Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves
Abstract
:1. Introduction
2. Results
2.1. Characterization of Human ECFCs
2.2. Generation and Characterization of Human iMSCs
2.3. Morphological Characterization of PCL Nanofibers
2.4. Coating of PCL Plates for Seeding with ECFCs and MSCs
2.5. Cell Seeding of PCL Tissues
2.6. Mechanical Characterization of Native Porcine Heart Valves and PCL Scaffolds
3. Discussion
4. Material & Methods
4.1. Ethics Statement
4.2. ECFC Isolation and Culture
4.3. Characterization of ECFCs
4.4. iPSC Culture
4.5. Generation of hiPSC-MSCs via Mesoderm
4.6. Gene Expression Analysis
4.7. Multilineage Differentiation Assays
4.8. Flow Cytometric Analysis of iMSCs
4.9. Porcine MSC Culture
4.10. Electrospun PCL Scaffolds
4.11. Cell Seeding of PCL Culture Plates
4.12. Fluorescent Staining and Automated Cell Imaging
4.13. Cell Seeding of PCL Tissue
4.14. SEM Analysis
4.15. Dissection of Porcine Pulmonary Heart Valves
4.16. Biomechanical Examination
4.17. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Ciubotaru, A.; Cebotari, S.; Tudorache, I.; Beckmann, E.; Hilfiker, A.; Haverich, A. Biological heart valves. Biomed. Tech. Eng. 2013, 58, 389–397. [Google Scholar] [CrossRef]
- Pelosi, E.; Castelli, G.; Testa, U. Endothelial progenitors. Blood Cells Mol. Dis. 2014, 52, 186–194. [Google Scholar] [CrossRef]
- Yoder, M.C. Human Endothelial Progenitor Cells. Cold Spring Harb. Perspect. Med. 2012, 2, a006692. [Google Scholar] [CrossRef] [PubMed]
- Tasev, D.; Koolwijk, P.; van Hinsbergh, V.W.M. Therapeutic Potential of Human-Derived Endothelial Colony-Forming Cells in Animal Models. Tissue Eng. Part B Rev. 2016, 22, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Glynn, J.J.; Hinds, M.T. Endothelial Outgrowth Cells: Function and Performance in Vascular Grafts. Tissue Eng. Part B Rev. 2014, 20, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Iop, L.; Renier, V.; Naso, F.; Piccoli, M.; Bonetti, A.; Gandaglia, A.; Pozzobon, M.; Paolin, A.; Ortolani, F.; Marchini, M.; et al. The influence of heart valve leaflet matrix characteristics on the interaction between human mesenchymal stem cells and decellularized scaffolds. Biomaterials 2009, 30, 4104–4116. [Google Scholar] [CrossRef]
- Latif, N.; Sarathchandra, P.; Thomas, P.S.; Antoniw, J.; Batten, P.; Chester, A.H.; Taylor, P.M.; Yacoub, M.H. Characterization of structural and signaling molecules by human valve interstitial cells and comparison to human mesenchymal stem cells. J. Heart Valve Dis. 2007, 16, 56–66. [Google Scholar]
- Hashi, C.K.; Zhu, Y.; Yang, G.-Y.; Young, W.L.; Hsiao, B.S.; Wang, K.; Chu, B.; Li, S. Antithrombogenic property of bone marrow mesenchymal stem cells in nanofibrous vascular grafts. Proc. Natl. Acad. Sci. USA 2007, 104, 11915–11920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okita, K.; Ichisaka, T.; Yamanaka, S. Generation of germline-competent induced pluripotent stem cells. Nature 2007, 448, 313–317. [Google Scholar] [CrossRef]
- Yu, J.; Vodyanik, M.A.; Smuga-Otto, K.; Antosiewicz-Bourget, J.; Frane, J.L.; Tian, S.; Nie, J.; Jonsdottir, G.A.; Ruotti, V.; Stewart, R.; et al. Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 2007, 318, 1917–1920. [Google Scholar] [CrossRef] [PubMed]
- Sackett, S.D.; Brown, M.E.; Tremmel, D.M.; Ellis, T.; Burlingham, W.J.; Odorico, J.S. Modulation of human allogeneic and syngeneic pluripotent stem cells and immunological implications for transplantation. Transplant. Rev. 2016, 30, 61–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steens, J.; Klein, D. Current Strategies to Generate Human Mesenchymal Stem Cells In Vitro. Stem Cells Int. 2018, 2018, 6726185. [Google Scholar] [CrossRef]
- Lian, Q.; Zhang, Y.; Zhang, J.; Zhang, H.K.; Wu, X.; Zhang, Y.; Lam, F.F.-Y.; Kang, S.; Xia, J.C.; Lai, W.-H.; et al. Functional Mesenchymal Stem Cells Derived From Human Induced Pluripotent Stem Cells Attenuate Limb Ischemia in Mice. Circulation 2010, 121, 1113–1123. [Google Scholar] [CrossRef] [Green Version]
- Villa-Diaz, L.G.; Brown, S.E.; Liu, Y.; Ross, A.; Lahann, J.; Parent, J.M.; Krebsbach, P.H. Derivation of functional mesenchymal stem cells from human induced pluripotent stem cells cultured on synthetic polymer substrates. Stem Cells Dayt. Ohio 2012, 30, 1174–1181. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Tan, G.; Manasi; Qiu, S.; Kong, G.; Yong, P.; Koh, C.; Ooi, T.H.; Lim, S.Y.; Wong, P.; et al. One-step derivation of cardiomyocytes and mesenchymal stem cells from human pluripotent stem cells. Stem Cell Res. 2012, 9, 87–100. [Google Scholar] [CrossRef] [Green Version]
- Joyce, E.M.; Liao, J.; Schoen, F.J.; Mayer, J.E.; Sacks, M.S. Funktional Collagen Fiber Architecture of the Pulmonary Heart Valve Cusp. Ann. Thorac. Surg. 2009, 87, 1240–1249. [Google Scholar] [CrossRef] [Green Version]
- Pitt, G.G.; Gratzl, M.M.; Kimmel, G.L.; Surles, J.; Sohindler, A. Aliphatic polyesters II. The degradation of poly (DL-lactide), poly (ε-caprolactone), and their copolymers in vivo. Biomaterials 1981, 2, 215–220. [Google Scholar] [CrossRef]
- Hasan, A.; Soliman, S.; El Hajj, F.; Tseng, Y.-T.; Yalcin, H.C.; Marei, H.E. Fabrication and In Vitro Characterization of a Tissue Engineered PCL-PLLA Heart Valve. Sci. Rep. 2018, 8, 8187. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.X. Scaffolds for tissue fabrication. Mater. Today 2004, 7, 30–40. [Google Scholar] [CrossRef]
- Lam, A.T.-L.; Li, J.; Toh, J.P.-W.; Sim, E.J.-H.; Chen, A.K.-L.; Chan, J.K.-Y.; Choolani, M.; Reuveny, S.; Birch, W.R.; Oh, S.K.-W. Biodegradable poly-ε-caprolactone microcarriers for efficient production of human mesenchymal stromal cells and secreted cytokines in batch and fed-batch bioreactors. Cytotherapy 2017, 19, 419–432. [Google Scholar] [CrossRef] [PubMed]
- Lacaud, G.; Keller, G.; Kouskoff, V. Tracking Mesoderm Formation and Specification to the Hemangioblast in Vitro. Trends Cardiovasc. Med. 2004, 14, 314–317. [Google Scholar] [CrossRef]
- Kutikhin, A.G.; Tupikin, A.E.; Matveeva, V.G.; Shishkova, D.K.; Antonova, L.V.; Kabilov, M.R.; Velikanova, E.A. Human Peripheral Blood-Derived Endothelial Colony-Forming Cells Are Highly Similar to Mature Vascular Endothelial Cells yet Demonstrate a Transitional Transcriptomic Signature. Cells 2020, 9, 876. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, D.; Dijkman, P.E.; Driessen-Mol, A.; Stenger, R.; Mariani, C.; Puolakka, A.; Rissanen, M.; Deichmann, T.; Odermatt, B.; Weber, B.; et al. Minimally-Invasive Implantation of Living Tissue Engineered Heart Valves: A Comprehensive Approach From Autologous Vascular Cells to Stem Cells. J. Am. Coll. Cardiol. 2010, 56, 510–520. [Google Scholar] [CrossRef] [Green Version]
- Melero-Martin, J.M.; Khan, Z.A.; Picard, A.; Wu, X.; Paruchuri, S.; Bischoff, J. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 2007, 109, 4761–4768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jana, S.; Lerman, A. Behavior of valvular interstitial cells on trilayered nanofibrous substrate mimicking morphologies of heart valve leaflet. Acta Biomater. 2019, 85, 142–156. [Google Scholar] [CrossRef]
- Krüger-Genge, A.; Dietze, S.; Yan, W.; Liu, Y.; Fang, L.; Kratz, K.; Lendlein, A.; Jung, F. Endothelial cell migration, adhesion and proliferation on different polymeric substrates. Clin. Hemorheol. Microcirc. 2018, 70, 511–529. [Google Scholar] [CrossRef]
- Kaehler, J.; Zilla, P.; Fasol, R.; Deutsch, M.; Kadletz, M. Precoating substrate and surface configuration determine adherence and spreading of seeded endothelial cells on polytetrafluoroethylene grafts. J. Vasc. Surg. 1989, 9, 535–541. [Google Scholar] [CrossRef] [Green Version]
- Sant, S.; Hwang, C.M.; Lee, S.-H.; Khademhosseini, A. Hybrid PGS-PCL Microfibrous Scaffolds with Improved Mechanical and Biological Properties. J. Tissue Eng. Regen. Med. 2011, 5, 283–291. [Google Scholar] [CrossRef]
- Venugopal, J.; Zhang, Y.Z.; Ramakrishna, S. Fabrication of modified and functionalized polycaprolactone nanofibre scaffolds for vascular tissue engineering. Nanotechnology 2005, 16, 2138–2142. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.; Krause, D.; Deans, R.; Keating, A.; Prockop, D.; Horwitz, E. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Qu, J.; Zhou, D.; Xu, X.; Zhang, F.; He, L.; Ye, R.; Zhu, Z.; Zuo, B.; Zhang, H. Optimization of electrospun TSF nanofiber alignment and diameter to promote growth and migration of mesenchymal stem cells. Appl. Surf. Sci. 2012, 261, 320–326. [Google Scholar] [CrossRef]
- Brugmans, M.M.C.P.; Soekhradj-Soechit, R.S.; van Geemen, D.; Cox, M.; Bouten, C.V.C.; Baaijens, F.P.T.; Driessen-Mol, A. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Tissue Eng. Part A 2015, 22, 123–132. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog. Polym. Sci. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- Sharifi, F.; Irani, S.; Zandi, M.; Soleimani, M.; Atyabi, S.M. Comparative of fibroblast and osteoblast cells adhesion on surface modified nanofibrous substrates based on polycaprolactone. Prog. Biomater. 2016, 5, 213–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tallawi, M.; Rosellini, E.; Barbani, N.; Cascone, M.G.; Rai, R.; Saint-Pierre, G.; Boccaccini, A.R. Strategies for the chemical and biological functionalization of scaffolds for cardiac tissue engineering: A review. J. R. Soc. Interface 2015, 12, 20150254. [Google Scholar] [CrossRef] [PubMed]
- Campagnolo, P.; Gormley, A.J.; Chow, L.W.; Guex, A.G.; Parmar, P.A.; Puetzer, J.L.; Steele, J.A.M.; Breant, A.; Madeddu, P.; Stevens, M.M. Pericyte Seeded Dual Peptide Scaffold with Improved Endothelialization for Vascular Graft Tissue Engineering. Adv. Healthc. Mater. 2016, 5, 3046–3055. [Google Scholar] [CrossRef] [Green Version]
- Masoumi, N.; Annabi, N.; Assmann, A.; Larson, B.L.; Hjortnaes, J.; Alemdar, N.; Kharaziha, M.; Manning, K.B.; Mayer, J.E., Jr.; Khademhosseini, A. Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials 2014, 35, 7774–7785. [Google Scholar] [CrossRef] [Green Version]
- Jana, S.; Bhagia, A.; Lerman, A. Optimization of polycaprolactone fibrous scaffold for heart valve tissue engineering. Biomed. Mater. Bristol Engl. 2019, 14, 065014. [Google Scholar] [CrossRef]
- Naso, F.; Gandaglia, A. Different approaches to heart valve decellularization: A comprehensive overview of the past 30 years. Xenotransplantation 2018, 25, e12354. [Google Scholar] [CrossRef] [Green Version]
- Dijkman, P.E.; Fioretta, E.S.; Frese, L.; Pasqualini, F.S.; Hoerstrup, S.P. Heart Valve Replacements with Regenerative Capacity. Transfus. Med. Hemother. 2016, 43, 282–290. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, Y.; Clark, K.L.; Padget, A.-M.; Alexander, P.G.; Dai, J.; Zhu, W.; Lin, H. Mesenchymal stem cell-derived extracellular matrix (mECM): A bioactive and versatile scaffold for musculoskeletal tissue engineering. Biomed. Mater. 2020, 16, 1. [Google Scholar] [CrossRef]
- Halim, A.; Ariyanti, A.D.; Luo, Q.; Song, G. Recent Progress in Engineering Mesenchymal Stem Cell Differentiation. Stem Cell Rev. Rep. 2020, 16, 661–674. [Google Scholar] [CrossRef] [PubMed]
- VeDepo, M.; Buse, E.; Quinn, R.; Hopkins, R.; Converse, G. Extended bioreactor conditioning of mononuclear cell–seeded heart valve scaffolds. J. Tissue Eng. 2018, 9, 2041731418767216. [Google Scholar] [CrossRef]
- Kajbafzadeh, A.-M.; Ahmadi Tafti, S.H.; Mokhber-Dezfooli, M.-R.; Khorramirouz, R.; Sabetkish, S.; Sabetkish, N.; Rabbani, S.; Tavana, H.; Mohseni, M.J. Aortic valve conduit implantation in the descending thoracic aorta in a sheep model: The outcomes of pre-seeded scaffold. Int. J. Surg. 2016, 28, 97–105. [Google Scholar] [CrossRef]
- Samal, J.; Weinandy, S.; Weinandy, A.; Helmedag, M.; Rongen, L.; Hermanns-Sachweh, B.; Kundu, S.C.; Jockenhoevel, S. Co-Culture of Human Endothelial Cells and Foreskin Fibroblasts on 3D Silk–Fibrin Scaffolds Supports Vascularization. Macromol. Biosci. 2015, 15, 1433–1446. [Google Scholar] [CrossRef]
- Schwarz, T.M.; Leicht, S.F.; Radic, T.; Rodriguez-Arabaolaza, I.; Hermann, P.C.; Berger, F.; Saif, J.; Böcker, W.; Ellwart, J.W.; Aicher, A.; et al. Vascular Incorporation of Endothelial Colony-Forming Cells Is Essential for Functional Recovery of Murine Ischemic Tissue Following Cell Therapy. Arterioscler. Thromb. Vasc. Biol. 2012, 32, e13–e21. [Google Scholar] [CrossRef] [Green Version]
- Hoch, A.I.; Binder, B.Y.; Genetos, D.C.; Leach, J.K. Differentiation-Dependent Secretion of Proangiogenic Factors by Mesenchymal Stem Cells. PLoS ONE 2012, 7, e35579. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Teoh, S.-H.; Chong, M.S.K.; Lee, E.S.M.; Mattar, C.N.Z.; Randhawa, N.K.; Zhang, Z.-Y.; Medina, R.J.; Kamm, R.D.; Fisk, N.M.; et al. Vasculogenic and Osteogenesis-Enhancing Potential of Human Umbilical Cord Blood Endothelial Colony-Forming Cells. Stem Cells 2012, 30, 1911–1924. [Google Scholar] [CrossRef]
- Liu, X.; Chen, W.; Zhang, C.; Thein-Han, W.; Hu, K.; Reynolds, M.A.; Bao, C.; Wang, P.; Zhao, L.; Xu, H.H.K. Co-seeding Human Endothelial Cells with Human-Induced Pluripotent Stem Cell-Derived Mesenchymal Stem Cells on Calcium Phosphate Scaffold Enhances Osteogenesis and Vascularization in Rats. Tissue Eng. Part A 2017, 23, 546–555. [Google Scholar] [CrossRef] [PubMed]
- Martin-Ramirez, J.; Hofman, M.; van den Biggelaar, M.; Hebbel, R.P.; Voorberg, J. Establishment of outgrowth endothelial cells from peripheral blood. Nat. Protoc. 2012, 7, 1709–1715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mead, L.E.; Prater, D.; Yoder, M.C.; Ingram, D.A. Isolation and Characterization of Endothelial Progenitor Cells from Human Blood. Curr. Protoc. Stem Cell Biol. 2008, 6, 2C.1.1–2C.1.27. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Lan, H.; El-Battrawy, I.; Li, X.; Buljubasic, F.; Sattler, K.; Yücel, G.; Lang, S.; Tiburcy, M.; Zimmermann, W.-H.; et al. Ion Channel Expression and Characterization in Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Stem Cells Int. 2018, 2018, 6067096. [Google Scholar] [CrossRef] [PubMed]
- Diecke, S.; Lu, J.; Lee, J.; Termglinchan, V.; Kooreman, N.G.; Burridge, P.W.; Ebert, A.D.; Churko, J.M.; Sharma, A.; Kay, M.A.; et al. Novel codon-optimized mini-intronic plasmid for efficient, inexpensive, and xeno-free induction of pluripotency. Sci. Rep. 2015, 5, 8081. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reger, R.L.; Tucker, A.H.; Wolfe, M.R. Differentiation and Characterization of Human MSCs. In Mesenchymal Stem Cells: Methods and Protocols; Prockop, D.J., Bunnell, B.A., Phinney, D.G., Eds.; Methods in Molecular BiologyTM; Humana Press: Totowa, NJ, USA, 2008; pp. 93–107. ISBN 978-1-60327-169-1. [Google Scholar]
- Agudelo-Garcia, P.A.; De Jesus, J.K.; Williams, S.P.; Nowicki, M.O.; Chiocca, E.A.; Liyanarachchi, S.; Li, P.-K.; Lannutti, J.J.; Johnson, J.K.; Lawler, S.E.; et al. Glioma Cell Migration on Three-dimensional Nanofiber Scaffolds Is Regulated by Substrate Topography and Abolished by Inhibition of STAT3 Signaling. Neoplasia 2011, 13, 831–840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisy, M.; Pennecke, J.; Brockbank, K.G.M.; Fritze, O.; Schleicher, M.; Schenke-Layland, K.; Kaulitz, R.; Riemann, I.; Weber, C.N.; Braun, J.; et al. The performance of ice-free cryopreserved heart valve allografts in an orthotopic pulmonary sheep model. Biomaterials 2010, 31, 5306–5311. [Google Scholar] [CrossRef] [PubMed]
- Croisier, F.; Duwez, A.S.; Jérôme, C.; Léonard, A.F.; Van Der Werf, K.O.; Dijkstra, P.J.; Bennink, M.L. Mechanical testing of electrospun PCL fibers. Acta Biomater. 2012, 8, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.R. Tensile Testing, 2nd ed.; ASM International The Materials Information Society: Materials Park, OH, USA, 2004. [Google Scholar]
Young’s Modulus (MPa) | Fmax (N) | Elongation at Fmax (%) | |
---|---|---|---|
Native (n = 15) | 4.4 ± 3.4 | 1.2 ± 0.5 * | 108.8 ± 49.6 |
PCL (n = 10) | 3.9 ± 0.8 | 0.6 ± 0.1 * | 143.5 ± 34.8 |
PCL + ECFCs (n = 11) | 3.6 ± 1.0 | 0.6 ± 0.1 * | 129.4 ± 10.2 |
PCL + iMSCs (n = 6) | 2.7 ± 0.5 | 0.7 ± 0.1 * | 147.1 ± 5.7 |
Genes | Sense Primer | Antisense Primer |
---|---|---|
B2M | AAG CAG CAT CAT GGA GGT TTG | GAG CTA CCT GTG GAG CAA CC |
OCT3/4 | AGT AGT CCC TTC GCA AGC C | CCC CCA CAG AAC TCA TAC GG |
Brachyury | CAA CCT CAC TGA CGG TGA AAA A | ACA AAT TCT GGT GTG CCA AAG TT |
SOX2 | AAC CAG CGC ATG GAC AGT T | GCA AAG CTC CTA CCG TAC CA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lutter, G.; Puehler, T.; Cyganek, L.; Seiler, J.; Rogler, A.; Herberth, T.; Knueppel, P.; Gorb, S.N.; Sathananthan, J.; Sellers, S.; et al. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. Int. J. Mol. Sci. 2022, 23, 527. https://doi.org/10.3390/ijms23010527
Lutter G, Puehler T, Cyganek L, Seiler J, Rogler A, Herberth T, Knueppel P, Gorb SN, Sathananthan J, Sellers S, et al. Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. International Journal of Molecular Sciences. 2022; 23(1):527. https://doi.org/10.3390/ijms23010527
Chicago/Turabian StyleLutter, Georg, Thomas Puehler, Lukas Cyganek, Jette Seiler, Anita Rogler, Tanja Herberth, Philipp Knueppel, Stanislav N. Gorb, Janarthanan Sathananthan, Stephanie Sellers, and et al. 2022. "Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves" International Journal of Molecular Sciences 23, no. 1: 527. https://doi.org/10.3390/ijms23010527
APA StyleLutter, G., Puehler, T., Cyganek, L., Seiler, J., Rogler, A., Herberth, T., Knueppel, P., Gorb, S. N., Sathananthan, J., Sellers, S., Müller, O. J., Frank, D., & Haben, I. (2022). Biodegradable Poly-ε-Caprolactone Scaffolds with ECFCs and iMSCs for Tissue-Engineered Heart Valves. International Journal of Molecular Sciences, 23(1), 527. https://doi.org/10.3390/ijms23010527