3390/ijms23010338