Comparison of Cytotoxic, Genotoxic, and DNA-Protective Effects of Skyrin on Cancerous vs. Non-Cancerous Human Cells
Abstract
:1. Introduction
2. Results
2.1. DNA-Damaging and DNA-Protective Effects of Skyrin on Plasmid DNA
2.2. Antioxidant and Chelating Potential of Skyrin in Cell-Free Methods
2.3. Cytotoxic and Genotoxic Effects of Skyrin in Human Cells
2.4. Protective Potential of Skyrin against Hydrogen Peroxide
3. Discussion
4. Materials and Methods
4.1. Tested Compound
4.2. DNA-Topology Assay
4.3. Reducing Power Assay
4.4. DPPH• Radical Scavenging Activity
4.5. Fe2+-Chelating Activity Assay
4.6. Trypan Blue Exclusion Test
4.7. Cell Culture
4.8. MTT Assay
4.9. Comet Assay Using Human Lymphocytes
4.10. Comet Assay Using HepG2 Cell Line
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spinella, M. The importance of pharmacological synergy in psychoactive herbal medicines. (Herbal Synergy Review). Altern. Med. Rev. 2002, 7, 130–137. [Google Scholar] [PubMed]
- Süntar, I.P.; Akkol, E.K.; Yılmazer, D.; Baykal, T.; Kırmızıbekmez, H.; Alper, M.; Yeşilada, E. Investigations on the in vivo wound healing potential of Hypericum perforatum L. J. Ethnopharmacol. 2010, 127, 468–477. [Google Scholar] [CrossRef] [PubMed]
- Güvenç, E.; Kıyan, S.; Uyanıkgil, Y.; Çetin, E.Ö.; Karabey, F.; Çavuşoğlu, T.; Gökçe, B. The healing effects of Hyperium per-foratum (St. John’s Wort) on experimental alkaline corrosive eosephageal and stomach burns. Ulus Travma Acil Cerrahi Derg 2020, 26, 373–383. [Google Scholar] [PubMed]
- Cayci, M.K.; Dayioglu, H. Hypericum perforatum extracts healed gastric lesions induced by hypothermic restraint stress in Wistar rats. Saudi Med. J. 2009, 30, 750–754. [Google Scholar]
- Melzer, J.; Brignoli, R.; Keck, M.E.; Saller, R. A Hypericum extract in the treatment of depressive symptoms in outpatients: An open study. Forsch Komplementmed 2010, 17, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Mullaicharam, A.; Halligudi, N. St John’s wort (Hypericum perforatum L.): A Review of its Chemistry, Pharmacology and Clinical properties. Int. J. Res. Phytochem. Pharmacol. Sci. 2018, 1, 5–11. [Google Scholar] [CrossRef]
- Miadokova, E.; Chalupa, I.; Vlckova, V.; Sevcovicova, A.; Nadova, S.; Kopaskova, M.; Hercegova, A.; Gasperova, P.; Alfoldiova, L.; Komjatiova, M.; et al. Genotoxicity and antigenotoxicity evaluation of non-photoactivated hypericin. Phytotherapy Res. 2010, 24, 90–95. [Google Scholar] [CrossRef]
- Feruszová, J.; Imreová, P.; Bodnárová, K.; Ševčovičová, A.; Kyzek, S.; Chalupa, I.; Gálová, E.; Miadoková, E. Photoactivated hypericin is not genotoxic. Gen. Physiol. Biophys. 2016, 35, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Sevcovicova, A.; Bodnarova, K.; Loderer, D.; Imreova, P.; Galova, E.; Miadokova, E. Dual activities of emodin--DNA protec-tivity vs mutagenicity. Neuro. Endocrinol. Lett. 2014, 35, 149–154. [Google Scholar]
- Imreova, P.; Feruszova, J.; Kyzek, S.; Bodnarova, K.; Zduriencikova, M.; Kozics, K.; Mucaji, P.; Galova, E.; Sevcovicova, A.; Miadokova, E.; et al. Hyperforin Exhibits Antigenotoxic Activity on Human and Bacterial Cells. Molecules 2017, 22, 167. [Google Scholar] [CrossRef] [Green Version]
- Ševčovičová, A.; Semelakova, M.; Plšíková, J.; Loderer, D.; Imreová, P.; Gálová, E.; Kožurková, M.; Miadoková, E.; Fedorocko, P. DNA-protective activities of hyperforin and aristoforin. Toxicol. Vitr. 2015, 29, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Zeng, Y.; Zhang, Z.; Fu, J.; You, L.; He, Y.; Hao, Y.; Gu, Z.; Yu, Z.; Qu, C.; et al. Hypericin-mediated photodynamic therapy for the treatment of cancer: A review. J. Pharm. Pharmacol. 2021, 73, 425–436. [Google Scholar] [CrossRef] [PubMed]
- Jendželovská, Z.; Jendželovský, R.; Kuchárová, B.; Fedoročko, P. Hypericin in the Light and in the Dark: Two Sides of the Same Coin. Front. Plant. Sci. 2016, 7, 560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majerník, M.; Jendželovský, R.; Fedoročko, P. Potentiality, Limitations, and Consequences of Different Experimental Models to Improve Photodynamic Therapy for Cancer Treatment in Relation to Antiangiogenic Mechanism. Cancers 2020, 12, 2118. [Google Scholar] [CrossRef] [PubMed]
- Jendželovský, R.; Jendželovská, Z.; Kuchárová, B.; Fedoročko, P. Breast cancer resistance protein is the enemy of hypericin accumulation and toxicity of hypericin-mediated photodynamic therapy. Biomed. Pharmacother. 2019, 109, 2173–2181. [Google Scholar] [CrossRef]
- Kimáková, K.; Kimáková, A.; Idkowiak, J.; Stobiecki, M.; Rodziewicz, P.; Marczak, Ł.; Čellárová, E. Phenotyping the genus Hypericum by secondary metabolite profiling: Emodin vs. skyrin, two possible key intermediates in hypericin biosynthesis. Anal. Bioanal. Chem. 2018, 410, 7689–7699. [Google Scholar] [CrossRef] [Green Version]
- Revuru, B.; Bálintová, M.; Henzelyová, J.; Čellárová, E.; Kusari, S. MALDI-HRMS imaging maps the localization of skyrin, the precursor of hypericin, and pathway intermediates in leaves of Hypericum species. Molecules 2020, 25, 3964. [Google Scholar] [CrossRef]
- Izhaki, I. Emodin—A secondary metabolite with multiple ecological functions in higher plants. New Phytol. 2002, 155, 205–217. [Google Scholar] [CrossRef] [Green Version]
- Jahn, L.; Schafhauser, T.; Wibberg, D.R.; Winkler, A.; Kulik, A.; Weber, A.; Flor, L.; van Pée, K.H.; Kalinowski, J.; Ludwig, M.; et al. Linking secondary metabolites to biosynthesis genes in the fungal endophyte Cyanodermella Asteris: The an-ti-cancer bisantraquinone skyrin. J. Biotechnol. 2017, 10, 233–239. [Google Scholar] [CrossRef] [Green Version]
- Foster, E.J.; Jones, R.B.; Lavigueur, C.; Williams, V.E. Structural Factors Controlling the Self-Assembly of Columnar Liquid Crystals. J. Am. Chem. Soc. 2006, 128, 8569–8574. [Google Scholar] [CrossRef]
- Wang, C.; Jin, Q.; Yang, S.; Zhang, D.; Wang, Q.; Li, J.; Song, S.; Sun, Z.; Ni, Y.; Zhang, J.; et al. Synthesis and Evaluation of 131I-Skyrin as a Necrosis Avid Agent for Potential Targeted Radionuclide Therapy of Solid Tumors. Mol. Pharm. 2016, 13, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Parker, J.C.; McPherson, R.K.; Andrews, K.M.; Levy, C.B.; Dubins, J.S.; Chin, J.E.; Perry, P.V.; Hulin, B.; Perry, D.A.; Inagaki, T.; et al. Effects of skyrin, a receptor-selective glucagon antagonist, in rat and human hepatocytes. Diabetes 2000, 49, 2079–2086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Høiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents 2010, 35, 322–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bara, R.; Aly, A.H.; Pretsch, A.; Wray, V.; Wang, B.-G.; Proksch, P.; Debbab, A. Antibiotically active metabolites from Talaromyces wortmannii, an endophyte of Aloe vera. J. Antibiot. 2013, 66, 491–493. [Google Scholar] [CrossRef]
- Nirma, C.; Eparvier, V.; Stien, D. Reactivation of antibiosis in the entomogenous fungus Chrysoporthe sp. SNB-CN74. J. Antibiot. 2015, 68, 586–590. [Google Scholar] [CrossRef]
- Thappeta, K.R.V.; Zhao, L.N.; Nge, C.E.; Crasta, S.; Leong, C.Y.; Ng, V.; Kanagasundaram, Y.; Fan, H.; Ng, S.B. In-silico identified new natural sortase A inhibitors disrupt S. aureus biofilm formation. Int. J. Mol. Sci. 2020, 21, 8601. [Google Scholar] [CrossRef]
- Noell, S.; Strauss, W.S.; Tatagiba, M.S.; Mayer, D.; Ritz, R. Selective enrichment of hypericin in malignant glioma: Pioneering in vivo results. Int. J. Oncol. 2011, 38, 1343–1348. [Google Scholar] [CrossRef] [Green Version]
- Xia, S.; Ni, Y.; Zhou, Q.; Xiang, H.; Sui, H.; Shang, D. Emodin attenuates severe acute pancreatitis via antioxidant and anti-inflammatory activity. Inflammation 2019, 42, 2129–2138. [Google Scholar] [CrossRef]
- Lloyd, D.R.; Phillips, D.H. Oxidative DNA damage mediated by copper(II), iron(II) and nickel(II) Fenton reactions: Evidence for site-specific mechanisms in the formation of double-strand breaks, 8-hydroxydeoxyguanosine and putative intrastrand cross-links. Mutat. Res. 1999, 424, 23–36. [Google Scholar] [CrossRef]
- Vargas, F.; Rivas, C.; Zoltan, T.; López, V.; Ortega, J.; Izzo, C.; Pineda, M.; Medina, J.; Medina, E.; Rosales, L. Antioxidant and scavenging activity of skyrin on free radical and some reactive oxygen species. Av en Química 2008, 3, 7–14. [Google Scholar]
- Li, Y.-M.; Cheng, W.-M.; Da, Z.-F.; Hu, F.; Li, C.-R. Analysis of radical scavenging active components in the fermented mycelia of Ophiocordyceps formosana. Mycology 2017, 8, 276–285. [Google Scholar] [CrossRef] [Green Version]
- Bi, S.; Zhang, H.; Qiao, C.; Sun, Y.; Liu, C. Studies of interaction of emodin and DNA in the presence of ethidium bromide by spectroscopic method. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2008, 69, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.T.; Silva, G.; Pungartnik, C.; Brendel, M. Study of DNA-emodin interaction by FTIR and UV-vis spectroscopy. J. Photochem. Photobiol. B 2012, 111, 59–63. [Google Scholar] [CrossRef]
- Watts, P.; Kittakoop, P.; Veeranondha, S.; Wanasith, S.; Thongwichian, R.; Saisaha, P.; Intamas, S.; Hywel-Jones, N.L. Cyto-toxicity against insect cells of entomopathogenic fungi of the genera Hypocrella (anamorph Aschersonia): Possible agents for biological control. Mycol. Res. 2003, 107, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Babinčák, M.; Jendželovský, R.; Košuth, J.; Majerník, M.; Vargová, J.; Mikulášek, K.; Zdráhal, Z.; Fedoročko, P. Death Receptor 5 (TNFRSF10B) Is Upregulated and TRAIL Resistance Is Reversed in Hypoxia and Normoxia in Colorectal Cancer Cell Lines after Treatment with Skyrin, the Active Metabolite of Hypericum spp. Cancers 2021, 13, 1646. [Google Scholar] [CrossRef] [PubMed]
- Koul, M.; Meena, S.; Kumar, A.; Sharma, P.R.; Singamaneni, V.; Riyaz-Ul-Hassan, S.; Hamid, A.; Chaubey, A.; Prabhakar, A.; Gupta, P.; et al. Secondary Metabolites from Endophytic Fungus Penicillium pinophilum Induce ROS-Mediated Apoptosis through Mitochondrial Pathway in Pancreatic Cancer Cells. Planta Medica 2016, 82, 344–355. [Google Scholar] [CrossRef] [Green Version]
- Ueno, Y.; Umemori, K.; Niimi, E.-C.; Tanuma, S.-I.; Nagata, S.; Sugamata, M.; Ihara, T.; Sekijima, M.; Kawai, K.-I.; Ueno, I.; et al. Induction of apoptosis by T-2 toxin and other natural toxins in HL-60 human promyelotic leukemia cells. Nat. Toxins 1995, 3, 129–137. [Google Scholar] [CrossRef]
- Lin, L.C.; Chou, C.J.; Kuo, Y.C. Cytotoxic principles from Ventilago leiocarpa. J. Nat. Prod. 2001, 64, 674–676. [Google Scholar] [CrossRef]
- Čipák, L.; Miadoková, E.; Dingová, H.; Kogan, G.; Novotný, L.; Rauko, P. Comparative DNA protectivity and antimutagen-icity studies using DNA-topology and Ames assays. Toxicol. Vitr. 2001, 15, 677–681. [Google Scholar]
- Horvathova, E.; Mastihubova, M.; Potocka, E.K.; Kis, P.; Galova, E.; Sevcovicova, A.; Klapakova, M.; Hunakova, L.; Mastihuba, V. Comparative study of relationship between structure of phenylethanoid glycopyranosides and their activities using cell-free assays and human cells cultured in vitro. Toxicol. Vitr. 2019, 61, 104646. [Google Scholar] [CrossRef]
- Horváthová, E.; Kozics, K.; Srančíková, A.; Hunáková, Ľ.; Gálová, E.; Ševčovičová, A.; Slameňová, D. Borneol administration protects primary rat hepatocytes against exogenous oxidative DNA damage. Mutagenesis 2012, 27, 581–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locatelli, M.; Gindro, R.; Travaglia, F.; Coisson, J.D.; Rinaldi, M.; Arlorio, M. Study of the DPPH-scavenging activity: Devel-opment of a free software for the correct interpretation of data. Food Chem. 2009, 114, 889–897. [Google Scholar] [CrossRef]
- Rajić, Z.; Končić, M.; Miloloža, K.; Perković, I.; Butula, I.; Bucar, F.; Zorc, B. Primaquine-NSAID twin drugs: Synthesis, radical scavenging, antioxidant and Fe2+ chelating activity. Acta Pharm. 2010, 60, 325–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strober, W. Trypan Blue Exclusion Test of Cell Viability. Curr. Protoc. Immunol. 2015, 111, A3.B.1–A3.B.3. [Google Scholar] [CrossRef] [PubMed]
- Melusova, M.; Slamenova, D.; Kozics, K.; Jantova, S.; Horvathova, E. Carvacrol and rosemary essential oil manifest cytotoxic, DNA-protective and pro-apoptotic effect having no effect on DNA repair. Neoplasma 2014, 61, 690–699. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, A.R.; Dušinská, M.; Gedík, C.M.; Štětina, R. Oxidative damage to DNA: Do we have a reliable biomarker? Environ. Health Perspect. 1996, 104, 465–469. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.T.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 1988, 175, 184–191. [Google Scholar] [CrossRef] [Green Version]
- Slamenová, D.; Gábelová, A.; Ruzeková, L.; Chalupa, I.; Horváthová, E.; Farkasová, T.; Bozsakyová, E.; Stĕtina, R. Detection of MNNG-induced DNA lesions in mammalian cells; validation of comet assay against DNA unwinding technique, alkaline elution of DNA and chromosomal aberrations. Mutat. Res. 1997, 383, 243–252. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zajičková, T.; Horváthová, E.; Kyzek, S.; Šályová, E.; Túryová, E.; Ševčovičová, A.; Gálová, E. Comparison of Cytotoxic, Genotoxic, and DNA-Protective Effects of Skyrin on Cancerous vs. Non-Cancerous Human Cells. Int. J. Mol. Sci. 2022, 23, 5339. https://doi.org/10.3390/ijms23105339
Zajičková T, Horváthová E, Kyzek S, Šályová E, Túryová E, Ševčovičová A, Gálová E. Comparison of Cytotoxic, Genotoxic, and DNA-Protective Effects of Skyrin on Cancerous vs. Non-Cancerous Human Cells. International Journal of Molecular Sciences. 2022; 23(10):5339. https://doi.org/10.3390/ijms23105339
Chicago/Turabian StyleZajičková, Terézia, Eva Horváthová, Stanislav Kyzek, Eva Šályová, Eva Túryová, Andrea Ševčovičová, and Eliška Gálová. 2022. "Comparison of Cytotoxic, Genotoxic, and DNA-Protective Effects of Skyrin on Cancerous vs. Non-Cancerous Human Cells" International Journal of Molecular Sciences 23, no. 10: 5339. https://doi.org/10.3390/ijms23105339
APA StyleZajičková, T., Horváthová, E., Kyzek, S., Šályová, E., Túryová, E., Ševčovičová, A., & Gálová, E. (2022). Comparison of Cytotoxic, Genotoxic, and DNA-Protective Effects of Skyrin on Cancerous vs. Non-Cancerous Human Cells. International Journal of Molecular Sciences, 23(10), 5339. https://doi.org/10.3390/ijms23105339