Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps
Abstract
:1. Introduction
2. Type 2 Inflammatory Cytokines and TSLP
2.1. Interleukin 4
2.2. Interleukin 13
2.3. Interleukin 5
2.4. Interleukin 9
2.5. Thymic Stromal Lymphopoietin
3. Interleukin-1 Family Cytokines
3.1. Interleukin 1
3.2. Interleukin 33
4. Tumor Necrosis Factor-α
5. Interleukin-6 Family Cytokines
5.1. Interleukin 6
5.2. Oncostatin M
6. Interleukin-17 Family Cytokines and Th17 Cytokines
6.1. Interleukin 17
6.2. Interleukin 25
6.3. Interleukin 22
7. Type 1 Inflammatory Cytokines
7.1. Interferon-γ
7.2. Interleukin 2
8. Regulatory T-Cell Cytokines
8.1. Interleukin 10
8.2. Transforming Growth Factor-β
8.3. Interleukin 32
9. Conclusions
Funding
Conflicts of Interest
References
- Sharma, R.; Lakhani, R.; Rimmer, J.; Hopkins, C. Surgical interventions for chronic rhinosinusitis with nasal polyps. Cochrane Database Syst. Rev. 2014, 11, CD006990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartier, S.; Coste, A.; Béquignon, E. Biotherapy and treatment of adult primary chronic rhinosinusitis with nasal polyps: Cellular and molecular bases. Eur. Ann. Otorhinolaryngol. Head Neck Dis. 2020, 138, 355–362. [Google Scholar] [CrossRef] [PubMed]
- Tomassen, P.; Vandeplas, G.; Van Zele, T.; Cardell, L.O.; Arebro, J.; Olze, H.; Förster-Ruhrmann, U.; Kowalski, M.L.; Olszewska-Ziąber, A.; Holtappels, G.; et al. Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. J. Allergy Clin. Immunol. 2016, 137, 1449–1456.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachert, C.; Zhang, N.; Patou, J.; Van Zele, T.; Gevaert, P. Role of staphylococcal superantigens in upper airway disease. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 34–38. [Google Scholar] [CrossRef]
- Shin, S.-H.; Lee, S.-H.; Jeong, H.-S.; Kita, H. The Effect of Nasal Polyp Epithelial Cells on Eosinophil Activation. Laryngoscope 2003, 113, 1374–1377. [Google Scholar] [CrossRef] [PubMed]
- Vroling, A.B.; Fokkens, W.J.; Van Drunen, C.M. How epithelial cells detect danger: Aiding the immune response. Allergy 2008, 63, 1110–1123. [Google Scholar] [CrossRef] [PubMed]
- Levan-Petit, I.; Lelievre, E.; Barra, A.; Limosin, A.; Gombert, B.; Preud’Homme, J.-L.; Lecron, J.-C. Th2 cytokine dependence of IgD production by normal human B cells. Int. Immunol. 1999, 11, 1819–1828. [Google Scholar] [CrossRef] [PubMed]
- Van Zele, T.; Gevaert, P.; Holtappels, G.; Van Cauwenberge, P.; Bachert, C. Local immunoglobulin production in nasal polyposis is modulated by superantigens. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 2007, 37, 1840–1847. [Google Scholar] [CrossRef]
- Suh, K.S.; Park, H.S.; Nahm, D.H.; Kim, Y.K.; Lee, Y.M.; Park, K. Role of IgG, IgA, and IgE Antibodies in Nasal Polyp Tissue: Their Relationships with Eosinophilic Infiltration and Degranulation. J. Korean Med. Sci. 2002, 17, 375–380. [Google Scholar] [CrossRef] [Green Version]
- Yoshifuku, K.; Matsune, S.; Ohori, J.; Sagara, Y.; Fukuiwa, T.; Kurono, Y. IL-4 and TNF-alpha increased the secretion of eotaxin from cultured fibroblasts of nasal polyps with eosinophil infiltration. Rhinology 2007, 45, 235–241. [Google Scholar]
- Steinke, J.W.; Crouse, C.D.; Bradley, D.; Hise, K.; Lynch, K.; Kountakis, S.E.; Borish, L. Characterization of Interleukin-4–Stimulated Nasal Polyp Fibroblasts. Am. J. Respir. Cell Mol. Biol. 2004, 30, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Wise, S.K.; Laury, A.M.; Katz, E.H.; Beste, K.A.D.; Parkos, C.A.; Nusrat, A. Interleukin-4 and interleukin-13 compromise the sinonasal epithelial barrier and perturb intercellular junction protein expression. Int. Forum Allergy Rhinol. 2014, 4, 361–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wise, S.K.; Bs, K.A.D.B.; Hoddeson, E.K.; Parkos, C.A.; Nusrat, A. Sinonasal epithelial wound resealing in an in vitro model: Inhibition of wound closure with IL-4 exposure. Int. Forum Allergy Rhinol. 2013, 3, 439–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachert, C.; Mannent, L.; Naclerio, R.M.; Mullol, J.; Ferguson, B.J.; Gevaert, P.; Hellings, P.; Jiao, L.; Wang, L.; Evans, R.R.; et al. Effect of Subcutaneous Dupilumab on Nasal Polyp Burden in Patients with Chronic Sinusitis and Nasal Polyposis: A Randomized Clinical Trial. JAMA 2016, 315, 469–479. [Google Scholar] [CrossRef] [PubMed]
- Schleimer, R.P. Immunopathogenesis of Chronic Rhinosinusitis and Nasal Polyposis. Annu. Rev. Pathol. 2017, 12, 331–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vatrella, A.; Fabozzi, I.; Calabrese, C.; Maselli, R.; Pelaia, G. Dupilumab: A novel treatment for asthma. J. Asthma Allergy 2014, 7, 123–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poposki, J.A.; Uzzaman, A.; Nagarkar, D.R.; Chustz, R.T.; Peters, A.T.; Suh, L.A.; Carter, R.; Norton, J.; Harris, K.E.; Grammer, L.C.; et al. Increased expression of the chemokine CCL23 in eosinophilic chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2011, 128, 73–81.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bachert, C.; Gevaert, P.; Holtappels, G.; Cuvelier, C.; Van Cauwenberge, P. Nasal Polyposis: From Cytokines to Growth. Am. J. Rhinol. 2000, 14, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Fan, G.-K.; Wang, H.; Takenaka, H. Eosinophil infiltration and activation in nasal polyposis. Acta Oto-Laryngol. 2007, 127, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Bachert, C.; Wagenmann, M.; Holtappels, G. Cytokines and adhesion molecules in allergic rhinitis. Am. J. Rhinol. 1998, 12, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Mullou, J.; Xaubet, A.; Gaya, A.; Roca-Ferrer, J.; Lopez, E.; Fernandez, J.; Fernandez, M.D.; Picado, C. Cytokine gene expression and release from epithelial cells. A comparison study between healthy nasal mucosa and nasal polyps. Clin. Exp. Allergy J. Br. Soc. Allergy Clin. Immunol. 1995, 25, 607–615. [Google Scholar] [CrossRef]
- Allen, J.S.; Eisma, R.; Leonard, G.; Kreutzer, D. Interleukin-3, interleukin-5, and granulocyte-macrophage colony-stimulating factor expression in nasal polyps. Am. J. Otolaryngol. 1997, 18, 239–246. [Google Scholar] [CrossRef]
- Pelaia, G.; Vatrella, A.; Busceti, M.T.; Gallelli, L.; Preianò, M.; Lombardo, N.; Terracciano, R.; Maselli, R. Role of biologics in severe eosinophilic asthma—Focus on reslizumab. Ther. Clin. Risk Manag. 2016, 12, 1075–1082. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.-I.; Joo, Y.-H.; Auo, H.-J.; Kang, J.-M. Clinical significance of eosinophilic cationic protein levels in nasal secretions of patients with nasal polyposis. Eur. Arch. Oto-Rhino-Laryngol. 2009, 266, 981–986. [Google Scholar] [CrossRef]
- Gounni, A.S.; Gregory, B.; Nutku, E.; Aris, F.; Latifa, K.; Minshall, E.; North, J.; Tavernier, J.; Levit, R.; Nicolaides, N.; et al. Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood 2000, 96, 2163–2171. [Google Scholar] [CrossRef]
- Poulin, L.F.; Habran, C.; Stordeur, P.; Goldman, M.; McKenzie, A.; Van Snick, J.; Renauld, J.-C.; Braun, M.Y. Interleukin-9 stimulates the production of interleukin-5 in CD4+ T cells. Eur. Cytokine Netw. 2005, 16, 233–239. [Google Scholar] [PubMed]
- Parker, J.C.; Thavagnanam, S.; Skibinski, G.; Lyons, J.; Bell, J.; Heaney, L.G.; Shields, M.D. Chronic IL9 and IL-13 Exposure Leads to an Altered Differentiation of Ciliated Cells in a Well-Differentiated Paediatric Bronchial Epithelial Cell Model. PLoS ONE 2013, 8, e61023. [Google Scholar] [CrossRef] [Green Version]
- Kimura, S.; Pawankar, R.; Mori, S.; Nonaka, M.; Masuno, S.; Yagi, T.; Okubo, K. Increased Expression and Role of Thymic Stromal Lymphopoietin in Nasal Polyposis. Allergy Asthma Immunol. Res. 2011, 3, 186–193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, T.; Zhao, F.; Xie, C.; Liu, A.-M.; Li, T.-L.; Chen, X.; Song, C.; Cheng, L.; Yang, P.-C. Role of Thymic Stromal Lymphopoietin in the Pathogenesis of Nasal Polyposis. Am. J. Med. Sci. 2011, 341, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Y.; Fan, E.; Li, Y.; Wang, X.; Zhang, L. Clinical Characteristics and Expression of Thymic Stromal Lymphopoetin in Eosinophilic and Non-Eosinophilic Chronic Rhinosinusitis. ORL J. Oto-Rhino-Laryngol. Its Relat. Spec. 2013, 75, 37–45. [Google Scholar] [CrossRef]
- Cheng, Y.-K.; Lin, C.-D.; Chang, W.-C.; Hwang, G.-Y.; Tsai, S.-W.; Wan, L.; Tsai, M.-H.; Tsai, J.J.P.; Tsai, F.-J. Increased Prevalence of Interleukin-1 Receptor Antagonist Gene Polymorphism in Patients with Chronic Rhinosinusitis. Arch. Otolaryngol.-Head Neck Surg. 2006, 132, 285–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endam, L.M.; Cormier, C.; Bossé, Y.; Filali-Mouhim, A.; Desrosiers, M. Association of IL1A, IL1B, and TNF Gene Polymorphisms With Chronic Rhinosinusitis With and Without Nasal Polyposis: A replication study. Arch. Otolaryngol.-Head Neck Surg. 2010, 136, 187–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saji, F.; Nonaka, M.; Pawankar, R. Expression of RANTES by IL-1 β and TNF-α stimulated nasal polyp fibroblasts. Auris Nasus Larynx 2000, 27, 247–252. [Google Scholar] [CrossRef]
- Wang, Z.; Li, P.; Zhang, Q.; Lv, H.; Liu, J.; Si, J. Interleukin-1β regulates the expression of glucocorticoid receptor isoforms in nasal polyps in vitro via p38 MAPK and JNK signal transduction pathways. J. Inflamm. 2015, 12, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kearley, J.; Buckland, K.F.; Mathie, S.A.; Lloyd, C.M. Resolution of Allergic Inflammation and Airway Hyperreactivity Is Dependent upon Disruption of the T1/ST2–IL-33 Pathway. Am. J. Respir. Crit. Care Med. 2009, 179, 772–781. [Google Scholar] [CrossRef] [PubMed]
- Meephansan, J.; Komine, M.; Tsuda, H.; Karakawa, M.; Tominaga, S.-I.; Ohtsuki, M. Expression of IL-33 in the epidermis: The mechanism of induction by IL-17. J. Dermatol. Sci. 2013, 71, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-K.; Jin, H.R.; Eun, K.M.; Mo, J.-H.; Cho, S.H.; Oh, S.; Cho, D.; Kim, D.W. The role of interleukin-33 in chronic rhinosinusitis. Thorax 2017, 72, 635–645. [Google Scholar] [CrossRef]
- Ishinaga, H.; Kitano, M.; Toda, M.; D’Alessandro-Gabazza, C.N.; Gabazza, E.C.; Shah, S.A.; Takeuchi, K. Interleukin-33 induces mucin gene expression and goblet cell hyperplasia in human nasal epithelial cells. Cytokine 2017, 90, 60–65. [Google Scholar] [CrossRef] [PubMed]
- Erbek, S.S.; Yurtcu, E.; Erbek, S.; Atac, F.B.; Sahin, F.I.; Cakmak, O. Proinflammatory Cytokine Single Nucleotide Polymorphisms in Nasal Polyposis. Arch. Otolaryngol.-Head Neck Surg. 2007, 133, 705–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohori, J.; Ushikai, M.; Sun, D.; Nishimoto, K.; Sagara, Y.; Fukuiwa, T.; Matsune, S.; Kurono, Y. TNF-α upregulates VCAM-1 and NF-κB in fibroblasts from nasal polyps. Auris Nasus Larynx 2007, 34, 177–183. [Google Scholar] [CrossRef]
- Lin, S.-K.; Kok, S.-H.; Shun, C.-T.; Hong, C.-Y.; Wang, C.-C.; Hsu, M.-C.; Liu, C.-M. Tumor Necrosis Factor-α Stimulates the Expression of C-C Chemokine Ligand 2 Gene in Fibroblasts from the Human Nasal Polyp through the Pathways of Mitogen-Activated Protein Kinase. Am. J. Rhinol. 2007, 21, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Scheller, J.; Ohnesorge, N.; Rose-John, S. Interleukin-6 Trans-Signalling in Chronic Inflammation and Cancer. Scand. J. Immunol. 2006, 63, 321–329. [Google Scholar] [CrossRef] [PubMed]
- Bequignon, E.; Mangin, D.; Bécaud, J.; Pasquier, J.; Angely, C.; Bottier, M.; Escudier, E.; Isabey, D.; Filoche, M.; Louis, B.; et al. Pathogenesis of chronic rhinosinusitis with nasal polyps: Role of IL-6 in airway epithelial cell dysfunction. J. Transl. Med. 2020, 18, 136. [Google Scholar] [CrossRef] [PubMed]
- Pothoven, K.L.; Norton, J.E.; Hulse, K.; Suh, L.A.; Carter, R.G.; Rocci, E.; Harris, K.E.; Shintani-Smith, S.; Conley, D.B.; Chandra, R.; et al. Oncostatin M promotes mucosal epithelial barrier dysfunction, and its expression is increased in patients with eosinophilic mucosal disease. J. Allergy Clin. Immunol. 2015, 136, 737–746.e4. [Google Scholar] [CrossRef] [Green Version]
- Wilson, N.J.; Boniface, K.; Chan, J.R.; McKenzie, B.S.; Blumenschein, W.M.; Mattson, J.D.; Basham, B.; Smith, K.J.; Chen, T.; Morel, F.; et al. Development, cytokine profile and function of human interleukin 17–producing helper T cells. Nat. Immunol. 2007, 8, 950–957. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-W.; Kim, D.-K.; Park, M.-H.; Eun, K.M.; Lee, M.; So, D.; Kong, I.G.; Mo, J.-H.; Yang, M.-S.; Jin, H.R.; et al. IL-25 as a novel therapeutic target in nasal polyps of patients with chronic rhinosinusitis. J. Allergy Clin. Immunol. 2015, 135, 1476–1485.e7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lam, M.; Hull, L.; Imrie, A.; Snidvongs, K.; Chin, D.; Pratt, E.; Kalish, L.; Sacks, R.; Earls, P.; Sewell, W.; et al. Interleukin-25 and Interleukin-33 as Mediators of Eosinophilic Inflammation in Chronic Rhinosinusitis. Am. J. Rhinol. Allergy 2015, 29, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-K.; Jo, A.; Lim, H.-S.; Kim, J.Y.; Eun, K.M.; Oh, J.; Kim, J.K.; Cho, S.-H.; Kim, D.W. Enhanced Type 2 Immune Reactions by Increased IL-22/IL-22Ra1 Signaling in Chronic Rhinosinusitis with Nasal Polyps. Allergy Asthma Immunol. Res. 2020, 12, 980–993. [Google Scholar] [CrossRef] [PubMed]
- Noyama, Y.; Okano, M.; Fujiwara, T.; Kariya, S.; Higaki, T.; Haruna, T.; Makihara, S.-I.; Kanai, K.; Koyama, T.; Taniguchi, M.; et al. IL-22/IL-22R1 signaling regulates the pathophysiology of chronic rhinosinusitis with nasal polyps via alteration of MUC1 expression. Allergol. Int. 2017, 66, 42–51. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Han, R.; Kim, D.W.; Mo, J.-H.; Jin, Y.; Rha, K.-S.; Kim, Y.M. Role of Interleukin-10 on Nasal Polypogenesis in Patients with Chronic Rhinosinusitis with Nasal Polyps. PLoS ONE 2016, 11, e0161013. [Google Scholar] [CrossRef]
- Kim, S.-H.; Han, S.-Y.; Azam, T.; Yoon, D.-Y.; Dinarello, C.A. Interleukin-32. Immunity 2005, 22, 131–142. [Google Scholar] [CrossRef] [Green Version]
- Hong, J.; Bae, S.; Kang, Y.; Yoon, D.; Bai, X.; Chan, E.D.; Azam, T.; Dinarello, C.A.; Lee, S.; Her, E.; et al. Suppressing IL-32 in monocytes impairs the induction of the proinflammatory cytokines TNFα and IL-1β. Cytokine 2010, 49, 171–176. [Google Scholar] [CrossRef]
- Holgate, S.T. Epithelial damage and response. Clin. Exp. Allergy 2000, 30, 37–41. [Google Scholar] [CrossRef]
- Alam, R.; Forsythe, P.; Stafford, S.; Fukuda, Y. Transforming growth factor beta abrogates the effects of hematopoietins on eosinophils and induces their apoptosis. J. Exp. Med. 1994, 179, 1041–1045. [Google Scholar] [CrossRef]
- Serpero, L.; Petecchia, L.; Sabatini, F.; Giuliani, M.; Silvestri, M.; Diblasi, P.; Rossi, G. The effect of transforming growth factor (TGF)-β1 and (TGF)-β2 on nasal polyp fibroblast activities involved upper airway remodeling: Modulation by fluticasone propionate. Immunol. Lett. 2006, 105, 61–67. [Google Scholar] [CrossRef]
- Li, X.; Li, C.; Zhu, G.; Yuan, W.; Xiao, Z.-A. TGF-β1 Induces Epithelial-Mesenchymal Transition of Chronic Sinusitis with Nasal Polyps through MicroRNA-21. Int. Arch. Allergy Immunol. 2019, 179, 304–319. [Google Scholar] [CrossRef] [PubMed]
- Watelet, J.-B.; Claeys, C.; Perez-Novo, C.; Gevaert, P.; Van Cauwenberge, P.; Bachert, C. Transforming growth factor beta1 in nasal remodeling: Differences between chronic rhinosinusitis and nasal polyposis. Am. J. Rhinol. 2004, 18, 267–272. [Google Scholar] [CrossRef]
- Schroder, K.; Hertzog, P.J.; Ravasi, T.; Hume, D.A. Interferon-γ: An overview of signals, mechanisms and functions. J. Leukoc. Biol. 2004, 75, 163–189. [Google Scholar] [CrossRef]
- Miller, C.H.; Pudiak, M.D.R.; Hatem, F.; Looney, R.J. Accumulation of Interferon Gamma-Producing TH1 Helper T Cells in Nasal Polyps. Otolaryngol. Neck Surg. 1994, 111, 51–58. [Google Scholar] [CrossRef]
- Wang, X.; Hu, G.; Kou, W.; Hong, S. The role of interleukin-2 pathway in pathogenesis of nasal polyps. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi J. Clin. Otorhinolaryngol. Head Neck Surg. 2014, 28, 509–512. [Google Scholar]
- Jonstam, K.; Alsharif, S.; Bogaert, S.; Suchonos, N.; Holtappels, G.; Jae-Hyun Park, J.; Bachert, C. Extent of inflammation in severe nasal polyposis and effect of sinus surgery on inflammation. Allergy 2021, 76, 933–936. [Google Scholar] [CrossRef]
- Cerutti, A.; Chen, K.; Chorny, A. Immunoglobulin Responses at the Mucosal Interface. Annu. Rev. Immunol. 2011, 29, 273–293. [Google Scholar] [CrossRef] [Green Version]
- Fokkens, W.J.; Lund, V.J.; Mullol, J.; Bachert, C.; Alobid, I.; Baroody, F.; Cohen, N.; Cervin, A.; Douglas, R.; Gevaert, P.; et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinology 2012, 50, 1–12. [Google Scholar] [CrossRef]
- Fukumoto, A.; Nonaka, M.; Ogihara, N.; Pawankar, R. Induction of TARC Production by Lipopolysaccharide and Interleukin-4 in Nasal Fibroblasts. Int. Arch. Allergy Immunol. 2008, 145, 291–297. [Google Scholar] [CrossRef]
- Barranco, P.; Phillips-Angles, E.; Dominguez-Ortega, J.; Quirce, S. Dupilumab in the management of moderate-to-severe asthma: The data so far. Ther. Clin. Risk Manag. 2017, 13, 1139–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalil, S.M.; Bs, I.B.; Ms, H.K.; Gour, N.; Rowan, N.; Lajoie, S.; Lane, A.P. Interleukin 13 (IL-13) alters hypoxia-associated genes and upregulates CD73. Int. Forum Allergy Rhinol. 2020, 10, 1096–1102. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Arab, S.F.; Westhofen, M.; Lorenzen, J. Expression of Interleukin-5, Interleukin-8, and Interleukin-10 mRNA in the Osteomeatal Complex in Nasal Polyposis. Am. J. Rhinol. 2005, 19, 117–123. [Google Scholar] [CrossRef]
- Bachert, C.; Wagenmann, M.; Hauser, U.; Rudack, C. IL-5 synthesis is upregulated in human nasal polyp tissue1. J. Allergy Clin. Immunol. 1997, 99, 837–842. [Google Scholar] [CrossRef]
- Rudack, C.; Stoll, W.; Bachert, C. Cytokines in Nasal Polyposis, Acute and Chronic Sinusitis. Am. J. Rhinol. 1998, 12, 383–388. [Google Scholar] [CrossRef]
- Temann, U.-A.; Ray, P.; Flavell, R.A. Pulmonary overexpression of IL-9 induces Th2 cytokine expression, leading to immune pathology. J. Clin. Investig. 2002, 109, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Mortuaire, G.; Gengler, I.; Vandenhende-Szymanski, C.; Delbeke, M.; Gatault, S.; Chevalier, D.; Prin, L.; Capron, M. Immune profile modulation of blood and mucosal eosinophils in nasal polyposis with concomitant asthma. Ann. Allergy Asthma Immunol. 2015, 114, 299–307.e2. [Google Scholar] [CrossRef] [PubMed]
- Soumelis, V.; Reche, P.A.; Kanzler, H.; Yuan, W.; Edward, G.; Homey, B.; Gilliet, M.; Ho, S.; Antonenko, S.; Lauerma, A.; et al. Human epithelial cells trigger dendritic cell–mediated allergic inflammation by producing TSLP. Nat. Immunol. 2002, 3, 673–680. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.; Liao, S.; Chen, F.; Yang, Q.; Wang, D.Y. Role of IL-25, IL-33, and TSLP in triggering united airway diseases toward type 2 inflammation. Allergy 2020, 75, 2794–2804. [Google Scholar] [CrossRef]
- Kato, A.; Favoreto, S.; Avila, P.C.; Schleimer, R.P. TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J. Immunol. 2007, 17, 1080–1087. [Google Scholar] [CrossRef]
- Kouzaki, H.; O’Grady, S.M.; Lawrence, C.B.; Kita, H. Proteases Induce Production of Thymic Stromal Lymphopoietin by Airway Epithelial Cells through Protease-Activated Receptor-2. J. Immunol. 2009, 183, 1427–1434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ogulur, I.; Pat, Y.; Ardicli, O.; Barletta, E.; Cevhertas, L.; Fernandez-Santamaria, R.; Huang, M.; Bel Imam, M.; Koch, J.; Ma, S.; et al. Advances and highlights in biomarkers of allergic diseases. Allergy 2021, 76, 3659–3686. [Google Scholar] [CrossRef] [PubMed]
- Kato, A. Immunopathology of chronic rhinosinusitis. Allergol. Int. Off. J. Jpn. Soc. Allergol. 2015, 64, 121–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurowska-Stolarska, M.; Hueber, A.; Stolarski, B.; McInnes, I.B. Interleukin-33: A novel mediator with a role in distinct disease pathologies: Key Symposium: The biology of IL-33. J. Intern. Med. 2010, 269, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Cayrol, C.; Girard, J.-P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol. Rev. 2018, 281, 154–168. [Google Scholar] [CrossRef]
- Baba, S.; Kondo, K.; Kanaya, K.; Suzukawa, K.; Ushio, M.; Urata, S.; Asakage, T.; Kakigi, A.; Suzukawa, M.; Ohta, K.; et al. Expression of IL-33 and its receptor ST2 in chronic rhinosinusitis with nasal polyps: IL-33 and ST2 in Chronic Rhinosinusitis. Laryngoscope 2014, 124, E115–E122. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.L.; Fakhri, S.; Citardi, M.J.; Porter, P.C.; Corry, D.B.; Kheradmand, F.; Liu, Y.-J.; Luong, A. IL-33–Responsive Innate Lymphoid Cells Are an Important Source of IL-13 in Chronic Rhinosinusitis with Nasal Polyps. Am. J. Respir. Crit. Care Med. 2013, 188, 432–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietz, C.J.; Sun, H.; Yao, W.C.; Citardi, M.J.; Corry, D.B.; Luong, A.U. Aspergillus fumigatusinduction of IL-33 expression in chronic rhinosinusitis is PAR2-dependent. Laryngoscope 2019, 129, 2230–2235. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.H.; Yang, T.Y.; Park, C.-S.; Ahn, S.-H.; Son, B.K.; Kim, J.H.; Lim, D.H.; Jang, T.Y. Anti-IL-33 antibody has a therapeutic effect in a murine model of allergic rhinitis: Effect of anti-IL-33 on murine allergy. Allergy 2011, 67, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Mitoma, H.; Horiuchi, T.; Tsukamoto, H.; Ueda, N. Molecular mechanisms of action of anti-TNF-α agents—Comparison among therapeutic TNF-α antagonists. Cytokine 2018, 101, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Mihara, M.; Hashizume, M.; Yoshida, H.; Suzuki, M.; Shiina, M. IL-6/IL-6 receptor system and its role in physiological and pathological conditions. Clin. Sci. 2011, 122, 143–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose-John, S.; Heinrich, P.C. Soluble receptors for cytokines and growth factors: Generation and biological function. Biochem. J. 1994, 300 Pt 2, 281–290. [Google Scholar] [CrossRef]
- Peters, A.T.; Kato, A.; Zhang, N.; Conley, D.B.; Suh, L.; Tancowny, B.; Carter, D.; Carr, T.; Radtke, M.; Hulse, K.E.; et al. Evidence for altered activity of the IL-6 pathway in chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2010, 125, 397–403.e10. [Google Scholar] [CrossRef] [Green Version]
- Boniface, K.; Diveu, C.; Morel, F.; Pedretti, N.; Froger, J.; Ravon, E.; Garcia, M.; Venereau, E.; Preisser, L.; Guignouard, E.; et al. Oncostatin M Secreted by Skin Infiltrating T Lymphocytes Is a Potent Keratinocyte Activator Involved in Skin Inflammation. J. Immunol. Baltim. Md. 1950 2007, 178, 4615–4622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanlon, M.M.; Rakovich, T.; Cunningham, C.C.; Ansboro, S.; Veale, D.; Fearon, U.; McGarry, T. STAT3 Mediates the Differential Effects of Oncostatin M and TNFα on RA Synovial Fibroblast and Endothelial Cell Function. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarian, A.; Brewer, A.W.; Trueblood, E.S.; Luzina, I.G.; Todd, N.W.; Atamas, S.P.; Arnett, H.A. Mechanisms of Oncostatin M-Induced Pulmonary Inflammation and Fibrosis. J. Immunol. 2008, 181, 7243–7253. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, M.; Sato, S.; Fujimoto, M.; Ihn, H.; Kikuchi, K.; Takehara, K. Serum levels of interleukin 6 (IL-6), oncostatin M, soluble IL-6 receptor, and soluble gp130 in patients with systemic sclerosis. J. Rheumatol. 1998, 25, 308–313. [Google Scholar] [PubMed]
- Rabeony, H.; Petit-Paris, I.; Garnier, J.; Barrault, C.; Pedretti, N.; Guilloteau, K.; Jégou, J.-F.; Guillet, G.; Huguier, V.; Lecron, J.-C.; et al. Inhibition of Keratinocyte Differentiation by the Synergistic Effect of IL-17A, IL-22, IL-1α, TNFα and Oncostatin, M. PLoS ONE 2014, 9, e101937. [Google Scholar] [CrossRef] [Green Version]
- Guilloteau, K.; Paris, I.; Pedretti, N.; Boniface, K.; Juchaux, F.; Huguier, V.; Guillet, G.; Bernard, F.-X.; Lecron, J.-C.; Morel, F. Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1α, and TNF-α Recapitulates Some Features of Psoriasis. J. Immunol. Baltim. Md. 1950 2010, 184, 5263–5270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, G.-Q.; Ren, F.-F.; Wang, Y.-J.; Wan, L.; Chen, S.; Yuan, J.; Yang, C.-M.; Liu, B.-H.; Kong, W.-J. Expression of IL-17 and syndecan-1 in nasal polyps and their correlation with nasal polyps. Acta Acad. Med. Wuhan 2017, 37, 412–418. [Google Scholar] [CrossRef]
- Ba, L.; Du, J.; Liu, Y.; Shang, T.; Yang, F.; Bian, P. The expression and significance of interleukin-17 and the infiltrating eosinophils in nasal polyps and nasal mucous of allergic rhinitis. Lin Chuang Yan Hou Tou Jing Wai Ke Za zhi J. Clin. Otorhinolaryngol. Head Neck Surg. 2010, 24, 53–56. [Google Scholar]
- Wang, M.; Zhang, N.; Zheng, M.; Li, Y.; Meng, L.; Ruan, Y.; Han, J.; Zhao, N.; Wang, X.; Zhang, L.; et al. Cross-talk between TH2 and TH17 pathways in patients with chronic rhinosinusitis with nasal polyps. J. Allergy Clin. Immunol. 2019, 144, 1254–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fort, M.M.; Cheung, J.; Yen, D.; Li, J.; Zurawski, S.M.; Lo, S.; Menon, S.; Clifford, T.; Hunte, B.; Lesley, R.; et al. IL-25 Induces IL-4, IL-5, and IL-13 and Th2-Associated Pathologies In Vivo. Immunity 2001, 15, 985–995. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.; Ho, W.-H.; Maruoka, M.; Corpuz, R.T.; Baldwin, D.T.; Foster, J.S.; Goddard, A.D.; Yansura, D.G.; Vandlen, R.L.; Wood, W.I.; et al. IL-17E, a Novel Proinflammatory Ligand for the IL-17 Receptor Homolog IL-17Rh1. J. Biol. Chem. 2001, 276, 1660–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzukawa, M.; Morita, H.; Nambu, A.; Arae, K.; Shimura, E.; Shibui, A.; Yamaguchi, S.; Suzukawa, K.; Nakanishi, W.; Oboki, K.; et al. Epithelial cell-derived IL-25, but not Th17 cell-derived IL-17 or IL-17F, is crucial for murine asthma. J. Immunol. 2012, 189, 3641–3652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Von Moltke, J.; Ji, M.; Liang, H.-E.; Locksley, R.M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 2016, 529, 221–225. [Google Scholar] [CrossRef] [Green Version]
- Beale, J.; Jayaraman, A.; Jackson, D.J.; Macintyre, J.D.R.; Edwards, M.R.; Walton, R.P.; Zhu, J.; Ching, Y.M.; Shamji, B.; Edwards, M.; et al. Rhinovirus-induced IL-25 in asthma exacerbation drives type 2 immunity and allergic pulmonary inflammation. Sci. Transl. Med. 2014, 6, 256ra134. [Google Scholar] [CrossRef] [Green Version]
- Angkasekwinai, P.; Park, H.; Wang, Y.-H.; Wang, Y.-H.; Chang, S.H.; Corry, D.B.; Liu, Y.-J.; Zhu, Z.; Dong, C. Interleukin 25 promotes the initiation of proallergic type 2 responses. J. Exp. Med. 2007, 204, 1509–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-H.; Angkasekwinai, P.; Lu, N.; Voo, K.S.; Arima, K.; Hanabuchi, S.; Hippe, A.; Corrigan, C.; Dong, C.; Homey, B.; et al. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC–activated Th2 memory cells. J. Exp. Med. 2007, 204, 1837–1847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rutz, S.; Eidenschenk, C.; Ouyang, W. IL-22, not simply a Th17 cytokine. Immunol. Rev. 2013, 252, 116–132. [Google Scholar] [CrossRef]
- Sonnenberg, G.F.; AFouser, L.; Artis, D. Border patrol: Regulation of immunity, inflammation and tissue homeostasis at barrier surfaces by IL-22. Nat. Immunol. 2011, 12, 383–390. [Google Scholar] [CrossRef]
- Boniface, K.; Bernard, F.-X.; Garcia, M.; Gurney, A.L.; Lecron, J.-C.; Morel, F. IL-22 Inhibits Epidermal Differentiation and Induces Proinflammatory Gene Expression and Migration of Human Keratinocytes. J. Immunol. 2005, 174, 3695–3702. [Google Scholar] [CrossRef] [Green Version]
- Klingler, A.I.; Stevens, W.W.; Tan, B.K.; Peters, A.T.; Poposki, J.A.; Grammer, L.C.; Welch, K.C.; Smith, S.S.; Conley, D.B.; Kern, R.C.; et al. Mechanisms and biomarkers of inflammatory endotypes in chronic rhinosinusitis without nasal polyps. J. Allergy Clin. Immunol. 2021, 147, 1306–1317. [Google Scholar] [CrossRef] [PubMed]
- Danielsen, A.; Tynning, T.; Brokstad, K.A.; Olofsson, J. Davidsson, Åke Interleukin 5, IL6, IL12, IFN-γ, RANTES and Fractalkine in human nasal polyps, turbinate mucosa and serum. Arch. Oto-Rhino-Laryngol. 2006, 263, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Van Zele, T.; Claeys, S.; Gevaert, P.; Van Maele, G.; Holtappels, G.; Van Cauwenberge, P.; Bachert, C. Differentiation of chronic sinus diseases by measurement of inflammatory mediators. Allergy 2006, 61, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Cheng, W.; Zheng, C.; Tian, J.; Shi, G. T helper cell population and eosinophilia in nasal polyps. J. Investig. Allergol. Clin. Immunol. 2007, 17, 297–301. [Google Scholar] [PubMed]
- Bernstein, J.M.; Ballow, M.; Rich, G.; Allen, C.; Swanson, M.; Dmochowski, J. Lymphocyte Subpopulations and Cytokines in Nasal Polyps: Is there a Local Immune System in the Nasal Polyp? Otolaryngol. Neck Surg. 2004, 130, 526–535. [Google Scholar] [CrossRef]
- Iyer, S.S.; Cheng, G. Role of Interleukin 10 Transcriptional Regulation in Inflammation and Autoimmune Disease. Crit. Rev. Immunol. 2012, 32, 23–63. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, W.; Rutz, S.; Crellin, N.K.; Valdez, P.A.; Hymowitz, S.G. Regulation and Functions of the IL-10 Family of Cytokines in Inflammation and Disease. Annu. Rev. Immunol. 2011, 29, 71–109. [Google Scholar] [CrossRef]
- Akdis, C.A.; Blaser, K. Mechanisms of interleukin-10-mediated immune suppression. Immunology 2001, 103, 131–136. [Google Scholar] [CrossRef]
- Mosser, D.M.; Zhang, X. Interleukin-10: New perspectives on an old cytokine. Immunol. Rev. 2008, 226, 205–218. [Google Scholar] [CrossRef]
- Bagheri, Y.; Babaha, F.; Falak, R.; Yazdani, R.; Azizi, G.; Sadri, M.; Abolhassani, H.; Shekarabi, M.; Aghamohammadi, A. IL-10 induces TGF-β secretion, TGF-β receptor II upregulation, and IgA secretion in B cells. Eur. Cytokine Netw. 2019, 30, 107–113. [Google Scholar] [PubMed]
- Okano, M.; Fujiwara, T.; Kariya, S.; Haruna, T.; Higaki, T.; Noyama, Y.; Makihara, S.-I.; Kanai, K.; Nishizaki, K. Staphylococcal protein A–formulated immune complexes suppress enterotoxin-induced cellular responses in nasal polyps. J. Allergy Clin. Immunol. 2015, 136, 343–350.e8. [Google Scholar] [CrossRef]
- Little, S.C.; Early, S.B.; Woodard, C.R.; Shonka, D.C.; Han, J.K.; Borish, L.; Steinke, J.W. Dual Action of TGF-β1 on Nasal-Polyp Derived Fibroblasts. Laryngoscope 2008, 118, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.-W.; Li, S.-T.; Fang, K.-M.; Young, T.-H. Hyaluronan antagonizes the differentiation effect of TGF-β1 on nasal epithelial cells through down-regulation of TGF-β type I receptor. Artif. Cells Nanomed. Biotechnol. 2018, 46, S254–S263. [Google Scholar] [CrossRef] [Green Version]
- Lazard, D.S.; Moore, A.; Hupertan, V.; Martin, C.; Escabasse, V.; Dreyfus, P.; Burgel, P.-R.; Amselem, S.; Escudier, E.; Coste, A. Muco-ciliary differentiation of nasal epithelial cells is decreased after wound healingin vitro. Allergy 2009, 64, 1136–1143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coste, A.; Lefaucheur, J.P.; Wang, Q.P.; Lesprit, E.; Poron, F.; Peynegre, R.; Escudier, E. Expression of the transforming growth factor beta isoforms in inflammatory cells of nasal polyps. Arch. Otolaryngol. Head Neck Surg. 1998, 124, 1361–1366. [Google Scholar] [CrossRef] [Green Version]
- Dinarello, C.A.; Kim, S.-H. IL-32, a novel cytokine with a possible role in disease. Ann. Rheum. Dis. 2006, 65, iii61–iii64. [Google Scholar] [CrossRef]
- Soyka, M.B.; Treis, A.; Eiwegger, T.; Menz, G.; Zhang, S.; Holzmann, D.; Akdis, C.A.; Meyer, N. Regulation and expression of IL-32 in chronic rhinosinusitis. Allergy 2012, 67, 790–798. [Google Scholar] [CrossRef]
- Keswani, A.; Chustz, R.T.; Suh, L.; Carter, R.; Peters, A.T.; Tan, B.K.; Chandra, R.; Kim, S.-H.; Azam, T.; Dinarello, C.A.; et al. Differential expression of interleukin-32 in chronic rhinosinusitis with and without nasal polyps: Expression of interleukin-32 in chronic rhinosinusitis. Allergy 2011, 67, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.-S.; Kim, J.-A.; Park, J.-H.; Park, I.-H.; Han, I.-H.; Lee, H.-M. Toll-like receptor 4-mediated expression of interleukin-32 via the c-Jun N-terminal kinase/protein kinase B/cyclic adenosine monophosphate response element binding protein pathway in chronic rhinosinusitis with nasal polyps: IL-32 in CRS with nasal polyps. Int. Forum Allergy Rhinol. 2016, 6, 1020–1028. [Google Scholar] [CrossRef]
Cytokines | Production | Action |
---|---|---|
Cytokines over-expressed | ||
IL-4 | Th2 lymphocytes, eosinophils, basophils, natural killers and mast cells | Th2 polarization of naïve CD4 T-cells Activation of B-cells and production of Ig [7,8,9] Recruitment of eosinophils [10] Tissue fibrosis [11] Alteration of the epithelial barrier [12,13] |
IL-13 | Th2 lymphocytes, eosinophils, basophils, natural killers and mast cells | Recruitment of inflammatory cells Differentiation of monocytes into macrophages [14,15] Goblet cell hyperplasia [16] Recruitment of eosinophils [17] Alteration of the epithelial barrier [12] |
IL-5 | Th2 lymphocytes, masts cells and eosinophils | Recruitment and survival of eosinophils [18,19,20,21,22,23] Alteration of the epithelial barrier [24] |
IL-9 | Th2, Th9 lymphocytes and mast cells | Inducing IL-5Rα expression [25] Promoting the anti-apoptotic action of IL-5 in asthmatics [25] Production of proteases by mast cells [26] Release of IgE by B-cells [26] Favorizing a muciparous metaplasia [27] |
TSLP | Epithelial cells | Th2 polarization of naive CD4 T-cells [28,29,30] |
IL-1α | Epithelial cells, fibroblasts, monocytes, macrophages, natural killer cells | Recruitment of eosinophils [31,32] |
IL-1β | Epithelial cells, fibroblasts, monocytes, macrophages, natural killer cells | Attraction of monocytes, eosinophils and memory T-cells [33] Glucocorticoid resistance [34] |
IL-33 | Epithelial cells, fibroblasts, macrophages, dendritic cells | Th2 polarization of naïve CD4 T-cells [35] Limitation of neutrophil recruitment [36] Edema formation [37] Mucus production [38] |
TNF-α | Epithelial cells, T lymphocytes, macrophages | Recruitment of eosinophils [10,39,40] Recruitment of monocytes [41] |
IL-6 | T and B lymphocytes, monocytes, fibroblasts, epithelial and endothelial cells | Recruitment of neutrophils [42] Increased epithelial cell proliferation after damage [43] |
OSM | Th2 lymphocytes, eosinophils, neutrophils, and macrophages | Alteration of the epithelial barrier [44] Antifibrotic action |
IL-17 | Th17 lymphocytes | Recruitment of monocytes and neutrophils [45] |
IL-25 | Epithelial cells, mast cells, T lymphocytes | Th2 polarization of naive CD4 T-cells [46] Production of eosinophils [47] |
IL-22 | Th17, Th22 lymphocytes, natural killer cells, eosinophils, epithelial cells | Initiation of TSLP expression [48] Mucus production [49] |
IL-10 | Th2 lymphocytes, B lymphocytes, macrophages, natural killers, ILC2, mast cells | Reduced pathogen elimination [50] |
IL-32 | T lymphocytes, natural killer, monocytes, dendritic cells, endothelial, epithelial cells and fibroblasts | Production of proinflammatory cytokines [51,52] |
Nonconsensual levels of expression | ||
TGF-β | Treg lymphocytes, macrophages, eosinophils and fibroblasts | Reduced activation of eosinophils and proinflammatory cytokines [53,54] Proliferation of fibroblasts and myofibroblast differentiation [55] Epithelial to mesenchymal transition [56] Edema formation [57] |
Cytokines under-expressed | ||
INF-γ | Th1 lymphocytes, ILC1, B lymphocytes, natural killer cells | Th1 polarization of naive CD4 T-cells [58] Recruitment of eosinophils [59] |
IL-2 | T lymphocytes | Treg polarization of naive CD4 T-cells [60] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carsuzaa, F.; Béquignon, É.; Dufour, X.; de Bonnecaze, G.; Lecron, J.-C.; Favot, L. Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps. Int. J. Mol. Sci. 2022, 23, 417. https://doi.org/10.3390/ijms23010417
Carsuzaa F, Béquignon É, Dufour X, de Bonnecaze G, Lecron J-C, Favot L. Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps. International Journal of Molecular Sciences. 2022; 23(1):417. https://doi.org/10.3390/ijms23010417
Chicago/Turabian StyleCarsuzaa, Florent, Émilie Béquignon, Xavier Dufour, Guillaume de Bonnecaze, Jean-Claude Lecron, and Laure Favot. 2022. "Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps" International Journal of Molecular Sciences 23, no. 1: 417. https://doi.org/10.3390/ijms23010417
APA StyleCarsuzaa, F., Béquignon, É., Dufour, X., de Bonnecaze, G., Lecron, J. -C., & Favot, L. (2022). Cytokine Signature and Involvement in Chronic Rhinosinusitis with Nasal Polyps. International Journal of Molecular Sciences, 23(1), 417. https://doi.org/10.3390/ijms23010417