The Potential Antimicrobial Action of Human Mucin 7 15-Mer Peptide and Its Metal Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Study of Antimicrobial Activity In Vitro
2.2. Metal Complexes
3. Materials and Methods
3.1. Biological Studies
In Vitro Antimicrobial Activity
3.2. Potentiometric Studies
3.3. Mass Spectrometry Measurements
3.4. Spectroscopic Studies
3.5. Lipophilicity Measurements
3.6. Computational Study
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rathinakumar, R.; Wimley, W.C. Biomolecular Engineering by Combinatorial Design and High_throughput Screening: Small, Soluble Peptides that Permeabilize Membranes. J. Am. Chem. Soc. 2008, 130, 9849–9858. [Google Scholar] [CrossRef] [Green Version]
- O’Driscoll, N.H.; Cushnie, T.P.T.; Matthews, K.H.; Lamb, A.J. Colistin causes profound morphological alteration but minimal cytoplasmic membrane perforation in populations of Escherichia coli and Pseudomonas aeruginosa. Arch. Microbiol. 2018, 200, 793–802. [Google Scholar] [CrossRef] [Green Version]
- Łoboda, D.; Kozłowski, H.; Rowińska-Zyrek, M. Antimicrobial peptide-metal ion interactions-a potential way of activity enhancement. New J. Chem. 2018, 42, 7560–7568. [Google Scholar] [CrossRef]
- Zanetti, M. Cathelicidins, multifunctional peptides of the innate immunity. J. Leukoc. Biol. 2004, 75, 39–48. [Google Scholar] [CrossRef]
- Doolin, T.; Gross, S.; Siryaporn, A. Physical Mechanisms of Bacterial Killing by Histones. Adv. Exp. Med. Biol. 2020, 1267, 117–133. [Google Scholar] [CrossRef] [PubMed]
- Bahar, A.A.; Ren, D. Antimicrobial peptides. Pharmaceuticals 2013, 6, 1543–1575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kehl-Fie, S.D.E. Metal Sequestration: An Important Contribution of Antimicrobial Peptides to Nutritional Immunity. Antimicrob. Pept. 2016, 22, 89–100. [Google Scholar] [CrossRef]
- Corfield, A.P.; Carroll, D.; Myerscough, N.; Probert, C.S.J. Mucins in the Gastrointestinal Tract in Health and Disease. Front. Biosci. 2001, 6, 1321–1357. [Google Scholar] [CrossRef]
- Bansil, R.; Turner, B.S. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 2006, 11, 164–170. [Google Scholar] [CrossRef]
- Frenkel, E.S.; Ribbeck, K. Salivary mucins in host defense and disease prevention. J. Oral Microbiol. 2015, 7, 29759. [Google Scholar] [CrossRef] [PubMed]
- Amerongen, A.V.N.; Bolscher, J.G.M.; Veerman, E.C.I. Salivary mucins: Protective functions in relation to their diversity. Glycobiology 1995, 5, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Bobek, L.A.; Situ, H. MUC7 20-Mer: Investigation of Antimicrobial Activity, Secondary Structure, and Possible Mechanism of Antifungal Action. Antimicrob. Agents Chemother. 2003, 47, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Situ, H.; Wei, G.; Smith, C.J.; Mashhoon, S.; Bobek, L.A. Human salivary MUC7 mucin peptides: Effect of size, charge and cysteine residues on antifungal activity. Biochem. J. 2003, 375, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Satyanarayana, J.; Situ, H.; Narasimhamurthy, S.; Bhayani, N.; Bobek, L.A.; Levine, M.J. Divergent solid-phase synthesis and candidacidal N-terminal domain of human salivary mucin MUC7. J. Pept. Res. 2000, 56, 275–282. [Google Scholar] [CrossRef]
- Wątły, J.; Potocki, S.; Rowińska-Żyrek, M. Zinc Homeostasis at the Bacteria/Host Interface—From Coordination Chemistry to Nutritional Immunity. Chem.—A Eur. J. 2016, 22, 15992–16010. [Google Scholar] [CrossRef]
- Di Natale, C.; De Benedictis, I.; De Benedictis, A.; Marasco, D. Metal–peptide complexes as promising antibiotics to fight emerging drug resistance: New perspectives in tuberculosis. Antibiotics 2020, 9, 337. [Google Scholar] [CrossRef] [PubMed]
- Portelinha, J.; Duay, S.S.; Yu, S.I.; Heilemann, K.; Libardo, M.D.J.; Juliano, S.A.; Klassen, J.L.; Angeles-Boza, A.M. Antimicrobial peptides and copper(II) ions: Novel therapeutic opportunities. Chem. Rev. 2021, 121, 2648–2712. [Google Scholar] [CrossRef] [PubMed]
- Hee Hong, J.A.E.; Duncan, S.E.; Dietrich, A.M.; O’Keefe, S.F.; Eigel, W.N.; Mallikarjunan, K. Interaction of copper and human salivary proteins. J. Agric. Food Chem. 2009, 57, 6967–6975. [Google Scholar] [CrossRef] [PubMed]
- Wei, G.-X.; Campagna, A.N.; Bobek, L.A. Factors affecting antimicrobial activity of MUC7 12-mer, a human salivary mucin-derived peptide. Ann. Clin. Microbiol. Antimicrob. 2007, 6, 14. [Google Scholar] [CrossRef] [Green Version]
- Frei, A.; Zuegg, J.; Elliott, A.G.; Baker, M.; Braese, S.; Brown, C.; Chen, F.G.; Dowson, C.; Dujardin, G.; Jung, N.; et al. Metal complexes as a promising source for new antibiotics. Chem. Sci. 2020, 11, 2627–2639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janicka-Kłos, A.; Janek, T.; Burger, J.; Czapor-Irzabek, H. Human salivary MUC7 mucin fragment and its analogues. Coordination and biological studies. J. Inorg. Biochem. 2020, 203, 110923. [Google Scholar] [CrossRef]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell. Infect. Microbiol. 2021, 11, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Eury, H.; Solari, P.-L.; Bijani, C.; Faller, P.; Guillot, R.; Hureau, C.; Dorlet, P.; Sayen, S.; Guillon, E. X-ray and Solution Structures of CuIIGHK and CuIIDAHK Complexes: Influence on Their Redox Properties. Chem.—A Eur. J. 2011, 17, 10151–10160. [Google Scholar] [CrossRef]
- Bal, W.; Sokołowska, M.; Kurowska, E.; Faller, P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta—Gen. Subj. 2013, 1830, 5444–5455. [Google Scholar] [CrossRef] [PubMed]
- Sigel, H.; Martin, R.B. Coordinating Properties of the Amide Bond. Stability and Structure of Metal Ion Complexes of Peptides and Related Ligands. Chem. Rev. 1982, 82, 385–426. [Google Scholar] [CrossRef]
- Perinelli, M.; Guerrini, R.; Albanese, V.; Marchetti, N.; Bellotti, D.; Gentili, S.; Tegoni, M.; Remelli, M. Cu(II) coordination to His-containing linear peptides and related branched ones: Equalities and diversities. J. Inorg. Biochem. 2020, 205, 110980. [Google Scholar] [CrossRef]
- Lesiów, M.K.; Bieńko, A.; Sobańska, K.; Kowalik-Jankowska, T.; Rolka, K.; Łęgowska, A.; Ptaszyńska, N. Cu(II) complexes with peptides from FomA protein containing -His-Xaa-Yaa-Zaa-His and -His-His-motifs. ROS generation and DNA degradation. J. Inorg. Biochem. 2020, 212, 111250. [Google Scholar] [CrossRef]
- Valensin, D.; Mancini, F.M.; Łuczkowski, M.; Janicka, A.; Wiśniewska, K.; Gaggelli, E.; Valensin, G.; Łankiewicz, L.; Kozlowski, H. Identification of a novel high affinity copper binding site in the APP(145–155) fragment of amyloid precursor protein. J. Chem. Soc. Dalt. Trans. 2004, 4, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Allen, F.H.; Kennard, O.; Taylor, R. Systematic Analysis of Structural Data as a Research Technique in Organic Chemistry. Acc. Chem. Res. 1983, 16, 146–153. [Google Scholar] [CrossRef]
- Remelli, M.; Brasili, D.; Guerrini, R.; Pontecchiani, F.; Potocki, S.; Rowinska-Zyrek, M.; Watly, J.; Kozlowski, H. Zn(II) and Ni(II) complexes with poly-histidyl peptides derived from a snake venom. Inorg. Chim. Acta 2018, 472, 149–156. [Google Scholar] [CrossRef]
- Szyrwiel, L.; Jankowska, E.; Janicka-Klos, A.; Szewczuk, Z.; Valensin, D.; Kozlowski, H. Zn(ii) ions bind very efficiently to tandem repeat region of “prion related protein” (PrP-rel-2) of zebra-fish. MS and potentiometric evidence. Dalt. Trans. 2008, 22, 6117. [Google Scholar] [CrossRef]
- Ction, I.N.T.U. Oecd Guideline for the Testing of Chemicals Adopted by the Council on 27 th July 1995 Partition Coefficient (N-octanol/Water): Shake Flask Method. Available online: https://www.biotecnologiebt.com/userfiles/studies/30/files/OECD107.pdf (accessed on 30 December 2021).
- Hübsch, Z.; Van Zyl, R.L.; Cock, I.E.; Van Vuuren, S.F. Interactive antimicrobial and toxicity profiles of conventional antimicrobials with Southern african medicinal plants. S. Afr. J. Bot. 2014, 93, 185–197. [Google Scholar] [CrossRef]
- Jangra, M.; Randhawa, H.K.; Kaur, M.; Srivastava, A.; Maurya, N.; Patil, P.P.; Jaswal, P.; Arora, A.; Patil, P.B.; Raje, M.; et al. Purification, characterization and in vitro evaluation of polymyxin a from Paenibacillus dendritiformis: An underexplored member of the polymyxin family. Front. Microbiol. 2018, 9, 1–13. [Google Scholar] [CrossRef]
- Guan, Q.; Chen, K.; Chen, Q.; Hu, J.; Cheng, K.; Hu, C.; Zhu, J.; Jin, Y.; Miclet, E.; Alezra, V.; et al. Development of Therapeutic Gramicidin S Analogues Bearing Plastic β,γ-Diamino Acids. ChemMedChem 2020, 15, 1089–1100. [Google Scholar] [CrossRef]
- Miller, A.; Matera-Witkiewicz, A.; Mikołajczyk, A.; Wieczorek, R.; Rowińska-Żyrek, M. Chemical “butterfly Effect” Explaining the Coordination Chemistry and Antimicrobial Properties of Clavanin Complexes. Inorg. Chem. 2021, 60, 12730–12734. [Google Scholar] [CrossRef]
- Janek, T.; Rodrigues, L.R.; Gudiña, E.J.; Czyżnikowska, Ż. Structure and mode of action of cyclic lipopeptide pseudofactin II with divalent metal ions. Colloids Surf. B Biointerfaces 2016, 146, 498–506. [Google Scholar] [CrossRef] [Green Version]
- Irving, H.M.; Miles, M.G.; Pettit, L.D. A study of some problems in determining the stoicheiometric proton dissociation constants of complexes by potentiometric titrations using a glass electrode. Anal. Chim. Acta 1967, 38, 475–488. [Google Scholar] [CrossRef]
- Gran, G. Determination of the Equivalent Point in Potentiometric titrations. Acta Chem. Scand. 1950, 4, 559–577. [Google Scholar] [CrossRef] [Green Version]
- Gans, P.; Sabatini, A.; Vacca, A. Superquad: An improved general program for computation of formation constants from potentiometric data. J. Chem. Soc. Dalt. Trans. 1985, 1195–1200. [Google Scholar] [CrossRef]
- Alderighi, L.; Gans, P.; Ienco, A.; Peters, D.; Sabatini, A.; Vacca, A. Hyperquad simulation and speciation (HySS): A utility program for the investigation of equilibria involving soluble and partially soluble species. Coord. Chem. Rev. 1999, 184, 311–318. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements. J. Mol. Model. 2007, 13, 1173–1213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cancĕs, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
- Stewart, J.J.P. Application of the PM6 method to modeling proteins. J. Mol. Model. 2009, 15, 765–805. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09 Revision A.2.; Gaussian Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
Ligands/Complexes MIC (µM) | E. faecalis ATCC 29212 | S. epidermidis KCTC 1917 | E. coli ATCC 25922 | P. aeruginosa ATCC 15422 | C. albicans ATCC 10231 |
---|---|---|---|---|---|
L1 | 145 ± 3.1 | 132 ± 1.6 | 412 ± 2.4 | 285 ± 2.6 | 436 ± 2.4 |
L1/Cu(II) | 132 ± 1.4 | 105 ± 2.6 | 388 ± 1.9 | 254 ± 1.3 | 412 ± 3.5 |
L1/Zn(II) | 108 ± 1.3 | 85 ± 1.5 | 356 ± 2.6 | 230 ± 3.1 | 377 ± 2.7 |
L2 | 163 ± 2.2 | 147 ± 1.6 | 416 ± 0.5 | 302 ± 2.8 | 469 ± 1.4 |
L2/Cu(II) | 134 ± 1.4 | 133 ± 1.4 | 401 ± 1.4 | 288 ± 3.2 | 455 ± 1.9 |
L2/Zn(II) | 125 ± 1.4 | 114 ± 2.2 | 389 ± 2.4 | 281 ± 0.9 | 414 ± 2.6 |
L3 | 241 ± 1.6 | 210 ± 2.6 | >500 | 313 ± 2.5 | >500 |
L3/Cu(II) | 224 ± 3.1 | 194 ± 2.1 | >500 | 294 ± 1.3 | >500 |
L3/Zn(II) | 198 ± 2.8 | 192 ± 0.3 | >500 | 277 ± 1.8 | >500 |
L1 | L2 | L3 | ||||
---|---|---|---|---|---|---|
Species | logβ | pK | logβ | pK | logβ | pK |
HL | 9.92 (2) | 9.92 | 10.50 (2) | 10.50 | 10.01 (2) | 10.01 |
H2L | 19.36 (2) | 9.44 | 20.08 (2) | 9.58 | 19.36 (2) | 9.35 |
H3L | 26.95 (2) | 7.59 | 27.50 (3) | 7.42 | 26.72 (3) | 7.36 |
H4L | 33.75 (3) | 6.62 | 34.22 (3) | 6.72 | 33.47 (3) | 6.75 |
H5L | 39.73 (4) | 5.98 | 39.84 (4) | 5.62 | 39.81 (4) | 6.34 |
H6L | 43.74 (3) | 4.01 | 43.44 (4) | 3.60 | 45.21 (4) | 5.40 |
H7L | 46.40 (2) | 2.66 | 45.79 (2) | 2.35 | 48.87 (2) | 3.66 |
H8L | 51.16 (3) | 2.29 | ||||
CuH5L | 43.92 (6) | |||||
CuH3L | 33.16 (4) | 34.18 (1) | 36.09 (1) | 7.83 (2H+) | ||
CuH2L | 27.90 (2) | 5.26 | 30.37 (2) | 3.81 | 31.25 (3) | 4.84 |
CuHL | 19.09 (1) | 8.81 | 25.98 (1) | 4.39 | 24.86 (4) | 6.39 |
CuL | 10.20 (2) | 8.89 | 19.52 (3) | 6.46 | 17.81 (5) | 7.05 |
CuH−1L | 0.59 (1) | 9.61 | 10.09 (5) | 9.43 | 8.19 (7) | 9.62 |
CuH−2L | −10.27 (1) | 10.86 | 0.03 (6) | 10.06 | −1.66 (3) | 9.85 |
ZnH4L | 37.44 (5) | |||||
ZnH3L | 31.31 (7) | 31.72 (2) | 5.72 | |||
ZnH2L | 24.47 (10) | |||||
ZnHL | 16.49 (4) | 7.98 | 16.97 (2) | 14.32 (2H+) | 18.11 (2) | 13.60 (2H+) |
ZnL | 7.78 (4) | 8.72 |
Species | L1 | L2 | L3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
UV-Vis | CD | UV-Vis | CD | UV-Vis | CD | |||||||
λ nm | ε M−1 cm−1 | λ nm | Δε M−1 cm−1 | λ nm | ε M−1 cm−1 | λ nm | Δε M−1 cm−1 | λ nm | ε M−1 cm−1 | λ nm | Δε M−1 cm−1 | |
CuH5L | mix | mix | ||||||||||
CuH3L | mix | mix | mix | mix | mix | mix | mix | mix | mix | mix | ||
CuH2L | 612 | 34 | 230 | 9.233 | mix | mix | mix | mix | 522 | 108 | 252 | 0.184 |
250 | −1.340 | 274 | −0.880 | |||||||||
317 | 0.354 | 312 | 0.648 | |||||||||
690 | −0.292 | 489 | 0.293 | |||||||||
567 | −0.304 | |||||||||||
CuHL | mix | mix | mix | mix | 518 | 82 | 228 251 275 312 488 567 | −9.070 0.512 −2.736 1.346 0.668 −0.588 | 520 | 120 | 252 273 312 486 563 | 0.515 −2.930 1.460 0.693 −0.681 |
CuL | 522 | 141 | 235 250 275 311 532 | −1.765 1.067 −2.062 0.801 −0.807 | 518 | 160 | 229 250 276 311 488 571 | −8.143 1.675 −2.134 1.461 0.796 −0.507 | 520 | 137 | 254 274 312 486 562 | −0.727 −2.730 1.420 0.684 −0.713 |
CuH−1L | 520 | 140 | 232 248 274 309 532 | −4.055 1.791 −2.660 1.012 −1.361 | 519 | 167 | 228 251 276 311 489 568 | −9.531 1.746 −2.124 1.624 0.637 −0.526 | mix | mix | ||
CuH−2L | 520 | 157 | 235 250 275 311 532 | −0.883 0.534 −1.032 0.400 −0.403 | 519 | 167 | 227 250 277 311 490 561 | −10.45 1.868 −2.868 1.649 0.562 −0.609 | 520 | 160 | 253 274 311 486 567 | 2.387 −2.947 1.371 0.766 −0.713 |
logPo/w | |||
---|---|---|---|
Species | L1 | L2 | L3 |
L | −0.41 ± 0.3 | −0.56 ± 0.3 | −0.98 ± 0.3 |
Cu(II)/L | −0.96 ± 0.3 | −1.33 ± 0.3 | −1.44 ± 0.3 |
Zn(II)/L | ------ | −0.96 ± 0.3 | −0.57 ± 0.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janicka-Kłos, A.; Czapor-Irzabek, H.; Janek, T. The Potential Antimicrobial Action of Human Mucin 7 15-Mer Peptide and Its Metal Complexes. Int. J. Mol. Sci. 2022, 23, 418. https://doi.org/10.3390/ijms23010418
Janicka-Kłos A, Czapor-Irzabek H, Janek T. The Potential Antimicrobial Action of Human Mucin 7 15-Mer Peptide and Its Metal Complexes. International Journal of Molecular Sciences. 2022; 23(1):418. https://doi.org/10.3390/ijms23010418
Chicago/Turabian StyleJanicka-Kłos, Anna, Hanna Czapor-Irzabek, and Tomasz Janek. 2022. "The Potential Antimicrobial Action of Human Mucin 7 15-Mer Peptide and Its Metal Complexes" International Journal of Molecular Sciences 23, no. 1: 418. https://doi.org/10.3390/ijms23010418
APA StyleJanicka-Kłos, A., Czapor-Irzabek, H., & Janek, T. (2022). The Potential Antimicrobial Action of Human Mucin 7 15-Mer Peptide and Its Metal Complexes. International Journal of Molecular Sciences, 23(1), 418. https://doi.org/10.3390/ijms23010418