Tissue Engineered Transcatheter Pulmonary Valved Stent Implantation: Current State and Future Prospect
Abstract
:1. Introduction
2. Transcatheter Pulmonary Valve Replacement in Large Right Ventricular Outflow Tracts
2.1. Development of Tissue-Engineered Pulmonary Valves
2.2. Decellularized Tissue-Engineered Heart Valve
2.3. Seed Cells and Recellularization of Tissue-Engineered Valves
2.4. Effects of Seed Cells on Recellularization
2.5. Effects of Bioreactors on Recellularization
2.6. In Vivo In Situ Recellularization Procedure
2.7. Tissue-Engineered Pulmonary Valves in the Clinic
3. Tissue-Engineered Transcatheter Pulmonary Valved Stent Implantation
4. Discussion
5. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
CHD | Congenital heart disease |
RVOT | Right ventricular outflow tract |
TPVR | Transcatheter pulmonary valve replacement |
ECM | Extracellular matrix |
TEHV | Tissue-engineered heart valve |
DHVs | Decellularized heart valves |
dsDNA | Double-stranded DNA |
DAPI | 4′,6-diamidino-2-phenylindole |
H&E | Hematoxylin-eosin |
MSC | Mesenchymal stem cells |
VEGF | Vascular endothelial growth factor |
DPHs | Decellularized pulmonary homografts |
CH | Cryopreserved homograft |
BJV | Bovine jugular vein |
SDC | Sodium deoxycholate |
SDS | Sodium dodecyl sulfate |
EDTA | Ethylenediaminetetraacetic acid |
cDPVH | Cryopreserved decellularized pulmonary valve homograft |
fDPVH | Fresh decellularized pulmonary valve homograft |
PCU | Polycarbonate urethane |
DPVHs | Decellularized pulmonary valve homografts |
References
- Baumgartner, H.; De Backer, J.; Babu-Narayan, S.V.; Budts, W.; Chessa, M.; Diller, G.P.; Lung, B.; Kluin, J.; Lang, I.M.; Meijboom, F.; et al. 2020 ESC Guidelines for the management of adult congenital heart disease. Eur. Heart J. 2021, 42, 563–645. [Google Scholar] [CrossRef]
- McElhinney, D.B.; Hennesen, J.T. The Melody(R) valve and Ensemble(R) delivery system for transcatheter pulmonary valve replacement. Ann. N. Y. Acad. Sci. 2013, 1291, 77–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, J.G.; Gersh, B.J.; Mair, D.D.; Fuster, V.; McGoon, M.D.; Ilstrup, D.M.; McGoon, D.C.; Kirklin, J.W.; Danielson, G.K. Long-term outcome in patients undergoing surgical repair of tetralogy of Fallot. N. Engl. J. Med. 1993, 329, 593–599. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.-M.; Mishaly, D.; Shinfeld, A.; Raanani, E. Right ventricular outflow tract reconstruction: Valved conduit of choice and clinical outcomes. J. Cardiovasc. Med. 2008, 9, 327–337. [Google Scholar] [CrossRef] [PubMed]
- Brown, J.W.; Ruzmetov, M.; Rodefeld, M.D.; Vijay, P.; Turrentine, M.W. Right ventricular outflow tract reconstruction with an allograft conduit in non-ross patients: Risk factors for allograft dysfunction and failure. Ann. Thorac. Surg. 2005, 80, 655–663, discussion 663ߝ654. [Google Scholar] [CrossRef]
- Wells, W.J.; Arroyo, H., Jr.; Bremner, R.M.; Wood, J.; Starnes, V.A. Homograft conduit failure in infants is not due to somatic outgrowth. J. Thorac. Cardiovasc. Surg. 2002, 124, 88–96. [Google Scholar] [CrossRef] [Green Version]
- Lange, R.; Weipert, J.; Homann, M.; Mendler, N.; Paek, S.-U.; Holper, K.; Meisner, H. Performance of allografts and xenografts for right ventricular outflow tract reconstruction. Ann. Thorac. Surg. 2001, 71, S365–S367. [Google Scholar] [CrossRef]
- Kanter, K.R.; Budde, J.M.; Parks, W.J.; Tam, V.K.; Sharma, S.; Williams, W.H.; Fyfe, D.A. One hundred pulmonary valve replacements in children after relief of right ventricular outflow tract obstruction. Ann. Thorac. Surg. 2002, 73, 1801–1807. [Google Scholar] [CrossRef]
- Bonhoeffer, P.; Boudjemline, Y.; Saliba, Z.; Merckx, J.; Aggoun, Y.; Bonnet, D.; Acar, P.; Le Bidois, J.; Sidi, D.; Kachaner, J. Percutaneous replacement of pulmonary valve in a right-ventricle to pulmonary-artery prosthetic conduit with valve dysfunction. Lancet 2000, 356, 1403–1405. [Google Scholar] [CrossRef]
- Zahn, E.M.; Hellenbrand, W.E.; Lock, J.E.; McElhinney, D.B. Implantation of the Melody transcatheter pulmonary valve in patients with a dysfunctional right ventricular outflow tract conduit: Early results from the US clinical trial. J. Am. Coll. Cardiol. 2009, 54, 1722–1729. [Google Scholar] [CrossRef] [Green Version]
- Boethig, D.; Avsar, M.; Bauer, U.M.; Sarikouch, S.; Beerbaum, P.; Berger, F.; Cesnjevar, R.; Dähnert, I.; Dittrich, S.; Ewert, P. Pulmonary valve prostheses: Patient’s lifetime procedure load and durability. Evaluation of the German National Register for Congenital Heart Defects. Interact. CardioVasc. Thorac. Surg. 2021, ivab233. [Google Scholar] [CrossRef]
- Schievano, S.; Coats, L.; Migliavacca, F.; Norman, W.; Frigiola, A.; Deanfield, J.; Bonhoeffer, P.; Taylor, A.M. Variations in right ventricular outflow tract morphology following repair of congenital heart disease: Implications for percutaneous pulmonary valve implantation. J. Cardiovasc. Magn. Reson. 2007, 9, 687–695. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basude, S.; Hein, C.; Curtis, S.; Clark, A.; Trinder, J. Low-molecular-weight heparin or warfarin for anticoagulation in pregnant women with mechanical heart valves: What are the risks? A retrospective observational study. BJOG Int. J. Obstet. Gynaecol. 2012, 119, 1008–1013. [Google Scholar] [CrossRef] [PubMed]
- Schoen, F.J.; Levy, R.J. Calcification of tissue heart valve substitutes: Progress toward understanding and prevention. Ann. Thorac. Surg. 2005, 79, 1072–1080. [Google Scholar] [CrossRef]
- Jordan, J.E.; Williams, J.K.; Lee, S.-J.; Raghavan, D.; Atala, A.; Yoo, J.J. Bioengineered self-seeding heart valves. J. Thorac. Cardiovasc. Surg. 2012, 143, 201–208. [Google Scholar] [CrossRef] [Green Version]
- Stassen, O.; Muylaert, D.; Bouten, C.V.; Hjortnaes, J. Current challenges in translating tissue-engineered heart valves. Curr. Treat. Options Cardiovasc. Med. 2017, 19, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nii, T.; Katayama, Y. Biomaterial-Assisted regenerative medicine. Int. J. Mol. Sci. 2021, 22, 8657. [Google Scholar] [CrossRef] [PubMed]
- Yue, S.; He, H.; Li, B.; Hou, T. Hydrogel as a biomaterial for bone tissue engineering: A review. Nanomaterials 2020, 10, 1511. [Google Scholar] [CrossRef]
- Groeber, F.; Holeiter, M.; Hampel, M.; Hinderer, S.; Schenke-Layland, K. Skin tissue engineering—in vivo and in vitro applications. Adv. Drug Deliv. Rev. 2011, 63, 352–366. [Google Scholar] [CrossRef]
- Nii, T.; Makino, K.; Tabata, Y. Three-dimensional culture system of cancer cells combined with biomaterials for drug screening. Cancers 2020, 12, 2754. [Google Scholar] [CrossRef]
- Peña, B.; Laughter, M.; Jett, S.; Rowland, T.J.; Taylor, M.R.; Mestroni, L.; Park, D. Injectable hydrogels for cardiac tissue engineering. Macromol. Biosci. 2018, 18, 1800079. [Google Scholar] [CrossRef]
- Mitsui, R.; Matsukawa, M.; Nakagawa, K.; Isomura, E.; Kuwahara, T.; Nii, T.; Tanaka, S.; Tabata, Y. Efficient cell transplantation combining injectable hydrogels with control release of growth factors. Regen. Ther. 2021, 18, 372–383. [Google Scholar] [CrossRef]
- Alkashkari, W.; Albugami, S.; Abbadi, M.; Niyazi, A.; Alsubei, A.; Hijazi, Z.M. Transcatheter pulmonary valve replacement in pediatric patients. Expert Rev. Med. Devices 2020, 17, 541–554. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, J.P.; Hellenbrand, W.E.; Zahn, E.M.; Jones, T.K.; Berman, D.P.; Vincent, J.A.; McElhinney, D.B. Clinical and hemodynamic outcomes up to 7 years after transcatheter pulmonary valve replacement in the US melody valve investigational device exemption trial. Circulation 2015, 131, 1960–1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kenny, D.; Hijazi, Z.M.; Kar, S.; Rhodes, J.; Mullen, M.; Makkar, R.; Shirali, G.; Fogel, M.; Fahey, J.; Heitschmidt, M.G. Percutaneous implantation of the Edwards SAPIEN transcatheter heart valve for conduit failure in the pulmonary position: Early phase 1 results from an international multicenter clinical trial. J. Am. Coll. Cardiol. 2011, 58, 2248–2256. [Google Scholar] [CrossRef] [Green Version]
- Odemis, E.; Guzeltas, A.; Saygi, M.; Ozyilmaz, I.; Momenah, T.; Bakir, I. Percutaneous Pulmonary Valve Implantation Using E dwards SAPIEN T ranscatheter H eart V alve in Different Types of Conduits: Initial Results of a Single Center Experience. Congenit. Heart Dis. 2013, 8, 411–417. [Google Scholar]
- Boshoff, D.E.; Cools, B.L.; Heying, R.; Troost, E.; Kefer, J.; Budts, W.; Gewillig, M. Off-label use of percutaneous pulmonary valved stents in the right ventricular outflow tract: Time to rewrite the label? Catheter. Cardiovasc. Interv. 2013, 81, 987–995. [Google Scholar] [CrossRef] [PubMed]
- Meadows, J.J.; Moore, P.M.; Berman, D.P.; Cheatham, J.P.; Cheatham, S.L.; Porras, D.; Gillespie, M.J.; Rome, J.J.; Zahn, E.M.; McElhinney, D.B. Use and performance of the Melody Transcatheter Pulmonary Valve in native and postsurgical, nonconduit right ventricular outflow tracts. Circ. Cardiovasc. Interv. 2014, 7, 374–380. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, M.J.; Rome, J.J.; Levi, D.S.; Williams, R.J.; Rhodes, J.F.; Cheatham, J.P.; Hellenbrand, W.E.; Jones, T.K.; Vincent, J.A.; Zahn, E.M. Melody valve implant within failed bioprosthetic valves in the pulmonary position: A multicenter experience. Circ. Cardiovasc. Interv. 2012, 5, 862–870. [Google Scholar] [CrossRef] [Green Version]
- Schievano, S.; Taylor, A.M.; Capelli, C.; Coats, L.; Walker, F.; Lurz, P.; Nordmeyer, J.; Wright, S.; Khambadkone, S.; Tsang, V. First-in-man implantation of a novel percutaneous valve: A new approach to medical device development. EuroInterv. J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2010, 5, 745–750. [Google Scholar] [CrossRef]
- Cao, Q.L.; Kenny, D.; Zhou, D.; Pan, W.; Guan, L.; Ge, J.; Hijazi, Z.M. Early clinical experience with a novel self-expanding percutaneous stent-valve in the native right ventricular outflow tract. Catheter. Cardiovasc. Interv. 2014, 84, 1131–1137. [Google Scholar] [CrossRef]
- Promphan, W.; Prachasilchai, P.; Siripornpitak, S.; Qureshi, S.A.; Layangool, T. Percutaneous pulmonary valve implantation with the Venus P-valve: Clinical experience and early results. Cardiol. Young 2016, 26, 698–710. [Google Scholar] [CrossRef] [Green Version]
- Basquin, A.; Pineau, E.; Galmiche, L.; Bonnet, D.; Sidi, D.; Boudjemline, Y. Transcatheter valve insertion in a model of enlarged right ventricular outflow tracts. J. Thorac. Cardiovasc. Surg. 2010, 139, 198–208. [Google Scholar] [CrossRef] [Green Version]
- Amahzoune, B.; Szymansky, C.; Fabiani, J.-N.; Zegdi, R. A new endovascular size reducer for large pulmonary outflow tract. Eur. J. Cardio-Thorac. Surg. 2010, 37, 730–732. [Google Scholar] [CrossRef] [Green Version]
- Gillespie, M.J.; Dori, Y.; Harris, M.A.; Sathanandam, S.; Glatz, A.C.; Rome, J.J. Bilateral branch pulmonary artery melody valve implantation for treatment of complex right ventricular outflow tract dysfunction in a high-risk patient. Circ. Cardiovasc. Interv. 2011, 4, e21–e23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudjemline, Y.; Legendre, A.; Ladouceur, M.; Boughenou, M.-F.; Patel, M.; Bonnet, D.; Iserin, L. Branch pulmonary artery jailing with a bare metal stent to anchor a transcatheter pulmonary valve in patients with patched large right ventricular outflow tract. Circ. Cardiovasc. Interv. 2012, 5, e22–e25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, C.E.; Pasala, T.K. Are We Ready for Transcatheter Pulmonary Valve Replacement in Native Right Ventricular Outflow Tract? American College of Cardiology Foundation: Washington, DC, USA, 2018. [Google Scholar]
- Masoumi, N.; Annabi, N.; Assmann, A.; Larson, B.L.; Hjortnaes, J.; Alemdar, N.; Kharaziha, M.; Manning, K.B.; Mayer, J.E., Jr.; Khademhosseini, A. Tri-layered elastomeric scaffolds for engineering heart valve leaflets. Biomaterials 2014, 35, 7774–7785. [Google Scholar] [CrossRef] [Green Version]
- Crapo, P.M.; Gilbert, T.W.; Badylak, S.F. An overview of tissue and whole organ decellularization processes. Biomaterials 2011, 32, 3233–3243. [Google Scholar] [CrossRef] [Green Version]
- Koolbergen, D.R.; Hazekamp, M.G.; Kurvers, M.; de Heer, E.; Cornelisse, C.J.; Huysmans, H.A.; Bruijn, J.A. Tissue chimerism in human cryopreserved homograft valve explants demonstrated by in situ hybridization. Ann. Thorac. Surg. 1998, 66, S225–S232. [Google Scholar] [CrossRef]
- Lehner, G.; Fischlein, T.; Baretton, G.; Murphy, J.; Reichart, B. Endothelialized biological heart valve prostheses in the non-human primate model. Eur. J. Cardio-Thorac. Surg. 1997, 11, 498–504. [Google Scholar] [CrossRef]
- Dohmen, P.M.; Lembcke, A.; Hotz, H.; Kivelitz, D.; Konertz, W.F. Ross operation with a tissue-engineered heart valve. The Ann. Thorac. Surg. 2002, 74, 1438–1442. [Google Scholar] [CrossRef]
- Elkins, R.C.; Dawson, P.E.; Goldstein, S.; Walsh, S.P.; Black, K.S. Decellularized human valve allografts. Ann. Thorac. Surg. 2001, 71, S428–S432. [Google Scholar] [CrossRef]
- Grauss, R.W.; Hazekamp, M.G.; Oppenhuizen, F.; van Munsteren, C.J.; Gittenberger-de Groot, A.C.; DeRuiter, M.C. Histological evaluation of decellularised porcine aortic valves: Matrix changes due to different decellularisation methods. Eur. J. Cardio-Thorac. Surg. 2005, 27, 566–571. [Google Scholar] [CrossRef] [PubMed]
- Bin, F.; Yinglong, L.; Nin, X.; Kai, F.; Laifeng, S.; Xiaodong, Z. Construction of tissue-engineered homograft bioprosthetic heart valves in vitro. ASAIO J. 2006, 52, 303–309. [Google Scholar] [CrossRef] [PubMed]
- Rieder, E.; Kasimir, M.-T.; Silberhumer, G.; Seebacher, G.; Wolner, E.; Simon, P.; Weigel, G. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J. Thorac. Cardiovasc. Surg. 2004, 127, 399–405. [Google Scholar] [CrossRef] [Green Version]
- Rieder, E.; Seebacher, G.; Kasimir, M.-T.; Eichmair, E.; Winter, B.; Dekan, B.; Wolner, E.; Simon, P.; Weigel, G. Tissue engineering of heart valves: Decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 2005, 111, 2792–2797. [Google Scholar] [CrossRef] [Green Version]
- Dainese, L.; Guarino, A.; Burba, I.; Esposito, G.; Pompilio, G.; Polvani, G.; Rossini, A. Heart valve engineering: Decellularized aortic homograft seeded with human cardiac stromal cells. J. Heart Valve Dis. 2012, 21, 125. [Google Scholar]
- Knight, R.L.; Booth, C.; Wilcox, H.E.; Fisher, J.; Ingham, E. Tissue engineering of cardiac valves: Re-seeding of acellular porcine aortic valve matrices with human mesenchymal progenitor cells. J. Heart Valve Dis. 2005, 14, 806–813. [Google Scholar] [PubMed]
- Zeltinger, J.; Landeen, L.K.; Alexander, H.G.; Kidd, I.D.; Sibanda, B. Development and characterization of tissue-engineered aortic valves. Tissue Eng. 2001, 7, 9–22. [Google Scholar] [CrossRef]
- Yuan, L.; Sakamoto, N.; Song, G.; Sato, M. High-level shear stress stimulates endothelial differentiation and VEGF secretion by human mesenchymal stem cells. Cell. Mol. Bioeng. 2013, 6, 220–229. [Google Scholar] [CrossRef]
- Pankajakshan, D.; Kansal, V.; Agrawal, D.K. In vitro differentiation of bone marrow derived porcine mesenchymal stem cells to endothelial cells. J. Tissue Eng. Regen. Med. 2013, 7, 911–920. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Converse, G.L.; Buse, E.E.; Neill, K.R.; McFall, C.R.; Lewis, H.N.; VeDepo, M.C.; Quinn, R.W.; Hopkins, R.A. Design and efficacy of a single-use bioreactor for heart valve tissue engineering. J. Biomed. Mater. Res. Part B Appl. Biomater. 2017, 105, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Vincentelli, A.; Wautot, F.; Juthier, F.; Fouquet, O.; Corseaux, D.; Marechaux, S.; Le Tourneau, T.; Fabre, O.; Susen, S.; Van Belle, E. In vivo autologous recellularization of a tissue-engineered heart valve: Are bone marrow mesenchymal stem cells the best candidates? J. Thorac. Cardiovasc. Surg. 2007, 134, 424–432. [Google Scholar] [CrossRef] [Green Version]
- Sales, V.L.; Mettler, B.A.; Engelmayr, G.C., Jr.; Aikawa, E.; Bischoff, J.; Martin, D.P.; Exarhopoulos, A.; Moses, M.A.; Schoen, F.J.; Sacks, M.S. Endothelial progenitor cells as a sole source for ex vivo seeding of tissue-engineered heart valves. Tissue Eng. Part A 2010, 16, 257–267. [Google Scholar] [CrossRef] [Green Version]
- Frid, M.G.; Kale, V.A.; Stenmark, K.R. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: In vitro analysis. Circ. Res. 2002, 90, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Hopkins, R.A.; Bert, A.A.; Hilbert, S.L.; Quinn, R.W.; Brasky, K.M.; Drake, W.B.; Lofland, G.K. Bioengineered human and allogeneic pulmonary valve conduits chronically implanted orthotopically in baboons: Hemodynamic performance and immunologic consequences. J. Thorac. Cardiovasc. Surg. 2013, 145, 1098–1107.e1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boldt, J.; Lutter, G.; Pohanke, J.; Fischer, G.; Schoettler, J.; Cremer, J.; Metzner, A. Percutaneous tissue-engineered pulmonary valved stent implantation: Comparison of bone marrow-derived CD133+-cells and cells obtained from carotid artery. Tissue Eng. Part C Methods 2013, 19, 363–374. [Google Scholar] [CrossRef]
- Lichtenberg, A.; Tudorache, I.; Cebotari, S.; Ringes-Lichtenberg, S.; Sturz, G.; Hoeffler, K.; Hurscheler, C.; Brandes, G.; Hilfiker, A.; Haverich, A. In vitro re-endothelialization of detergent decellularized heart valves under simulated physiological dynamic conditions. Biomaterials 2006, 27, 4221–4229. [Google Scholar] [CrossRef] [Green Version]
- Lichtenberg, A.; Cebotari, S.; Tudorache, I.; Sturz, G.; Winterhalter, M.; Hilfiker, A.; Haverich, A. Flow-dependent re-endothelialization of tissue-engineered heart valves. J. Heart Valve Dis. 2006, 15, 287. [Google Scholar]
- Lichtenberg, A.; Tudorache, I.; Cebotari, S.; Suprunov, M.; Tudorache, G.; Goerler, H.; Park, J.-K.; Hilfiker-Kleiner, D.; Ringes-Lichtenberg, S.; Karck, M. Preclinical testing of tissue-engineered heart valves re-endothelialized under simulated physiological conditions. Circulation 2006, 114, I-559–I-565. [Google Scholar] [CrossRef] [Green Version]
- Tudorache, I.; Calistru, A.; Baraki, H.; Meyer, T.; Höffler, K.; Sarikouch, S.; Bara, C.; Görler, A.; Hartung, D.; Hilfiker, A. Orthotopic replacement of aortic heart valves with tissue-engineered grafts. Tissue Eng. Part A 2013, 19, 1686–1694. [Google Scholar] [CrossRef] [Green Version]
- Schenke-Layland, K.; Opitz, F.; Gross, M.; Döring, C.; Halbhuber, K.; Schirrmeister, F.; Wahlers, T.; Stock, U. Complete dynamic repopulation of decellularized heart valves by application of defined physical signals—An in vitro study. Cardiovasc. Res. 2003, 60, 497–509. [Google Scholar] [CrossRef]
- Kajbafzadeh, A.-M.; Tafti, S.H.A.; Mokhber-Dezfooli, M.-R.; Khorramirouz, R.; Sabetkish, S.; Sabetkish, N.; Rabbani, S.; Tavana, H.; Mohseni, M.J. Aortic valve conduit implantation in the descending thoracic aorta in a sheep model: The outcomes of pre-seeded scaffold. Int. J. Surg. 2016, 28, 97–105. [Google Scholar] [CrossRef]
- Cebotari, S.; Lichtenberg, A.; Tudorache, I.; Hilfiker, A.; Mertsching, H.; Leyh, R.; Breymann, T.; Kallenbach, K.; Maniuc, L.; Batrinac, A. Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 2006, 114, I-132–I-137. [Google Scholar] [CrossRef] [Green Version]
- Iop, L.; Gerosa, G. Guided tissue regeneration in heart valve replacement: From preclinical research to first-in-human trials. BioMed Res. Int. 2015, 2015, 432901. [Google Scholar] [CrossRef] [Green Version]
- James, I.A.; Yi, T.; Tara, S.; Best, C.A.; Stuber, A.J.; Shah, K.V.; Austin, B.F.; Sugiura, T.; Lee, Y.-U.; Lincoln, J. Hemodynamic characterization of a mouse model for investigating the cellular and molecular mechanisms of neotissue formation in tissue-engineered heart valves. Tissue Eng. Part C Methods 2015, 21, 987–994. [Google Scholar] [CrossRef] [Green Version]
- Baraki, H.; Tudorache, I.; Braun, M.; Höffler, K.; Görler, A.; Lichtenberg, A.; Bara, C.; Calistru, A.; Brandes, G.; Hewicker-Trautwein, M. Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 2009, 30, 6240–6246. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, R.A.; Jones, A.L.; Wolfinbarger, L.; Moore, M.A.; Bert, A.A.; Lofland, G.K. Decellularization reduces calcification while improving both durability and 1-year functional results of pulmonary homograft valves in juvenile sheep. J. Thorac. Cardiovasc. Surg. 2009, 137, 907–913.e904. [Google Scholar] [CrossRef] [Green Version]
- Quinn, R.W.; Hilbert, S.L.; Bert, A.A.; Drake, B.W.; Bustamante, J.A.; Fenton, J.E.; Moriarty, S.J.; Neighbors, S.L.; Lofland, G.K.; Hopkins, R.A. Performance and morphology of decellularized pulmonary valves implanted in juvenile sheep. Ann. Thorac. Surg. 2011, 92, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Leyh, R.G.; Wilhelmi, M.; Rebe, P.; Fischer, S.; Kofidis, T.; Haverich, A.; Mertsching, H. In vivo repopulation of xenogeneic and allogeneic acellular valve matrix conduits in the pulmonary circulation. Ann. Thorac. Surg. 2003, 75, 1457–1463. [Google Scholar] [CrossRef]
- Paniagua Gutierrez, J.R.; Berry, H.; Korossis, S.; Mirsadraee, S.; Lopes, S.V.; da Costa, F.; Kearney, J.; Watterson, K.; Fisher, J.; Ingham, E. Regenerative potential of low-concentration SDS-decellularized porcine aortic valved conduits in vivo. Tissue Eng. Part A 2015, 21, 332–342. [Google Scholar] [CrossRef] [Green Version]
- Juthier, F.; Vincentelli, A.; Gaudric, J.; Corseaux, D.; Fouquet, O.; Calet, C.; Le Tourneau, T.; Soenen, V.; Zawadzki, C.; Fabre, O. Decellularized heart valve as a scaffold for in vivo recellularization: Deleterious effects of granulocyte colony-stimulating factor. J. Thorac. Cardiovasc. Surg. 2006, 131, 843–852. [Google Scholar] [CrossRef] [Green Version]
- Honge, J.L.; Funder, J.; Hansen, E.; Dohmen, P.M.; Konertz, W.; Hasenkam, J.M. Recellularization of aortic valves in pigs. Eur. J. Cardio-Thorac. Surg. 2011, 39, 829–834. [Google Scholar] [CrossRef]
- Takagi, K.; Fukunaga, S.; Nishi, A.; Shojima, T.; Yoshikawa, K.; Hori, H.; Akashi, H.; Aoyagi, S. In vivo recellularization of plain decellularized xenografts with specific cell characterization in the systemic circulation: Histological and immunohistochemical study. Artif. Organs 2006, 30, 233–241. [Google Scholar] [CrossRef]
- Goldstein, S.; Clarke, D.R.; Walsh, S.P.; Black, K.S.; O’Brien, M.F. Transpecies heart valve transplant: Advanced studies of a bioengineered xeno-autograft. Ann. Thorac. Surg. 2000, 70, 1962–1969. [Google Scholar] [CrossRef]
- Iwai, S.; Torikai, K.; Coppin, C.M.; Sawa, Y. Minimally immunogenic decellularized porcine valve provides in situ recellularization as a stentless bioprosthetic valve. J. Artif. Organs 2007, 10, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Simon, P.; Kasimir, M.; Seebacher, G.; Weigel, G.; Ullrich, R.; Salzer-Muhar, U.; Rieder, E.; Wolner, E. Early failure of the tissue engineered porcine heart valve SYNERGRAFT® in pediatric patients. Eur. J. Cardio-Thorac. Surg. 2003, 23, 1002–1006. [Google Scholar] [CrossRef] [Green Version]
- Konertz, W.; Angeli, E.; Tarusinov, G.; Christ, T.; Kroll, J.; Dohmen, P.M.; Krogmann, O.; Franzbach, B.; Pace Napoleone, C.; Gargiulo, G. Right ventricular outflow tract reconstruction with decellularized porcine xenografts in patients with congenital heart disease. J. Heart Valve Dis. 2011, 20, 341. [Google Scholar]
- Voges, I.; Bräsen, J.H.; Entenmann, A.; Scheid, M.; Scheewe, J.; Fischer, G.; Hart, C.; Andrade, A.; Pham, H.M.; Kramer, H.-H. Adverse results of a decellularized tissue-engineered pulmonary valve in humans assessed with magnetic resonance imaging. Eur. J. Cardio-Thorac. Surg. 2013, 44, e272–e279. [Google Scholar] [CrossRef] [Green Version]
- Sarikouch, S.; Horke, A.; Tudorache, I.; Beerbaum, P.; Westhoff-Bleck, M.; Boethig, D.; Repin, O.; Maniuc, L.; Ciubotaru, A.; Haverich, A. Decellularized fresh homografts for pulmonary valve replacement: A decade of clinical experience. Eur. J. Cardio-Thorac. Surg. 2016, 50, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Boethig, D.; Horke, A.; Hazekamp, M.; Meyns, B.; Rega, F.; Van Puyvelde, J.; Hübler, M.; Schmiady, M.; Ciubotaru, A.; Stellin, G. A European study on decellularized homografts for pulmonary valve replacement: Initial results from the prospective ESPOIR Trial and ESPOIR Registry data. Eur. J. Cardio-Thorac. Surg. 2019, 56, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Cebotari, S.; Tudorache, I.; Ciubotaru, A.; Boethig, D.; Sarikouch, S.; Goerler, A.; Lichtenberg, A.; Cheptanaru, E.; Barnaciuc, S.; Cazacu, A. Use of fresh decellularized allografts for pulmonary valve replacement may reduce the reoperation rate in children and young adults: Early report. Circulation 2011, 124, S115–S123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruzmetov, M.; Shah, J.J.; Geiss, D.M.; Fortuna, R.S. Decellularized versus standard cryopreserved valve allografts for right ventricular outflow tract reconstruction: A single-institution comparison. J. Thorac. Cardiovasc. Surg. 2012, 143, 543–549. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.W.; Elkins, R.C.; Clarke, D.R.; Tweddell, J.S.; Huddleston, C.B.; Doty, J.R.; Fehrenbacher, J.W.; Takkenberg, J.J. Performance of the CryoValve SG human decellularized pulmonary valve in 342 patients relative to the conventional CryoValve at a mean follow-up of four years. J. Thorac. Cardiovasc. Surg. 2010, 139, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Bibevski, S.; Ruzmetov, M.; Fortuna, R.S.; Turrentine, M.W.; Brown, J.W.; Ohye, R.G. Performance of SynerGraft decellularized pulmonary allografts compared with standard cryopreserved allografts: Results from multiinstitutional data. Ann. Thorac. Surg. 2017, 103, 869–874. [Google Scholar] [CrossRef] [Green Version]
- Yankah, A.; Wottge, H.-U.; Muller-Hermelink, H.; Feller, A.; Lange, P.; Wessel, U.; Dreyer, H.; Bernhard, A.; Müller-Ruchholtz, W. Transplantation of aortic and pulmonary allografts, enhanced viability of endothelial cells by cryopreservation, importance of histocompatibility. J. Card. Surg. 1987, 2, 209–220. [Google Scholar] [CrossRef]
- Cebotari, S.; Tudorache, I.; Jaekel, T.; Hilfiker, A.; Dorfman, S.; Ternes, W.; Haverich, A.; Lichtenberg, A. Detergent decellularization of heart valves for tissue engineering: Toxicological effects of residual detergents on human endothelial cells. Artif. Organs 2010, 34, 206–210. [Google Scholar] [CrossRef]
- Bobylev, D.; Sarikouch, S.; Tudorache, I.; Cvitkovic, T.; Söylen, B.; Boethig, D.; Theodoridis, K.; Bertram, H.; Beerbaum, P.; Haverich, A. Double semilunar valve replacement in complex congenital heart disease using decellularized homografts. Interact. Cardiovasc. Thorac. Surg. 2019, 28, 151–157. [Google Scholar] [CrossRef] [Green Version]
- Dohmen, P.M.; Lembcke, A.; Holinski, S.; Pruss, A.; Konertz, W. Ten years of clinical results with a tissue-engineered pulmonary valve. Ann. Thorac. Surg. 2011, 92, 1308–1314. [Google Scholar] [CrossRef]
- Brown, J.W.; Ruzmetov, M.; Eltayeb, O.; Rodefeld, M.D.; Turrentine, M.W. Performance of SynerGraft decellularized pulmonary homograft in patients undergoing a Ross procedure. Ann. Thorac. Surg. 2011, 91, 416–423. [Google Scholar] [CrossRef]
- Burch, P.T.; Kaza, A.K.; Lambert, L.M.; Holubkov, R.; Shaddy, R.E.; Hawkins, J.A. Clinical performance of decellularized cryopreserved valved allografts compared with standard allografts in the right ventricular outflow tract. Ann. Thorac. Surg. 2010, 90, 1301–1306. [Google Scholar] [CrossRef] [PubMed]
- Dohmen, P.M.; Lembcke, A.; Holinski, S.; Kivelitz, D.; Braun, J.P.; Pruss, A.; Konertz, W. Mid-term clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann. Thorac. Surg. 2007, 84, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Hawkins, J.A.; Hillman, N.D.; Lambert, L.M.; Jones, J.; Di Russo, G.B.; Profaizer, T.; Fuller, T.C.; Minich, L.L.; Williams, R.V.; Shaddy, R.E. Immunogenicity of decellularized cryopreserved allografts in pediatric cardiac surgery: Comparison with standard cryopreserved allografts. J. Thorac. Cardiovasc. Surg. 2003, 126, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Turrentine, M.W.; Rodefeld, M.D.; Bell, T.; Brown, J.W. Right ventricular outflow tract reconstruction with a polytetrafluoroethylene monocusp valve: A 20-year experience. Semin. Thorac. Cardiovasc. Surg. 2016, 28, 463–470. [Google Scholar] [CrossRef]
- Nistal, F.; García-Martínez, V.; Arbe, E.; Fernàndez, D.; Artiñano, E.; Mazorra, F.; Gallo, I. In vivo experimental assessment of polytetrafluoroethylene trileaflet heart valve prosthesis. J. Thorac. Cardiovasc. Surg. 1990, 99, 1074–1081. [Google Scholar] [CrossRef]
- Lutter, G.; Topal, A.; Hansen, J.H.; Haneya, A.; Santhanthan, J.; Freitag-Wolf, S.; Frank, D.; Puehler, T. Transcatheter pulmonary valve replacement: A new polycarbonate urethane valve. Eur. J. Cardio-Thorac. Surg. 2021, 59, 1048–1056. [Google Scholar] [CrossRef]
- Aleksieva, G.; Hollweck, T.; Thierfelder, N.; Haas, U.; Koenig, F.; Fano, C.; Dauner, M.; Wintermantel, E.; Reichart, B.; Schmitz, C. Use of a special bioreactor for the cultivation of a new flexible polyurethane scaffold for aortic valve tissue engineering. Biomed. Eng. Online 2012, 11, 92. [Google Scholar] [CrossRef] [Green Version]
- Mei, N.; Chen, G.; Zhou, P.; Chen, X.; Shao, Z.-Z.; Pan, L.-F.; Wu, C.-G. Biocompatibility of poly (ε-caprolactone) scaffold modified by chitosan—The fibroblasts proliferation in vitro. J. Biomater. Appl. 2005, 19, 323–339. [Google Scholar] [CrossRef]
- Lutter, G.; Metzner, A.; Jahnke, T.; Bombien, R.; Boldt, J.; Iino, K.; Cremer, J.; Stock, U.A. Percutaneous tissue-engineered pulmonary valved stent implantation. Ann. Thorac. Surg. 2010, 89, 259–263. [Google Scholar] [CrossRef]
- Metzner, A.; Stock, U.A.; Iino, K.; Fischer, G.; Huemme, T.; Boldt, J.; Braesen, J.H.; Bein, B.; Renner, J.; Cremer, J. Percutaneous pulmonary valve replacement: Autologous tissue-engineered valved stents. Cardiovasc. Res. 2010, 88, 453–461. [Google Scholar] [CrossRef] [Green Version]
- Welch, T.R.; Nugent, A.; Veeram, S. Biodegradable stents for congenital heart disease. Interv. Cardiol. Clin. 2019, 8, 81–94. [Google Scholar] [CrossRef]
- Herbert, C.E.; Veeram Reddy, S.; Welch, T.R.; Wang, J.; Richardson, J.A.; Forbess, J.M.; Nugent, A.W. Bench and initial preclinical results of a novel 8 mm diameter double opposed helical biodegradable stent. Catheter. Cardiovasc. Interv. 2016, 88, 902–911. [Google Scholar] [CrossRef]
- Nugent, A.W.; Welch, T. Development of large diameter bioresorbable stents for congenital heart disease. J. Am. Coll. Cardiol. 2018, 71, A1353. [Google Scholar] [CrossRef]
- Sathananthan, J.; Sellers, S.; Barlow, A.; Fraser, R.; Stanová, V.; Cheung, A.; Ye, J.; Alenezi, A.; Murdoch, D.J.; Hensey, M. Overexpansion of the SAPIEN 3 transcatheter heart valve: An ex vivo bench study. JACC Cardiovasc. Interv. 2018, 11, 1696–1705. [Google Scholar] [CrossRef]
- Helder, M.R.; Kouchoukos, N.T.; Zehr, K.; Dearani, J.A.; Maleszewski, J.J.; Leduc, C.; Heins, C.N.; Schaff, H.V. Late durability of decellularized allografts for aortic valve replacement: A word of caution. J. Thorac. Cardiovasc. Surg. 2016, 152, 1197–1199. [Google Scholar] [CrossRef] [Green Version]
- Sayk, F.; Bos, I.; Schubert, U.; Wedel, T.; Sievers, H.-H. Histopathologic findings in a novel decellularized pulmonary homograft: An autopsy study. Ann. Thorac. Surg. 2005, 79, 1755–1758. [Google Scholar] [CrossRef] [PubMed]
- Helder, M.R.; Hennessy, R.S.; Spoon, D.B.; Tefft, B.J.; Witt, T.A.; Marler, R.J.; Pislaru, S.V.; Simari, R.D.; Stulak, J.M.; Lerman, A. Low-dose gamma irradiation of decellularized heart valves results in tissue injury in vitro and in vivo. Ann. Thorac. Surg. 2016, 101, 667–674. [Google Scholar] [CrossRef] [Green Version]
- Schenke-Layland, K.; Xie, J.; Heydarkhan-Hagvall, S.; Hamm-Alvarez, S.F.; Stock, U.A.; Brockbank, K.G.; MacLellan, W.R. Optimized preservation of extracellular matrix in cardiac tissues: Implications for long-term graft durability. Ann. Thorac. Surg. 2007, 83, 1641–1650. [Google Scholar] [CrossRef] [PubMed]
- Farrant, J. Mechanism of cell damage during freezing and thawing and its prevention. Nature 1965, 205, 1284–1287. [Google Scholar] [CrossRef]
- Song, Y.C.; Khirabadi, B.S.; Lightfoot, F.; Brockbank, K.G.; Taylor, M.J. Vitreous cryopreservation maintains the function of vascular grafts. Nat. Biotechnol. 2000, 18, 296–299. [Google Scholar] [CrossRef]
- Brockbank, K.G.; Wright, G.J.; Yao, H.; Greene, E.D.; Chen, Z.Z.; Schenke-Layland, K. Allogeneic heart valve storage above the glass transition at −80 °C. Ann. Thorac. Surg. 2011, 91, 1829–1835. [Google Scholar] [CrossRef] [PubMed]
- Salles, C.A.; Buffolo, E.; Andrade, J.C.; Palma, J.H.; Silva, R.R.; Santiago, R.; Casagrande, I.S.; Moreira, M.C.V. Mitral valve replacement with glutaraldehyde preserved aortic allografts. Eur. J. Cardio-Thorac. Surg. 1998, 13, 135–143. [Google Scholar] [CrossRef] [Green Version]
- Parker, R.; Randev, R.; Wain, W.; Ross, D. Storage of heart valve allografts in glycerol with subsequent antibiotic sterilisation. Thorax 1978, 33, 638–645. [Google Scholar] [CrossRef] [Green Version]
- Hoerstrup, S.P.; Sodian, R.; Daebritz, S.; Wang, J.; Bacha, E.A.; Martin, D.P.; Moran, A.M.; Guleserian, K.J.; Sperling, J.S.; Kaushal, S. Functional living trileaflet heart valves grown in vitro. Circulation 2000, 102, Iii-44–Iii-49. [Google Scholar] [CrossRef]
- Gottlieb, D.; Kunal, T.; Emani, S.; Aikawa, E.; Brown, D.W.; Powell, A.J.; Nedder, A.; Engelmayr, G.C., Jr.; Melero-Martin, J.M.; Sacks, M.S. In vivo monitoring of function of autologous engineered pulmonary valve. J. Thorac. Cardiovasc. Surg. 2010, 139, 723–731. [Google Scholar] [CrossRef] [Green Version]
- Dijkman, P.E.; Driessen-Mol, A.; de Heer, L.M.; Kluin, J.; van Herwerden, L.A.; Odermatt, B.; Baaijens, F.; Hoerstrup, S.P. Trans-apical versus surgical implantation of autologous ovine tissue-engineered heart valves. J. Heart Valve Dis. 2012, 21, 670–678. [Google Scholar]
- Beachy, S.H.; Wizemann, T.; Hackmann, M. Exploring Sources of Variability Related to the Clinical Translation of Regenerative Engineering Products: Proceedings of a Workshop; The National Academies Press: Washington, DC, USA, 2019. [Google Scholar]
- Wissing, T.B.; Bonito, V.; Bouten, C.V.; Smits, A.I. Biomaterial-driven in situ cardiovascular tissue engineering—A multi-disciplinary perspective. NPJ Regen. Med. 2017, 2, 18. [Google Scholar] [CrossRef] [PubMed]
Trial (Year) | Type of Homograft | Mean Age (Years) | Main Findings |
---|---|---|---|
ESPOIR (2019) [82] | fDPVH | 21.3 ± 14.4 | Excellent performance with freedom from explantation and reintervention. Better safety and effectiveness than BJV and CH. |
Bobylev et al. (2018) [89] | fDPVH | Range 2–38 | Superior mid-term results in children and young adults for PVR. fDPVH provides an alternative therapy for young patients who require multiple valve surgeries. |
Sarikouch et al. (2015) [81] | fDPVH | 15.8 ± 10.21 | One-hundred percent freedom from explantation and endocarditis for fDPVH compared with CH and BJV at 10-year follow-up, associated with no increased valvular gradient. |
Cebotari et al. (2011) [83] | fDPVH | 12.7 ± 6.1 | fDPVH showed the lower mean transvalvular gradient and no cusp thickening or aneurysmatic dilatation. Plus, five-year freedom from explantation was 100%. fDPVH also exhibited adaptive growth. |
Cebotari et al. (2006) [65] | fDPVH | Age 11 and 13 | fDPVH was feasible and safe with potential to remodel and grow (increase in annulus diameter). There was no sign of valve degeneration at 3.5-year follow-up. |
Dohmen et al. (2011) [90] | cDPVH | 39.6 ± 10.3 | Excellent hemodynamic performance for up to 10 years with no evidence of calcification. |
Brown et al. (2011) [91] | cDPVH | 28.6 ± 16.0 | No patients required reoperation and valve function did not deteriorate. Clinical and hemodynamic performance was encouraging and did not differ significantly from CH |
Burch et al. (2010) [92] | cDPVH | 9.95 ± 7.96 | There was no significant difference in the trend of lower peak valve gradient and re-intervention between cDVPH and CH. |
Dohmen et al. (2007) [93] | cDPVH | 44.0 ± 13.7 | cDVPH showed excellent hemodynamic performance, and may prevent valve degeneration and improve valve durability |
Hawkins et al. (2003) [94] | cDPVH | 8.5 ± 7.9 | After 1 year, the hemodynamic function of cDPVH was similar to that of CH, but the levels of class I and class II HLA antibodies were significantly lower in cDPVH than in CH. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Puehler, T.; Seiler, J.; Gorb, S.N.; Sathananthan, J.; Sellers, S.; Haneya, A.; Hansen, J.-H.; Uebing, A.; Müller, O.J.; et al. Tissue Engineered Transcatheter Pulmonary Valved Stent Implantation: Current State and Future Prospect. Int. J. Mol. Sci. 2022, 23, 723. https://doi.org/10.3390/ijms23020723
Zhang X, Puehler T, Seiler J, Gorb SN, Sathananthan J, Sellers S, Haneya A, Hansen J-H, Uebing A, Müller OJ, et al. Tissue Engineered Transcatheter Pulmonary Valved Stent Implantation: Current State and Future Prospect. International Journal of Molecular Sciences. 2022; 23(2):723. https://doi.org/10.3390/ijms23020723
Chicago/Turabian StyleZhang, Xiling, Thomas Puehler, Jette Seiler, Stanislav N. Gorb, Janarthanan Sathananthan, Stephanie Sellers, Assad Haneya, Jan-Hinnerk Hansen, Anselm Uebing, Oliver J. Müller, and et al. 2022. "Tissue Engineered Transcatheter Pulmonary Valved Stent Implantation: Current State and Future Prospect" International Journal of Molecular Sciences 23, no. 2: 723. https://doi.org/10.3390/ijms23020723
APA StyleZhang, X., Puehler, T., Seiler, J., Gorb, S. N., Sathananthan, J., Sellers, S., Haneya, A., Hansen, J. -H., Uebing, A., Müller, O. J., Frank, D., & Lutter, G. (2022). Tissue Engineered Transcatheter Pulmonary Valved Stent Implantation: Current State and Future Prospect. International Journal of Molecular Sciences, 23(2), 723. https://doi.org/10.3390/ijms23020723