Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1
Abstract
:1. Introduction
2. Variant Repeats in the (CTG)n Array of the DMPK Gene
3. Variant Repeats and DM1 Phenotype
Subject | Sex | Transmission | Repeat Number | DM1 Allele Structure | Age at Onset | DM1 Clinical Symptoms | Symptoms Other Than DM1 |
---|---|---|---|---|---|---|---|
Cumming et al. 2021 [51] | |||||||
Patient 1 | M | paternal | NA | CCG at the 3′ end (exact structure not determined) | 47 y | 54 y—distal more than proximal MW, myotonia, cataract, no CI, 31 y—testicular carcinoma | / |
Patient 2 | F | paternal | 270 | CCG at the 3′ end (exact structure not determined) | NA | 49 y—cataract, 57 y—no additional symptoms | / |
Fontana et al. 2020 [55] | |||||||
I-2 | F | NA | 41 | (CTG)6(CCGCTG)15(CTG)5 | NA | / | 84 y—senile cataract |
II-1 | M | maternal | 41 | (CTG)6(CCGCTG)15(CTG)5 | asymp. at 54 y | / | / |
III-1 | F | paternal | 41 | (CTG)6(CCGCTG)15(CTG)5 | NA | / | confirmed Prader–Willi syndrome—perinatal marked axial hypotonia, mild hypertonia in LE, facial weakness, respiratory failure, micro-retro-gnathia, later medium/severe CI |
Ballester-Lopez et al. 2020 [38] | |||||||
Patient 1 | F | NA | 319 | (CTG)nCCG(CTG)17CCG(CTG)29 | 52 y | 72 y—mild generalized MW with severe axial weakness and dropped head, mild myotonia, cataract, pacemaker, NIV during night, no CI | / |
Patient 2 | F | NA | 241 | (CTG)nCCG(CTG)8(CCG)2(CTG)2 CGG(CTG)4CCG(CTG)30 | 50 y | 62 y—mild myotonia, cataract, first-degree AV block, respiratory restriction, no CI | / |
Patient 3 | F | NA | 368 | (CTG)n(CCGCTG)3(CTG)3 (CCGCTG)3(CTG)3(CCGCTG)2 (CTG)17 | in the 50 s | 60 y—generalized weakness including axial, cataract, first-degree AV block, no CI, hypothyroidism | / |
Patient 4 | M | maternal | 222 | (CTG)nCCG(CTG)8(CCG)2(CTG)2 CGG(CTG)4CCG(CTG)30 | asymp. at 35 y | / | / |
Patient 5 | F | maternal | 547 | (CTG)n(CCGCTG)3CTG(CCG)2 (CCGCTG)2(CTG)3(CCGCTG)2 (CTG)17 | 27 y | 32 y—myotonia, cataract, first-degree AV block | / |
Cumming et al. 2018 [43] | |||||||
DMGV14 | F | paternal (de novo) | 381 | (CTG)180-240(CCGCTG)53-67 (CTG)53-67 | asymp. at 33 y | / | hypothyroidism |
DMGV182 | M | paternal (de novo) | 293 | (CTG)200-300CCG(CTG)41-59 | NA | 43 y—mild masseter myotonia, early cataract, dermal fibrosis | / |
DMGV15 | F | paternal (de novo) | 327 | (CTG)260-320(CCGCTGCTG)10-14 (CTG)15-23 | asymp. at 46 y | / | mitral valve replacement for congenital heart anomaly |
Tome et al. 2018 [42] | |||||||
A1 | F | NA | 170 | (CTG)31CAG(CTG)n | NA | 69 y—severe MW, nasogastric enteral feeding, died at 72 y | / |
A2 | F | maternal | 150 | (CTG)31CAG(CTG)n | NA | 49 y—severe MW, myotonia, heart conductive defect, ICD implanted, died of heart attack at 58 y | / |
A3 | F | maternal | 140 | (CTG)29CAG(CTG)n | asymp. at 32 y | / | / |
A4.1 | F | maternal | 125 | (CTG)31CAG(CTG)n | asymp. at 13 y | / | / |
A4.2 | F | maternal | 130 | (CTG)31CAG(CTG)n | asymp. at 7 y | / | / |
A4.3 | NA | maternal | 125 | (CTG)30CAG(CTG)n | / | therapeutic abortion | / |
B1 | F | NA | 365 | (CTG)11CCG(CTG)2CCG (CTG)4CCG(CTG)n | NA | 58 y—severe MW, nasogastric enteral feeding | / |
B2 | F | maternal | 310 | (CTG)11CCG(CTG)2CCG (CTG)4CCG(CTG)n | NA | 33 y—no MW, myotonia | / |
B3.1 | NA | maternal | 300 | (CTG)11CCG(CTG)2CCG (CTG)4CCG(CTG)n | / | therapeutic abortion | / |
B3.2 | NA | maternal | 235 | (CTG)11CCG(CTG)2CCG (CTG)4CCG(CTG)n | / | therapeutic abortion | / |
B3.3 | NA | maternal | 250 | (CTG)11CCG(CTG)2CCG (CTG)4CCG(CTG)n | / | therapeutic abortion | / |
Pesovic et al. 2017 [40], Pesovic et al. 2018 [56] | |||||||
DF1-1 | F | NA | 520 | (CTG)n(CCGCTG)3(CTG)4 (CCGCTG)2CTGCCG(CTG)17 | 39 y | 57 y—proximal and distal MW, myotonia, cataract, sinus bradycardia, mitral regurgitation, glucose intolerance | / |
DF1-2 | M | maternal | 350 | (CTG)n(CCGCTG)3(CTG)4 (CCGCTG)2CTGCCG(CTG)17 | 30 y | 37 y—distal MW, calf hypertrophy, myotonia, no CI | / |
DF1-3 | M | maternal | 450 | (CTG)n(CCGCTG)3(CTG)4 (CCGCTG)2CTGCCG(CTG)17 | 15 y | 30 y—distal MW, calf hypertrophy, myotonia, no CI, infertility | / |
DF2-1 | M | NA | 320 | (CTG)n(CCG)36(CTG)n CCG(CTG)7CCG(CTG)12 | 40 y | 45 y—proximal and distal MW, myotonia, winging scapula, cataract, borderline PR interval, prolonged LV relaxation, no CI | / |
DF2-2 | F | paternal | 200 | (CTG)n(CCG)40(CTG)24 CCG(CTG)7CCG(CTG)12 | 12 y | 14 y—myotonia | / |
DF3-1 | F | NA | 240 | (CTG)n(CCG)3(CTG)6(CCG)3 (CTG)7CCG(CTG)8CCG(CTG)8 | 45 y | 46 y—proximal MW, myotonia, cataract, prolonged LV relaxation, hypothyroidism | / |
DF3-2 | F | maternal | 187 | (CTG)n(CCG)3(CTG)6(CCG)3 (CTG)7CCG(CTG)8CCG(CTG)8 | 31 y | 31 y—myotonia, leg pain | / |
DF4-1 | F | maternal | 300 | (CTG)nCCG(CCGCTG)4CTG(CCGCTG)4CTG(CCGCTG)2(CTG)5 (CCG)4(CTG)6(CCG)3(CTG)20 | 39 y | 59 y—proximal and distal MW, myotonia, cataract, borderline LV hypertrophy, mild restriction, no CI, hyperthyroidism, hyperparathyroidism | / |
DF5-2 | F | paternal (de novo) | 250 | (CTG)nCTC(CTG)26 | 22 y | 27 y—distal MW, myotonia, cataract, borderline PR interval, no CI | / |
Botta et al. 2017 [39] | |||||||
A1 | M | NA | 1000–1400 | (CTG)880-1280(CTG)2 CCG(CTG)112CCG(CTG)4 | 58 y | 66 y—MW | / |
A2 | F | paternal | 475–640 | (CTG)437-602(CTG)14 CCG(CTG)18CCG(CTG)4 | 31 y | myotonia | / |
A3 | NA | maternal | 500 | (CTG)380(CTG)28CCG(CTG)40CTC (CTG)36CCG(CTG)8CCG(CTG)4 | / | prenatal sample | / |
B1 | F | NA | 740–930 | (CTG)699-889(CCGCTG)2 (CCG)2(CTG)3(CCGCTG)3(CTG)26 | 51 y | 55 y—MW, myotonia, cataract | / |
B2 | F | maternal | 450–550 | (CTG)372-472(CTG)16CCG (CTG)2(CCGCTG)4CTG (CCGCTG)4CCG(CCGCTG)4 CCG(CCGCTG)5(CTG)22 | asymp. at 28 y | / | / |
C1 | F | NA | 140 | (CTG)30(CCG)2 (CTG)2CCG(CTG)105 | 58 y | myotonia | / |
C2 | F | maternal | 121 | (CTG)28(CCG)2 (CTG)2CCG(CTG)88 | 37 y | 40 y—myotonia | / |
C3 | NA | maternal | 113 | (CTG)31(CCG)2(CTG)2 CCG(CTG)13CCG(CTG)63 | / | prenatal sample | / |
D | F | NA | 600–700 | (CTG)514-614(CTG)68 (CCG)9(CTG)9 | 35 y | 38 y—myotonia | / |
E | F | NA | 500–660 | (CTG)404-564(CTG)33 (CCGCTG)28(CTG)7 | 49 y | 56 y—myotonia | / |
F | M | NA | 250 | (CTG)208(CTG)5 (CCGCTG)16(CTG)5 | 66 y | 70 y—mild myotonia | / |
G | M | NA | 400–580 | (CTG)330-510(CTG)8 (CCGCTG)17(CTG)2CCG(CTG)25 | 61 y | 71 y—MW, myotonia | / |
H | M | NA | 175 | (CTG)133(CTG)8CCG(CTG)5 (CCG)2CTG(CCG)4(CTG)2(CCG)4 CTG(CCG)2(CTG)2CCG(CTG)9 | 46 y | 49 y—MW, myotonia | / |
I | M | NA | 265–772 | (CTG)188-650CTGCCG (CTG)2CCG(CTG)7CCG(CTG)28 CCG(CTG)7CCG(CTG)22 | 15 y | 20 y—myotonia, cataract | / |
Santoro et al. 2013 [41] | |||||||
pt1 | NA | paternal | 550–700 | (CTG)n(CCGCTGCTG)46(CTG)5 | NA | late-onset DM1 with distal MW, myotonia, cataract, sinus bradycardia, RBBB, occasional ectopic premature complexes | / |
pt2 | NA | paternal | 600–830 | (CTG)n(CCGCTGCTG)61(CTG)5 | NA | late onset proximal MW, myotonia, cataract, pacemaker implanted due to long HV, later ICD implanted due to non-sustained ventricular tachycardia, hypothyroidism | / |
pt3 | NA | NA | 65 | (CTG)n(CCGCTGCTG)5(CTG)3 | 30 y | 70 y—distal MW in UE, and proximal MW in LE, cataract, previous heart attack, first-degree AV block, RBBB, mild dysexecutive syndrome, diabetes, hypothyroidism | / |
pt4 | NA | NA | 900 | (CTG)n(CTG)8CCG(CTG)2CCG (CTG)2CCG(CTG)5CCG (CTG)8CCG(CTG)4CCG(CTG)16 | 28 y | 32 y—facial and hand MW, first-degree AV block, prolonged HV, pacemaker and later ICD implanted | / |
pt5 | NA | maternal | 970 | (CTG)n(CTG)5CCG(CTG)5 CCG(CTG)6CCG(CTG)12 | 20 y | 78 y—myotonia, cataract, first-degree AV block, mild respiratory restriction, NIV during sleep | / |
Braida et al. 2010 [36] | |||||||
family co-segregating DM1 with CMT | / | / | 170–225 | (CTG)n(GGC)3G(CCG)20 (CCGCTG)14(CTG)35 | / | typical DM1 | Charcot–Marie–Tooth and/or acute encephalopathy attacks and/or early hearing loss |
Musova et al. 2009 [37] | |||||||
A-1 | NA | maternal | 230 | (CTG)nCTC(CTG)9(CCGCTG)2 (CTG)2CCG(CTG)5CCG(CTG)13 | / | prenatal sample | / |
A-2 | F | paternal | 300 | (CTG)nCTC(CTG)9(CCGCTG)2 (CTG)2CCG(CTG)5CCG(CTG)13 | asymp. at 31 y | / | / |
A-3 | F | paternal | 400–500 | (CTG)nCTC(CTG)7CCG(CTG)5 CCG(CTG)5CCG(CTG)13 | asymp. at 23 y | / | / |
A-4 | M | NA | 600–800 | (CTG)nCTC(CTG)9CCG(CTG)5 CCG(CTG)5CCG(CTG)13 | 40 y | distal MW, myotonia, cataract, hyperglycemia, axonal polyneuropathy | / |
A-5 | F | NA | 450–650 | (CTG)nCTC(CTG)9 (CCGCTGCTG)5CCG(CTG)10 | NA | mild DM1, 42 y—fatigue, first-degree AV block | / |
A-6 | F | maternal | 650–750 | (CTG)nCTC(CTG)9 (CCGCTGCTG)4CCG(CTG)10 | asymp. at 29 y | / | / |
A-7 | M | maternal | 270 | (CTG)nCTC(CTG)9 (CCGCTGCTG)5CCG(CTG)10 | asymp. at 31 y | / | / |
B-1 | M | NA | 450 | (CTG)n(CCGCTG)33-39 CCG(CCGCTG)3(CTG)18 | NA | mild DM1, 40 y—cataract, 50 y—masticatory and hand myotonia, cramps | / |
B-2 | M | paternal | 400 | (CTG)n(CCGCTG)35-37 (CCG)12CTGCCG(CTG)11 | asymp. at 25 y | / | / |
C | F | NA | 700 | (CTG)n(CCGCTG)2(CCG)8CTG (CCG)6CTG(CCG)6CTGCCGCTG (CCG)2CTG(CCGCTG)3(CCG)2 CTG(CCGCTG)3CTG(CCGCTG)4 CTG(CCGCTG)4CCG(CCGCTG)3 (CTG)3(CCGCTG)2(CTG)10 | NA | 23 y—cramps, 41 y—distal MW, myotonia | / |
D | M | NA | 37 | (CTG)6(CCGCTG)13(CTG)5 | / | / | congenital myotonia-like symptoms since age of 7, mild muscle hypertrophy |
E-1 | M | paternal | 43 | (CTG)6(CCGCTG)16(CTG)5 | / | / | since birth muscle stiffness, 20 y—short stature, dysmorphic features, contractures, distal leg muscle atrophy, hypertrophic cardiomyopathy |
E-2 | M | NA | 43 | (CTG)6(CCGCTG)16(CTG)5 | / | / | short stature, contractures |
4. Molecular Effects of Interrupted (CTG)n Array in the DMPK Locus
4.1. Variant Repeats and Somatic Instability of DMPK Expansions
4.2. Variant Repeats and Germ-Line Instability of DMPK Expansions
4.3. Variant Repeats and DNA Methylation in the DMPK Locus
5. Future Perspectives and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Harper, P. Myotonic Dystrophy, 3rd ed.; WB Saunders: London, UK, 2001. [Google Scholar]
- Meola, G.; Cardani, R. Myotonic dystrophies: An update on clinical aspects, genetic, pathology, and molecular pathomechanisms. Biochim. Biophys. Acta 2015, 1852, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Brook, J.D.; McCurrach, M.E.; Harley, H.G.; Buckler, A.J.; Church, D.; Aburatani, H.; Hunter, K.; Stanton, V.P.; Thirion, J.P.; Hudson, T.; et al. Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992, 69, 385. [Google Scholar] [CrossRef]
- Fu, Y.H.; Pizzuti, A.; Fenwick, R.G., Jr.; King, J.; Rajnarayan, S.; Dunne, P.W.; Dubel, J.; Nasser, G.A.; Ashizawa, T.; de Jong, P.; et al. An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 1992, 255, 1256–1258. [Google Scholar] [CrossRef]
- Mahadevan, M.; Tsilfidis, C.; Sabourin, L.; Shutler, G.; Amemiya, C.; Jansen, G.; Neville, C.; Narang, M.; Barcelo, J.; O’Hoy, K.; et al. Myotonic dystrophy mutation: An unstable CTG repeat in the 3′ untranslated region of the gene. Science 1992, 255, 1253–1255. [Google Scholar] [CrossRef] [PubMed]
- Liquori, C.L.; Ricker, K.; Moseley, M.L.; Jacobsen, J.F.; Kress, W.; Naylor, S.L.; Day, J.W.; Ranum, L.P. Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001, 293, 864–867. [Google Scholar] [CrossRef] [Green Version]
- Peric, S.; Vujnic, M.; Dobricic, V.; Marjanovic, A.; Basta, I.; Novakovic, I.; Lavrnic, D.; Rakocevic-Stojanovic, V. Five-year study of quality of life in myotonic dystrophy. Acta Neurol. Scand. 2016, 134, 346–351. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.E.; Butterfield, R.J. Population-Based Prevalence of Myotonic Dystrophy Type 1 Using Genetic Analysis of Statewide Blood Screening Program. Neurology 2021, 96, e1045–e1053. [Google Scholar] [CrossRef]
- De Antonio, M.; Dogan, C.; Hamroun, D.; Mati, M.; Zerrouki, S.; Eymard, B.; Katsahian, S.; Bassez, G.; French Myotonic Dystrophy Clinical, N. Unravelling the myotonic dystrophy type 1 clinical spectrum: A systematic registry-based study with implications for disease classification. Rev. Neurol. 2016, 172, 572–580. [Google Scholar] [CrossRef]
- Udd, B.; Krahe, R. The myotonic dystrophies: Molecular, clinical, and therapeutic challenges. Lancet Neurol. 2012, 11, 891–905. [Google Scholar] [CrossRef]
- Rakocevic-Stojanovic, V.; Peric, S.; Basta, I.; Dobricic, V.; Ralic, V.; Kacar, A.; Peric, M.; Novakovic, I. Variability of multisystemic features in myotonic dystrophy type 1--lessons from Serbian registry. Neurol. Res. 2015, 37, 939–944. [Google Scholar] [CrossRef]
- Fleischer, B. Über myotonische Dystrophie mit Katarakt. Albrecht Graefes Arch. Ophthalmol. 1918, 96, 91–133. [Google Scholar] [CrossRef]
- Howeler, C.J.; Busch, H.F.; Geraedts, J.P.; Niermeijer, M.F.; Staal, A. Anticipation in myotonic dystrophy: Fact or fiction? Brain 1989, 112, 779–797. [Google Scholar] [CrossRef]
- Lamar, K.M.; McNally, E.M. Genetic Modifiers for Neuromuscular Diseases. J. Neuromuscul. Dis. 2014, 1, 3–13. [Google Scholar] [CrossRef] [Green Version]
- The International Myotonic Dystrophy Consortium (IDMC). New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1). Neurology 2000, 54, 1218–1221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thornton, C.A.; Johnson, K.; Moxley, R.T., 3rd. Myotonic dystrophy patients have larger CTG expansions in skeletal muscle than in leukocytes. Ann. Neurol. 1994, 35, 104–107. [Google Scholar] [CrossRef]
- Monckton, D.G.; Wong, L.J.; Ashizawa, T.; Caskey, C.T. Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: Small pool PCR analyses. Hum. Mol. Genet. 1995, 4, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Morales, F.; Couto, J.M.; Higham, C.F.; Hogg, G.; Cuenca, P.; Braida, C.; Wilson, R.H.; Adam, B.; del Valle, G.; Brian, R.; et al. Somatic instability of the expanded CTG triplet repeat in myotonic dystrophy type 1 is a heritable quantitative trait and modifier of disease severity. Hum. Mol. Genet. 2012, 21, 3558–3567. [Google Scholar] [CrossRef] [Green Version]
- Morales, F.; Vásquez, M.; Corrales, E.; Vindas-Smith, R.; Santamaría-Ulloa, C.; Zhang, B.; Sirito, M.; Estecio, M.R.; Krahe, R.; Monckton, D.G. Longitudinal increases in somatic mosaicism of the expanded CTG repeat in myotonic dystrophy type 1 are associated with variation in age-at-onset. Hum. Mol. Genet. 2020, 29, 2496–2507. [Google Scholar] [CrossRef]
- Harley, H.G.; Rundle, S.A.; MacMillan, J.C.; Myring, J.; Brook, J.D.; Crow, S.; Reardon, W.; Fenton, I.; Shaw, D.J.; Harper, P.S. Size of the unstable CTG repeat sequence in relation to phenotype and parental transmission in myotonic dystrophy. Am. J. Hum. Genet. 1993, 52, 1164–1174. [Google Scholar]
- Wong, L.J.; Ashizawa, T.; Monckton, D.G.; Caskey, C.T.; Richards, C.S. Somatic heterogeneity of the CTG repeat in myotonic dystrophy is age and size dependent. Am. J. Hum. Genet. 1995, 56, 114–122. [Google Scholar] [PubMed]
- Boucher, C.A.; King, S.K.; Carey, N.; Krahe, R.; Winchester, C.L.; Rahman, S.; Creavin, T.; Meghji, P.; Bailey, M.E.; Chartier, F.L.; et al. A novel homeodomain-encoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum. Mol. Genet. 1995, 4, 1919–1925. [Google Scholar] [CrossRef]
- Barbe, L.; Lanni, S.; Lopez-Castel, A.; Franck, S.; Spits, C.; Keymolen, K.; Seneca, S.; Tome, S.; Miron, I.; Letourneau, J.; et al. CpG Methylation, a Parent-of-Origin Effect for Maternal-Biased Transmission of Congenital Myotonic Dystrophy. Am. J. Hum. Genet. 2017, 100, 488–505. [Google Scholar] [CrossRef] [Green Version]
- Steinbach, P.; Glaser, D.; Vogel, W.; Wolf, M.; Schwemmle, S. The DMPK gene of severely affected myotonic dystrophy patients is hypermethylated proximal to the largely expanded CTG repeat. Am. J. Hum. Genet. 1998, 62, 278–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavedan, C.; Hofmann-Radvanyi, H.; Shelbourne, P.; Rabes, J.P.; Duros, C.; Savoy, D.; Dehaupas, I.; Luce, S.; Johnson, K.; Junien, C. Myotonic dystrophy: Size- and sex-dependent dynamics of CTG meiotic instability, and somatic mosaicism. Am. J. Hum. Genet. 1993, 52, 875–883. [Google Scholar] [PubMed]
- Morales, F.; Corrales, E.; Zhang, B.; Vásquez, M.; Santamaría-Ulloa, C.; Quesada, H.; Sirito, M.; Estecio, M.R.; Monckton, D.G.; Krahe, R. Myotonic dystrophy type 1 (DM1) clinical sub-types and CTCF site methylation status flanking the CTG expansion are mutant allele length-dependent. Hum. Mol. Genet. 2021, ddab243. [Google Scholar] [CrossRef] [PubMed]
- Hildonen, M.; Knak, K.L.; Duno, M.; Vissing, J.; Tumer, Z. Stable Longitudinal Methylation Levels at the CpG Sites Flanking the CTG Repeat of DMPK in Patients with Myotonic Dystrophy Type 1. Genes 2020, 11, 936. [Google Scholar] [CrossRef]
- Santoro, M.; Fontana, L.; Masciullo, M.; Bianchi, M.L.; Rossi, S.; Leoncini, E.; Novelli, G.; Botta, A.; Silvestri, G. Expansion size and presence of CCG/CTC/CGG sequence interruptions in the expanded CTG array are independently associated to hypermethylation at the DMPK locus in myotonic dystrophy type 1 (DM1). Biochim. Biophys. Acta 2015, 1852, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.Y.; Ranum, L.P.; Duvick, L.A.; Servadio, A.; Zoghbi, H.Y.; Orr, H.T. Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type I. Nat. Genet. 1993, 5, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Matsuura, T.; Coolbaugh, M.; Zuhlke, C.; Nakamura, K.; Rasmussen, A.; Siciliano, M.J.; Ashizawa, T.; Lin, X. Instability of expanded CAG/CAA repeats in spinocerebellar ataxia type 17. Eur. J. Hum. Genet. 2008, 16, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Imbert, G.; Saudou, F.; Yvert, G.; Devys, D.; Trottier, Y.; Garnier, J.M.; Weber, C.; Mandel, J.L.; Cancel, G.; Abbas, N.; et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat. Genet. 1996, 14, 285–291. [Google Scholar] [CrossRef]
- McFarland, K.N.; Liu, J.; Landrian, I.; Gao, R.; Sarkar, P.S.; Raskin, S.; Moscovich, M.; Gatto, E.M.; Teive, H.A.; Ochoa, A.; et al. Paradoxical effects of repeat interruptions on spinocerebellar ataxia type 10 expansions and repeat instability. Eur. J. Hum. Genet. 2013, 21, 1272–1276. [Google Scholar] [CrossRef] [Green Version]
- Yrigollen, C.M.; Durbin-Johnson, B.; Gane, L.; Nelson, D.L.; Hagerman, R.; Hagerman, P.J.; Tassone, F. AGG interruptions within the maternal FMR1 gene reduce the risk of offspring with fragile X syndrome. Genet. Med. 2012, 14, 729–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahyera, A.S.; Schneider, T.; Halliger-Keller, B.; Schrooten, K.; Horner, E.M.; Rost, S.; Kress, W. Distribution and Structure of DM2 Repeat Tract Alleles in the German Population. Front. Neurol. 2018, 9, 463. [Google Scholar] [CrossRef] [PubMed]
- Leeflang, E.P.; Arnheim, N. A novel repeat structure at the myotonic dystrophy locus in a 37 repeat allele with unexpectedly high stability. Hum. Mol. Genet. 1995, 4, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Braida, C.; Stefanatos, R.K.; Adam, B.; Mahajan, N.; Smeets, H.J.; Niel, F.; Goizet, C.; Arveiler, B.; Koenig, M.; Lagier-Tourenne, C.; et al. Variant CCG and GGC repeats within the CTG expansion dramatically modify mutational dynamics and likely contribute toward unusual symptoms in some myotonic dystrophy type 1 patients. Hum. Mol. Genet. 2010, 19, 1399–1412. [Google Scholar] [CrossRef] [Green Version]
- Musova, Z.; Mazanec, R.; Krepelova, A.; Ehler, E.; Vales, J.; Jaklova, R.; Prochazka, T.; Koukal, P.; Marikova, T.; Kraus, J.; et al. Highly unstable sequence interruptions of the CTG repeat in the myotonic dystrophy gene. Am. J. Med. Genet. A 2009, 149A, 1365–1374. [Google Scholar] [CrossRef] [PubMed]
- Ballester-Lopez, A.; Koehorst, E. A DM1 family with interruptions associated with atypical symptoms and late onset but not with a milder phenotype. Hum. Mutat. 2020, 41, 420–431. [Google Scholar] [CrossRef]
- Botta, A.; Rossi, G.; Marcaurelio, M.; Fontana, L.; D’Apice, M.R.; Brancati, F.; Massa, R.; Monckton, D.G.; Sangiuolo, F.; Novelli, G. Identification and characterization of 5′ CCG interruptions in complex DMPK expanded alleles. Eur. J. Hum. Genet. 2017, 25, 257–261. [Google Scholar] [CrossRef]
- Pesovic, J.; Peric, S.; Brkusanin, M.; Brajuskovic, G.; Rakocevic-Stojanovic, V.; Savic-Pavicevic, D. Molecular genetic and clinical characterization of myotonic dystrophy type 1 patients carrying variant repeats within DMPK expansions. Neurogenetics 2017, 18, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Santoro, M.; Masciullo, M.; Pietrobono, R.; Conte, G.; Modoni, A.; Bianchi, M.L.; Rizzo, V.; Pomponi, M.G.; Tasca, G.; Neri, G.; et al. Molecular, clinical, and muscle studies in myotonic dystrophy type 1 (DM1) associated with novel variant CCG expansions. J. Neurol. 2013, 260, 1245–1257. [Google Scholar] [CrossRef]
- Tome, S.; Dandelot, E.; Dogan, C.; Bertrand, A.; Genevieve, D.; Pereon, Y.; Simon, M.; Bonnefont, J.P.; Bassez, G.; DM contraction study group; et al. Unusual association of a unique CAG interruption in 5′ of DM1 CTG repeats with intergenerational contractions and low somatic mosaicism. Hum. Mutat. 2018, 39, 970–982. [Google Scholar] [CrossRef]
- Cumming, S.A.; Hamilton, M.J.; Robb, Y.; Gregory, H.; McWilliam, C.; Cooper, A.; Adam, B.; McGhie, J.; Hamilton, G.; Herzyk, P.; et al. De novo repeat interruptions are associated with reduced somatic instability and mild or absent clinical features in myotonic dystrophy type 1. Eur. J. Hum. Genet. 2018, 26, 1635–1647. [Google Scholar] [CrossRef] [PubMed]
- Mangin, A.; de Pontual, L.; Tsai, Y.C. Robust Detection of Somatic Mosaicism and Repeat Interruptions by Long-Read Targeted Sequencing in Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2021, 22, 2616. [Google Scholar] [CrossRef] [PubMed]
- Radvansky, J.; Ficek, A.; Minarik, G.; Palffy, R.; Kadasi, L. Effect of unexpected sequence interruptions to conventional PCR and repeat primed PCR in myotonic dystrophy type 1 testing. Diagn. Mol. Pathol. 2011, 20, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Overend, G.; Légaré, C.; Mathieu, J.; Bouchard, L.; Gagnon, C.; Monckton, D.G. Allele length of the DMPK CTG repeat is a predictor of progressive myotonic dystrophy type 1 phenotypes. Hum. Mol. Genet. 2019, 28, 2245–2254. [Google Scholar] [CrossRef]
- Cumming, S.A.; Jimenez-Moreno, C. Genetic determinants of disease severity in the myotonic dystrophy type 1 OPTIMISTIC cohort. Neurology 2019, 93, e995–e1009. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.N.; van der Plas, E. Variant repeats within the DMPK CTG expansion protect function in myotonic dystrophy type 1. Neurol. Genet. 2020, 6, e504. [Google Scholar] [CrossRef]
- Meola, G.; Sansone, V.; Perani, D.; Scarone, S.; Cappa, S.; Dragoni, C.; Cattaneo, E.; Cotelli, M.; Gobbo, C.; Fazio, F.; et al. Executive dysfunction and avoidant personality trait in myotonic dystrophy type 1 (DM-1) and in proximal myotonic myopathy (PROMM/DM-2). Neuromuscul. Disord. 2003, 13, 813–821. [Google Scholar] [CrossRef]
- Peric, S.; Rakocevic Stojanovic, V.; Mandic Stojmenovic, G.; Ilic, V.; Kovacevic, M.; Parojcic, A.; Pesovic, J.; Mijajlovic, M.; Savic-Pavicevic, D.; Meola, G. Clusters of cognitive impairment among different phenotypes of myotonic dystrophy type 1 and type 2. Neurol. Sci. 2017, 38, 415–423. [Google Scholar] [CrossRef]
- Cumming, S.A.; Oliwa, A.; Stevens, G.; Ballantyne, B.; Mann, C.; Razvi, S.; Longman, C.; Monckton, D.G.; Farrugia, M.E. A DM1 patient with CCG variant repeats: Reaching the diagnosis. Neuromuscul. Disord. 2021, 31, 232–238. [Google Scholar] [CrossRef]
- Wenninger, S.; Cumming, S.A.; Gutschmidt, K.; Okkersen, K.; Jimenez-Moreno, A.C.; Daidj, F.; Lochmuller, H.; Hogarth, F.; Knoop, H.; Bassez, G.; et al. Associations Between Variant Repeat Interruptions and Clinical Outcomes in Myotonic Dystrophy Type 1. Neurol. Genet. 2021, 7, e572. [Google Scholar] [CrossRef] [PubMed]
- Emparanza, J.I.; López de Munain, A.; Greene, M.H.; Matheu, A.; Fernández-Torrón, R.; Gadalla, S.M. Cancer phenotype in myotonic dystrophy patients: Results from a meta-analysis. Muscle Nerve 2018, 58, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Locci, S.; Cardani, R.; Brunori, P.; Lucchiari, S.; Comi, G.P.; Federico, A.; De Stefano, N.; Meola, G.; Mignarri, A. Co-occurrence of DMPK expansion and CLCN1 mutation in a patient with myotonia. Neurol. Sci. 2021, 42, 5365–5368. [Google Scholar] [CrossRef]
- Fontana, L.; Santoro, M.; D’Apice, M.R.; Peluso, F.; Gori, G.; Morrone, A.; Novelli, G.; Dosa, L.; Botta, A. Identification, molecular characterization and segregation analysis of a variant DMPK pre-mutation allele in a three-generation Italian family. Acta Myol. 2020, 39, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Pesovic, J.; Peric, S.; Brkusanin, M.; Brajuskovic, G.; Rakocevic-Stojanovic, V.; Savic-Pavicevic, D. Repeat Interruptions Modify Age at Onset in Myotonic Dystrophy Type 1 by Stabilizing DMPK Expansions in Somatic Cells. Front. Genet. 2018, 9, 601. [Google Scholar] [CrossRef] [PubMed]
- Légaré, C.; Overend, G.; Guay, S.P.; Monckton, D.G.; Mathieu, J.; Gagnon, C.; Bouchard, L. DMPK gene DNA methylation levels are associated with muscular and respiratory profiles in DM1. Neurol. Genet. 2019, 5, e338. [Google Scholar] [CrossRef] [Green Version]
- Day, J.W.; Ranum, L.P. RNA pathogenesis of the myotonic dystrophies. Neuromuscul. Disord. 2005, 15, 5–16. [Google Scholar] [CrossRef]
- Zu, T.; Gibbens, B.; Doty, N.S.; Gomes-Pereira, M.; Huguet, A.; Stone, M.D.; Margolis, J.; Peterson, M.; Markowski, T.W.; Ingram, M.A.; et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc. Natl. Acad. Sci. USA 2011, 108, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Perez, B.A.; Shorrock, H.K. CCG•CGG interruptions in high-penetrance SCA8 families increase RAN translation and protein toxicity. EMBO Mol. Med. 2021, 13, e14095. [Google Scholar] [CrossRef]
- Gomes-Pereira, M.; Bidichandani, S.I.; Monckton, D.G. Analysis of unstable triplet repeats using small-pool polymerase chain reaction. Methods Mol. Biol. 2004, 277, 61–76. [Google Scholar] [CrossRef]
- Martorell, L.; Monckton, D.G.; Gamez, J.; Johnson, K.J.; Gich, I.; Lopez de Munain, A.; Baiget, M. Progression of somatic CTG repeat length heterogeneity in the blood cells of myotonic dystrophy patients. Hum. Mol. Genet. 1998, 7, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Wright, G.E.B.; Black, H.F.; Collins, J.A.; Gall-Duncan, T.; Caron, N.S.; Pearson, C.E.; Hayden, M.R. Interrupting sequence variants and age of onset in Huntington’s disease: Clinical implications and emerging therapies. Lancet Neurol. 2020, 19, 930–939. [Google Scholar] [CrossRef]
- Ashizawa, T.; Anvret, M.; Baiget, M.; Barcelo, J.M.; Brunner, H.; Cobo, A.M.; Dallapiccola, B.; Fenwick, R.G., Jr.; Grandell, U.; Harley, H.; et al. Characteristics of intergenerational contractions of the CTG repeat in myotonic dystrophy. Am. J. Hum. Genet. 1994, 54, 414–423. [Google Scholar] [PubMed]
- Rakocevic-Stojanovic, V.; Savic, D.; Pavlovic, S.; Lavrnic, D.; Stevic, Z.; Basta, I.; Romac, S.; Apostolski, S. Intergenerational changes of CTG repeat depending on the sex of the transmitting parent in myotonic dystrophy type 1. Eur. J. Neurol. 2005, 12, 236–237. [Google Scholar] [CrossRef] [PubMed]
- Salehi, L.B.; Bonifazi, E.; Stasio, E.D.; Gennarelli, M.; Botta, A.; Vallo, L.; Iraci, R.; Massa, R.; Antonini, G.; Angelini, C.; et al. Risk prediction for clinical phenotype in myotonic dystrophy type 1: Data from 2650 patients. Genet. Test. 2007, 11, 84–90. [Google Scholar] [CrossRef]
- Savic, D.; Keckarevic, D.; Brankovic-Sreckovic, V.; Apostolski, S.; Todorovic, S.; Romac, S. Clinical case report atypical myopathy in a young girl with 91 CTG repeats in DM1 locus and a positive DM1 family history. Int. J. Neurosci. 2006, 116, 1509–1518. [Google Scholar] [CrossRef]
- Filippova, G.N.; Thienes, C.P.; Penn, B.H.; Cho, D.H.; Hu, Y.J.; Moore, J.M.; Klesert, T.R.; Lobanenkov, V.V.; Tapscott, S.J. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet. 2001, 28, 335–343. [Google Scholar] [CrossRef]
- López Castel, A.; Nakamori, M.; Tomé, S.; Chitayat, D.; Gourdon, G.; Thornton, C.A.; Pearson, C.E. Expanded CTG repeat demarcates a boundary for abnormal CpG methylation in myotonic dystrophy patient tissues. Hum. Mol. Genet. 2011, 20, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanovsky-Dagan, S.; Avitzour, M.; Altarescu, G.; Renbaum, P.; Eldar-Geva, T.; Schonberger, O.; Mitrani-Rosenbaum, S.; Levy-Lahad, E.; Birnbaum, R.Y.; Gepstein, L.; et al. Uncovering the Role of Hypermethylation by CTG Expansion in Myotonic Dystrophy Type 1 Using Mutant Human Embryonic Stem Cells. Stem Cell Rep. 2015, 5, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Oberlé, I.; Rousseau, F.; Heitz, D.; Kretz, C.; Devys, D.; Hanauer, A.; Boué, J.; Bertheas, M.F.; Mandel, J.L. Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome. Science 1991, 252, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Naumann, A.; Hochstein, N.; Weber, S.; Fanning, E.; Doerfler, W. A distinct DNA-methylation boundary in the 5′- upstream sequence of the FMR1 promoter binds nuclear proteins and is lost in fragile X syndrome. Am. J. Hum. Genet. 2009, 85, 606–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xi, Z.; Zhang, M.; Bruni, A.C.; Maletta, R.G.; Colao, R.; Fratta, P.; Polke, J.M.; Sweeney, M.G.; Mudanohwo, E.; Nacmias, B.; et al. The C9orf72 repeat expansion itself is methylated in ALS and FTLD patients. Acta Neuropathol. 2015, 129, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Garg, P.; Jadhav, B.; Rodriguez, O.L.; Patel, N.; Martin-Trujillo, A.; Jain, M.; Metsu, S.; Olsen, H.; Paten, B.; Ritz, B.; et al. A Survey of Rare Epigenetic Variation in 23,116 Human Genomes Identifies Disease-Relevant Epivariations and CGG Expansions. Am. J. Hum. Genet. 2020, 107, 654–669. [Google Scholar] [CrossRef]
- Wöhrle, D.; Hennig, I.; Vogel, W.; Steinbach, P. Mitotic stability of fragile X mutations in differentiated cells indicates early post-conceptional trinucleotide repeat expansion. Nat. Genet. 1993, 4, 140–142. [Google Scholar] [CrossRef]
- Radvansky, J.; Ficek, A.; Kadasi, L. Upgrading molecular diagnostics of myotonic dystrophies: Multiplexing for simultaneous characterization of the DMPK and ZNF9 repeat motifs. Mol. Cell. Probes 2011, 25, 182–185. [Google Scholar] [CrossRef]
- Giesselmann, P.; Brändl, B.; Raimondeau, E.; Bowen, R.; Rohrandt, C.; Tandon, R.; Kretzmer, H.; Assum, G.; Galonska, C.; Siebert, R.; et al. Analysis of short tandem repeat expansions and their methylation state with nanopore sequencing. Nat. Biotechnol. 2019, 37, 1478–1481. [Google Scholar] [CrossRef] [Green Version]
- Wieben, E.D.; Aleff, R.A.; Basu, S.; Sarangi, V.; Bowman, B.; McLaughlin, I.J.; Mills, J.R.; Butz, M.L.; Highsmith, E.W.; Ida, C.M.; et al. Amplification-free long-read sequencing of TCF4 expanded trinucleotide repeats in Fuchs Endothelial Corneal Dystrophy. PLoS ONE 2019, 14, e0219446. [Google Scholar] [CrossRef]
- Provenzano, C.; Cappella, M.; Valaperta, R.; Cardani, R.; Meola, G.; Martelli, F.; Cardinali, B.; Falcone, G. CRISPR/Cas9-Mediated Deletion of CTG Expansions Recovers Normal Phenotype in Myogenic Cells Derived from Myotonic Dystrophy 1 Patients. Mol. Ther. Nucleic Acids 2017, 9, 337–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheeler, T.M.; Leger, A.J.; Pandey, S.K.; MacLeod, A.R.; Nakamori, M.; Cheng, S.H.; Wentworth, B.M.; Bennett, C.F.; Thornton, C.A. Targeting nuclear RNA for in vivo correction of myotonic dystrophy. Nature 2012, 488, 111–115. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Jones, K.; Timchenko, N.A.; Timchenko, L. GSK3β is a new therapeutic target for myotonic dystrophy type 1. Rare Dis. 2013, 1, e26555. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peric, S.; Pesovic, J.; Savic-Pavicevic, D.; Rakocevic Stojanovic, V.; Meola, G. Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. Int. J. Mol. Sci. 2022, 23, 354. https://doi.org/10.3390/ijms23010354
Peric S, Pesovic J, Savic-Pavicevic D, Rakocevic Stojanovic V, Meola G. Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. International Journal of Molecular Sciences. 2022; 23(1):354. https://doi.org/10.3390/ijms23010354
Chicago/Turabian StylePeric, Stojan, Jovan Pesovic, Dusanka Savic-Pavicevic, Vidosava Rakocevic Stojanovic, and Giovanni Meola. 2022. "Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1" International Journal of Molecular Sciences 23, no. 1: 354. https://doi.org/10.3390/ijms23010354
APA StylePeric, S., Pesovic, J., Savic-Pavicevic, D., Rakocevic Stojanovic, V., & Meola, G. (2022). Molecular and Clinical Implications of Variant Repeats in Myotonic Dystrophy Type 1. International Journal of Molecular Sciences, 23(1), 354. https://doi.org/10.3390/ijms23010354