The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems
Abstract
:1. Introduction
2. Origins and Expression
3. Gastrointestinal System
4. Pancreas
5. Hepatic Tissue
6. Connective Tissue
7. Circulatory System
8. Cardiovascular and Renal System
9. Nervous System
10. Immune System
11. Sexual Dimorphism and Leptin
11.1. Sex-Specific Effects of Leptin: On Females
11.2. Sex-Specific Effects of Leptin: On Males
12. Leptin and Systemic Health
12.1. Overall Systemic Metabolic Homeostasis
Leptin Has a Crucial Role in Carbohydrate Metabolism
12.2. Leptin Imbalance and Associated Diseases
12.3. Genetic Predominance Affecting Leptin Resistance and Its Role in Obesity
13. Leptin as a Diagnostic and Therapeutic Tool
13.1. Diagnostic Tool
13.2. Therapeutic Tool
14. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, F.; Chen, Y.; Heiman, M.; Dimarchi, R. Leptin: Structure, function and biology. Vitam. Horm. 2005, 71, 345–372. [Google Scholar] [PubMed]
- Kennedy, G.C. The role of depot fat in the hypothalamic control of food intake in the rat. Proc. R. Soc. Lond. B Biol. Sci. 1953, 140, 578–596. [Google Scholar] [PubMed]
- Kelesidis, T.; Kelesidis, I.; Chou, S.; Mantzoros, C.S. Narrative review: The role of leptin in human physiology: Emerging clinical applications. Ann. Intern. Med. 2010, 152, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Nguyen, L.; O’Doherty, R.M. Nutritional regulation of hypothalamic leptin receptor gene expression is defective in diet-induced obesity. J. Neuroendocrinol. 2002, 14, 887–893. [Google Scholar] [CrossRef]
- Sinha, M.K.; Caro, J.F. Clinical aspects of leptin. Vitam. Horm. 1998, 54, 1–30. [Google Scholar]
- Hidaka, S.; Yoshimatsu, H.; Kondou, S.; Oka, K.; Tsuruta, Y.; Sakino, H.; Itateyama, E.; Noguchi, H.; Himeno, K.; Okamoto, K.; et al. Hypoleptinemia, but not hypoinsulinemia, induces hyperphagia in streptozotocin-induced diabetic rats. J. Neurochem. 2001, 77, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Hileman, S.M.; Tornoe, J.; Flier, J.S.; Bjorbaek, C. Transcellular transport of leptin by the short leptin receptor isoform ObRa in Madin-Darby Canine Kidney cells. Endocrinology 2000, 141, 1955–1961. [Google Scholar] [CrossRef]
- Morgan, P.J.; Ross, A.W.; Mercer, J.G.; Barrett, P. What can we learn from seasonal animals about the regulation of energy balance? Prog. Brain Res. 2006, 153, 325–337. [Google Scholar]
- Morton, G.J.; Gelling, R.W.; Niswender, K.D.; Morrison, C.D.; Rhodes, C.J.; Schwartz, M.W. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2005, 2, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Pal, R.; Sahu, A. Leptin signaling in the hypothalamus during chronic central leptin infusion. Endocrinology 2003, 144, 3789–3798. [Google Scholar] [CrossRef]
- Sone M, Osamura RY: Leptin and the pituitary. Pituitary 2001, 4, 15–23. [CrossRef] [PubMed]
- Tsumanuma, I.; Jin, L.; Zhang, S.; Bayliss, J.M.; Scheithauer, B.W.; Lloyd, R.V. Leptin signal transduction in the HP75 human pituitary cell line. Pituitary 2000, 3, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Bjorbaek, C.; Uotani, S.; Da Silva, B.; Flier, J.S. Divergent signaling capacities of the long and short isoforms of the leptin receptor. J. Biol. Chem. 1997, 272, 32686–32695. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, B.A.; Bjorbaek, C.; Uotani, S.; Flier, J.S. Functional properties of leptin receptor isoforms containing the gln-->pro extracellular domain mutation of the fatty rat. Endocrinology 1998, 139, 3681–3690. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Margalet, V.; Martin-Romero, C.; Gonzalez-Yanes, C.; Goberna, R.; Rodriguez-Bano, J.; Muniain, M.A. Leptin receptor (Ob-R) expression is induced in peripheral blood mononuclear cells by in vitro activation and in vivo in HIV-infected patients. Clin. Exp. Immunol. 2002, 129, 119–124. [Google Scholar] [CrossRef] [PubMed]
- Gorska, E.; Popko, K.; Stelmaszczyk-Emmel, A.; Ciepiela, O.; Kucharska, A.; Wasik, M. Leptin receptors. Eur. J. Med. Res. 2010, 15 (Suppl. 2), 50–54. [Google Scholar] [CrossRef] [Green Version]
- Hakansson-Ovesjo, M.L.; Collin, M.; Meister, B. Down-regulated STAT3 messenger ribonucleic acid and STAT3 protein in the hypothalamic arcuate nucleus of the obese leptin-deficient (ob/ob) mouse. Endocrinology 2000, 141, 3946–3955. [Google Scholar] [CrossRef]
- Kowalski, T.J.; Liu, S.M.; Leibel, R.L.; Chua, S.C., Jr. Transgenic complementation of leptin-receptor deficiency. I. Rescue of the obesity/diabetes phenotype of LEPR-null mice expressing a LEPR-B transgene. Diabetes 2001, 50, 425–435. [Google Scholar] [CrossRef] [Green Version]
- Fruhbeck, G. Intracellular signalling pathways activated by leptin. Biochem. J. 2006, 393, 7–20. [Google Scholar] [CrossRef] [Green Version]
- Heshka, J.T.; Jones, P.J. A role for dietary fat in leptin receptor, OB-Rb, function. Life Sci. 2001, 69, 987–1003. [Google Scholar] [CrossRef]
- Meister, B. Control of food intake via leptin receptors in the hypothalamus. Vitam. Horm. 2000, 59, 265–304. [Google Scholar] [PubMed]
- Ovesjo, M.L.; Gamstedt, M.; Collin, M.; Meister, B. GABAergic nature of hypothalamic leptin target neurones in the ventromedial arcuate nucleus. J. Neuroendocrinol. 2001, 13, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Williams, S.M.; Grove, K.L.; Smith, M.S. Melanocortin 4 receptor-mediated hyperphagia and activation of neuropeptide Y expression in the dorsomedial hypothalamus during lactation. J. Neurosci. 2004, 24, 5091–5100. [Google Scholar] [CrossRef] [PubMed]
- De Luca, C.; Kowalski, T.J.; Zhang, Y.; Elmquist, J.K.; Lee, C.; Kilimann, M.W.; Ludwig, T.; Liu, S.M.; Chua, S.C., Jr. Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes. J. Clin. Investig. 2005, 115, 3484–3493. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaneda, T.; Makino, S.; Nishiyama, M.; Asaba, K.; Hashimoto, K. Differential neuropeptide responses to starvation with ageing. J. Neuroendocrinol. 2001, 13, 1066–1075. [Google Scholar] [CrossRef]
- Lonnerdal, B.; Havel, P.J. Serum leptin concentrations in infants: Effects of diet, sex, and adiposity. Am. J. Clin. Nutr. 2000, 72, 484–489. [Google Scholar] [CrossRef]
- Cooper, J.A.; Polonsky, K.S.; Schoeller, D.A. Serum leptin levels in obese males during over- and underfeeding. Obesity 2009, 17, 2149–2154. [Google Scholar] [CrossRef]
- Adamska-Patruno, E.; Ostrowska, L.; Goscik, J.; Pietraszewska, B.; Kretowski, A.; Gorska, M. The relationship between the leptin/ghrelin ratio and meals with various macronutrient contents in men with different nutritional status: A randomized crossover study. Nutr. J. 2018, 17, 118. [Google Scholar] [CrossRef] [Green Version]
- Muoio, D.M.; Dohm, G.L. Peripheral metabolic actions of leptin. Best Pract. Res. Clin. Endocrinol. Metab. 2002, 16, 653–666. [Google Scholar] [CrossRef]
- Aparicio, T.; Kermorgant, S.; Darmoul, D.; Guilmeau, S.; Hormi, K.; Mahieu-Caputo, D.; Lehy, T. Leptin and Ob-Rb receptor isoform in the human digestive tract during fetal development. J. Clin. Endocrinol. Metab. 2005, 90, 6177–6184. [Google Scholar] [CrossRef] [Green Version]
- Breidert, M.; Miehlke, S.; Glasow, A.; Orban, Z.; Stolte, M.; Ehninger, G.; Bayerdorffer, E.; Nettesheim, O.; Halm, U.; Haidan, A.; et al. Leptin and its receptor in normal human gastric mucosa and in Helicobacter pylori-associated gastritis. Scand. J. Gastroenterol. 1999, 34, 954–961. [Google Scholar] [PubMed]
- Mix, H.; Widjaja, A.; Jandl, O.; Cornberg, M.; Kaul, A.; Goke, M.; Beil, W.; Kuske, M.; Brabant, G.; Manns, M.P.; et al. Expression of leptin and leptin receptor isoforms in the human stomach. Gut 2000, 47, 481–486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arita, S.; Inagaki-Ohara, K. High-fat-diet-induced modulations of leptin signaling and gastric microbiota drive precancerous lesions in the stomach. Nutrition 2019, 67–68, 110556. [Google Scholar] [CrossRef] [PubMed]
- Merigo, F.; Brandolese, A.; Facchin, S.; Boschi, F.; Di Chio, M.; Savarino, E.; D’Inca, R.; Sturniolo, G.C.; Sbarbati, A. Immunolocalization of leptin and leptin receptor in colorectal mucosa of ulcerative colitis, Crohn’s disease and control subjects with no inflammatory bowel disease. Cell Tissue Res. 2021, 383, 1103–1122. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.M.; Tian, S.Y.; Wang, D.; Cui, F.; Zhang, X.J.; Zhang, Y. Elevated expression of the leptin receptor obR may contribute to inflammation in patients with ulcerative colitis. Mol. Med. Rep. 2019, 20, 4706–4712. [Google Scholar] [PubMed]
- Islam, M.S.; Morton, N.M.; Hansson, A.; Emilsson, V. Rat insulinoma-derived pancreatic beta-cells express a functional leptin receptor that mediates a proliferative response. Biochem. Biophys. Res. Commun. 1997, 238, 851–855. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Tan, M.; Tian, X.; Zhang, J.; Zhang, J.; Chen, J.; Xu, W.; Sheng, H. Leptin receptor mediates the proliferation and glucose metabolism of pancreatic cancer cells via AKT pathway activation. Mol. Med. Rep. 2020, 21, 945–952. [Google Scholar] [CrossRef]
- Yuan, L.; An, H.; Deng, X.; Li, Z. Regulation of leptin on insulin secretion and sulfonulurea receptor 1 transcription level in isolated rats pancreatic islets. Chin. Med. J. 2003, 116, 868–872. [Google Scholar]
- Emilsson, V.; Liu, Y.L.; Cawthorne, M.A.; Morton, N.M.; Davenport, M. Expression of the functional leptin receptor mRNA in pancreatic islets and direct inhibitory action of leptin on insulin secretion. Diabetes 1997, 46, 313–316. [Google Scholar] [CrossRef] [Green Version]
- Pereira, S.; Cline, D.L.; Glavas, M.M.; Covey, S.D.; Kieffer, T.J. Tissue-Specific Effects of Leptin on Glucose and Lipid Metabolism. Endocr. Rev. 2021, 42, 1–28. [Google Scholar] [CrossRef]
- Kieffer, T.J.; Heller, R.S.; Leech, C.A.; Holz, G.G.; Habener, J.F. Leptin suppression of insulin secretion by the activation of ATP-sensitive K+ channels in pancreatic beta-cells. Diabetes 1997, 46, 1087–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, Z.; Gilbert, E.R.; Liu, D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr. Diabetes Rev. 2013, 9, 25–53. [Google Scholar] [CrossRef] [PubMed]
- Cases, J.A.; Gabriely, I.; Ma, X.H.; Yang, X.M.; Michaeli, T.; Fleischer, N.; Rossetti, L.; Barzilai, N. Physiological increase in plasma leptin markedly inhibits insulin secretion in vivo. Diabetes 2001, 50, 348–352. [Google Scholar] [CrossRef] [Green Version]
- Cong, L.; Chen, K.; Li, J.; Gao, P.; Li, Q.; Mi, S.; Wu, X.; Zhao, A.Z. Regulation of adiponectin and leptin secretion and expression by insulin through a PI3K-PDE3B dependent mechanism in rat primary adipocytes. Biochem. J. 2007, 403, 519–525. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Una, M.; Lopez-Mancheno, Y.; Dieguez, C.; Fernandez-Rojo, M.A.; Novelle, M.G. Unraveling the Role of Leptin in Liver Function and Its Relationship with Liver Diseases. Int. J. Mol. Sci. 2020, 21, 9368. [Google Scholar] [CrossRef]
- Huynh, F.K.; Levi, J.; Denroche, H.C.; Gray, S.L.; Voshol, P.J.; Neumann, U.H.; Speck, M.; Chua, S.C.; Covey, S.D.; Kieffer, T.J. Disruption of hepatic leptin signaling protects mice from age- and diet-related glucose intolerance. Diabetes 2010, 59, 3032–3040. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.Q.; Lin, H.Z.; Mandal, A.K.; Huang, J.; Diehl, A.M. Disrupted signaling and inhibited regeneration in obese mice with fatty livers: Implications for nonalcoholic fatty liver disease pathophysiology. Hepatology 2001, 34, 694–706. [Google Scholar] [CrossRef]
- Leclercq, I.A.; Farrell, G.C.; Schriemer, R.; Robertson, G.R. Leptin is essential for the hepatic fibrogenic response to chronic liver injury. J. Hepatol. 2002, 37, 206–213. [Google Scholar] [CrossRef]
- Polyzos, S.A.; Aronis, K.N.; Kountouras, J.; Raptis, D.D.; Vasiloglou, M.F.; Mantzoros, C.S. Circulating leptin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Diabetologia 2016, 59, 30–43. [Google Scholar] [CrossRef]
- Ducy, P.; Amling, M.; Takeda, S.; Priemel, M.; Schilling, A.F.; Beil, F.T.; Shen, J.; Vinson, C.; Rueger, J.M.; Karsenty, G. Leptin inhibits bone formation through a hypothalamic relay: A central control of bone mass. Cell 2000, 100, 197–207. [Google Scholar] [CrossRef] [Green Version]
- Pogoda, P.; Egermann, M.; Schnell, J.C.; Priemel, M.; Schilling, A.F.; Alini, M.; Schinke, T.; Rueger, J.M.; Schneider, E.; Clarke, I.; et al. Leptin inhibits bone formation not only in rodents, but also in sheep. J. Bone Miner. Res. 2006, 21, 1591–1599. [Google Scholar] [CrossRef] [PubMed]
- Iwaniec, U.T.; Boghossian, S.; Trevisiol, C.H.; Wronski, T.J.; Turner, R.T.; Kalra, S.P. Hypothalamic leptin gene therapy prevents weight gain without long-term detrimental effects on bone in growing and skeletally mature female rats. J. Bone Miner. Res. 2011, 26, 1506–1516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Blasio, M.J.; Lanham, S.A.; Blache, D.; Oreffo, R.O.C.; Fowden, A.L.; Forhead, A.J. Sex- and bone-specific responses in bone structure to exogenous leptin and leptin receptor antagonism in the ovine fetus. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2018, 314, R781–R790. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.C.; Ma, B.; Guo, S.; Yang, M.; Li, L.J.; Wang, S.J.; Tan, J. Leptin regulates disc cartilage endplate degeneration and ossification through activation of the MAPK-ERK signalling pathway in vivo and in vitro. J. Cell. Mol. Med. 2018, 22, 2098–2109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, I.R.; Baldock, P.A.; Cornish, J. Effects of Leptin on the Skeleton. Endocr. Rev. 2018, 39, 938–959. [Google Scholar] [CrossRef]
- Gordeladze, J.O.; Drevon, C.A.; Syversen, U.; Reseland, J.E. Leptin stimulates human osteoblastic cell proliferation, de novo collagen synthesis, and mineralization: Impact on differentiation markers, apoptosis, and osteoclastic signaling. J. Cell. Biochem. 2002, 85, 825–836. [Google Scholar] [CrossRef]
- Hui, W.; Litherland, G.J.; Elias, M.S.; Kitson, G.I.; Cawston, T.E.; Rowan, A.D.; Young, D.A. Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann. Rheum. Dis. 2012, 71, 455–462. [Google Scholar] [CrossRef]
- Burguera, B.; Hofbauer, L.C.; Thomas, T.; Gori, F.; Evans, G.L.; Khosla, S.; Riggs, B.L.; Turner, R.T. Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 2001, 142, 3546–3553. [Google Scholar] [CrossRef]
- Upadhyay, J.; Farr, O.M.; Mantzoros, C.S. The role of leptin in regulating bone metabolism. Metabolism 2015, 64, 105–113. [Google Scholar] [CrossRef] [Green Version]
- Papathanassoglou, E.; El-Haschimi, K.; Li, X.C.; Matarese, G.; Strom, T.; Mantzoros, C. Leptin receptor expression and signaling in lymphocytes: Kinetics during lymphocyte activation, role in lymphocyte survival, and response to high fat diet in mice. J. Immunol. 2006, 176, 7745–7752. [Google Scholar] [CrossRef]
- Saucillo, D.C.; Gerriets, V.A.; Sheng, J.; Rathmell, J.C.; Maciver, N.J. Leptin metabolically licenses T cells for activation to link nutrition and immunity. J. Immunol. 2014, 192, 136–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Riejos, P.; Goberna, R.; Sanchez-Margalet, V. Leptin promotes cell survival and activates Jurkat T lymphocytes by stimulation of mitogen-activated protein kinase. Clin. Exp. Immunol. 2008, 151, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Martin-Romero, C.; Santos-Alvarez, J.; Goberna, R.; Sanchez-Margalet, V. Human leptin enhances activation and proliferation of human circulating T lymphocytes. Cell. Immunol. 2000, 199, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Matarese, G.; Carrieri, P.B.; La Cava, A.; Perna, F.; Sanna, V.; De Rosa, V.; Aufiero, D.; Fontana, S.; Zappacosta, S. Leptin increase in multiple sclerosis associates with reduced number of CD4(+)CD25+ regulatory T cells. Proc. Natl. Acad. Sci. USA 2005, 102, 5150–5155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mattioli, B.; Straface, E.; Quaranta, M.G.; Giordani, L.; Viora, M. Leptin promotes differentiation and survival of human dendritic cells and licenses them for Th1 priming. J. Immunol. 2005, 174, 6820–6828. [Google Scholar] [CrossRef] [PubMed]
- Galan-Diez, M.; Cuesta-Dominguez, A.; Kousteni, S. The Bone Marrow Microenvironment in Health and Myeloid Malignancy. Cold Spring Harb. Perspect. Med. 2018, 8, a031328. [Google Scholar] [CrossRef]
- Gorska, E.; Popko, K.; Wasik, M. Leptin receptor in childhood acute leukemias. Adv. Exp. Med. Biol. 2013, 756, 155–161. [Google Scholar]
- Han, T.J.; Wang, X. Leptin and its receptor in hematologic malignancies. Int. J. Clin. Exp. Med. 2015, 8, 19840–19849. [Google Scholar]
- Konopleva, M.; Mikhail, A.; Estrov, Z.; Zhao, S.; Harris, D.; Sanchez-Williams, G.; Kornblau, S.M.; Dong, J.; Kliche, K.O.; Jiang, S.; et al. Expression and function of leptin receptor isoforms in myeloid leukemia and myelodysplastic syndromes: Proliferative and anti-apoptotic activities. Blood 1999, 93, 1668–1676. [Google Scholar] [CrossRef]
- Morris, E.V.; Edwards, C.M. Adipokines, adiposity, and bone marrow adipocytes: Dangerous accomplices in multiple myeloma. J. Cell. Physiol. 2018, 233, 9159–9166. [Google Scholar] [CrossRef]
- Diaz-Blanco, E.; Bruns, I.; Neumann, F.; Fischer, J.C.; Graef, T.; Rosskopf, M.; Brors, B.; Pechtel, S.; Bork, S.; Koch, A.; et al. Molecular signature of CD34(+) hematopoietic stem and progenitor cells of patients with CML in chronic phase. Leukemia 2007, 21, 494–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadim, M.; Xu, Y.; Selig, K.; Paulus, J.; Uthe, R.; Agarwl, S.; Dubin, I.; Oikonomopoulou, P.; Zaichenko, L.; McCandlish, S.A.; et al. A prospective evaluation of clinical and genetic predictors of weight changes in breast cancer survivors. Cancer 2017, 123, 2413–2421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakao, T.; Hino, M.; Yamane, T.; Nishizawa, Y.; Morii, H.; Tatsumi, N. Expression of the leptin receptor in human leukaemic blast cells. Br. J. Haematol. 1998, 102, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Keshavarz, H.; Meints, L.M.; Geiger, M.K.; Zinn, K.R.; Spence, D.M. Specific Binding of Leptin to Red Blood Cells Delivers a Pancreatic Hormone and Stimulates ATP Release. Mol. Pharm. 2021, 18, 2438–2447. [Google Scholar] [CrossRef] [PubMed]
- Cabrera de Leon, A.; Gonzalez, D.A.; Mendez, L.I.; Aguirre-Jaime, A.; Del Cristo Rodriguez Perez, M.; Coello, S.D.; Trujillo, I.C. Leptin and altitude in the cardiovascular diseases. Obes. Res. 2004, 12, 1492–1498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hou, N.; Luo, J.D. Leptin and cardiovascular diseases. Clin. Exp. Pharmacol. Physiol. 2011, 38, 905–913. [Google Scholar] [CrossRef]
- Katsiki, N.; Mikhailidis, D.P.; Banach, M. Leptin, cardiovascular diseases and type 2 diabetes mellitus. Acta Pharmacol. Sin. 2018, 39, 1176–1188. [Google Scholar] [CrossRef] [Green Version]
- Luo, J.D.; Zhang, G.S.; Chen, M.S. Leptin and cardiovascular diseases. Timely Top. Med. Cardiovasc. Dis. 2005, 9, E34. [Google Scholar] [CrossRef]
- Peelman, F.; Waelput, W.; Iserentant, H.; Lavens, D.; Eyckerman, S.; Zabeau, L.; Tavernier, J. Leptin: Linking adipocyte metabolism with cardiovascular and autoimmune diseases. Prog. Lipid Res. 2004, 43, 283–301. [Google Scholar] [CrossRef]
- Mikhail, A.A.; Beck, E.X.; Shafer, A.; Barut, B.; Gbur, J.S.; Zupancic, T.J.; Schweitzer, A.C.; Cioffi, J.A.; Lacaud, G.; Ouyang, B.; et al. Leptin stimulates fetal and adult erythroid and myeloid development. Blood 1997, 89, 1507–1512. [Google Scholar] [CrossRef]
- Sivan, E.; Lin, W.M.; Homko, C.J.; Reece, E.A.; Boden, G. Leptin is present in human cord blood. Diabetes 1997, 46, 917–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trinh, T.; Broxmeyer, H.E. Role for Leptin and Leptin Receptors in Stem Cells During Health and Diseases. Stem Cell Rev. Rep. 2021, 17, 511–522. [Google Scholar] [CrossRef] [PubMed]
- Tsiotra, P.C.; Pappa, V.; Raptis, S.A.; Tsigos, C. Expression of the long and short leptin receptor isoforms in peripheral blood mononuclear cells: Implications for leptin’s actions. Metabolism 2000, 49, 1537–1541. [Google Scholar] [CrossRef] [PubMed]
- Wolk, R.; Deb, A.; Caplice, N.M.; Somers, V.K. Leptin receptor and functional effects of leptin in human endothelial progenitor cells. Atherosclerosis 2005, 183, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Corsonello, A.; Perticone, F.; Malara, A.; De Domenico, D.; Loddo, S.; Buemi, M.; Ientile, R.; Corica, F. Leptin-dependent platelet aggregation in healthy, overweight and obese subjects. Int. J. Obes. Relat. Metab. Disord. 2003, 27, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Elbatarny, H.S.; Maurice, D.H. Leptin-mediated activation of human platelets: Involvement of a leptin receptor and phosphodiesterase 3A-containing cellular signaling complex. Am. J. Physiol. Endocrinol. Metab. 2005, 289, E695–E702. [Google Scholar] [CrossRef] [Green Version]
- Konstantinides, S.; Schafer, K.; Koschnick, S.; Loskutoff, D.J. Leptin-dependent platelet aggregation and arterial thrombosis suggests a mechanism for atherothrombotic disease in obesity. J. Clin. Investig. 2001, 108, 1533–1540. [Google Scholar] [CrossRef]
- Konstantinides, S.; Schafer, K.; Loskutoff, D.J. The prothrombotic effects of leptin possible implications for the risk of cardiovascular disease in obesity. Ann. N. Y. Acad. Sci. 2001, 947, 134–141; discussion 141–132. [Google Scholar] [CrossRef]
- Nakata, M.; Yada, T.; Soejima, N.; Maruyama, I. Leptin promotes aggregation of human platelets via the long form of its receptor. Diabetes 1999, 48, 426–429. [Google Scholar] [CrossRef]
- Frank, S.; Stallmeyer, B.; Kampfer, H.; Kolb, N.; Pfeilschifter, J. Leptin enhances wound re-epithelialization and constitutes a direct function of leptin in skin repair. J. Clin. Investig. 2000, 106, 501–509. [Google Scholar] [CrossRef] [Green Version]
- Murad, A.; Nath, A.K.; Cha, S.T.; Demir, E.; Flores-Riveros, J.; Sierra-Honigmann, M.R. Leptin is an autocrine/paracrine regulator of wound healing. FASEB J. 2003, 17, 1895–1897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schafer, K.; Halle, M.; Goeschen, C.; Dellas, C.; Pynn, M.; Loskutoff, D.J.; Konstantinides, S. Leptin promotes vascular remodeling and neointimal growth in mice. Arterioscler. Thromb. Vasc. Biol. 2004, 24, 112–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tadokoro, S.; Ide, S.; Tokuyama, R.; Umeki, H.; Tatehara, S.; Kataoka, S.; Satomura, K. Leptin promotes wound healing in the skin. PLoS ONE 2015, 10, e0121242. [Google Scholar] [CrossRef] [PubMed]
- Umeki, H.; Tokuyama, R.; Ide, S.; Okubo, M.; Tadokoro, S.; Tezuka, M.; Tatehara, S.; Satomura, K. Leptin promotes wound healing in the oral mucosa. PLoS ONE 2014, 9, e101984. [Google Scholar] [CrossRef] [PubMed]
- Beltowski, J. Leptin and atherosclerosis. Atherosclerosis 2006, 189, 47–60. [Google Scholar] [CrossRef]
- Bouloumie, A.; Drexler, H.C.; Lafontan, M.; Busse, R. Leptin, the product of Ob gene, promotes angiogenesis. Circ. Res. 1998, 83, 1059–1066. [Google Scholar] [CrossRef] [Green Version]
- Garonna, E.; Botham, K.M.; Birdsey, G.M.; Randi, A.M.; Gonzalez-Perez, R.R.; Wheeler-Jones, C.P. Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS ONE 2011, 6, e18823. [Google Scholar] [CrossRef] [Green Version]
- Heida, N.M.; Leifheit-Nestler, M.; Schroeter, M.R.; Muller, J.P.; Cheng, I.F.; Henkel, S.; Limbourg, A.; Limbourg, F.P.; Alves, F.; Quigley, J.P.; et al. Leptin enhances the potency of circulating angiogenic cells via src kinase and integrin (alpha)vbeta5: Implications for angiogenesis in human obesity. Arterioscler. Thromb. Vasc. Biol. 2010, 30, 200–206. [Google Scholar] [CrossRef] [Green Version]
- Park, H.Y.; Kwon, H.M.; Lim, H.J.; Hong, B.K.; Lee, J.Y.; Park, B.E.; Jang, Y.; Cho, S.Y.; Kim, H.S. Potential role of leptin in angiogenesis: Leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp. Mol. Med. 2001, 33, 95–102. [Google Scholar] [CrossRef]
- Kang, S.M.; Kwon, H.M.; Hong, B.K.; Kim, D.; Kim, I.J.; Choi, E.Y.; Jang, Y.; Kim, H.S.; Kim, M.S.; Kwon, H.C. Expression of leptin receptor (Ob-R) in human atherosclerotic lesions: Potential role in intimal neovascularization. Yonsei Med. J. 2000, 41, 68–75. [Google Scholar] [CrossRef]
- Hall, J.E.; Do Carmo, J.M.; Da Silva, A.A.; Wang, Z.; Hall, M.E. Obesity, kidney dysfunction and hypertension: Mechanistic links. Nat. Rev. Nephrol. 2019, 15, 367–385. [Google Scholar] [CrossRef] [PubMed]
- Vilahur, G.; Ben-Aicha, S.; Badimon, L. New insights into the role of adipose tissue in thrombosis. Cardiovasc. Res. 2017, 113, 1046–1054. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Yu, Y.; Beltz, T.G.; Guo, F.; Felder, R.B.; Wei, S.G.; Kim Johnson, A. Maternal Angiotensin II-Induced Hypertension Sensitizes Postweaning High-Fat Diet-Elicited Hypertensive Response Through Increased Brain Reactivity in Rat Offspring. J. Am. Heart Assoc. 2021, 10, e022170. [Google Scholar] [CrossRef]
- Xue, B.; Yu, Y.; Zhang, Z.; Guo, F.; Beltz, T.G.; Thunhorst, R.L.; Felder, R.B.; Johnson, A.K. Leptin Mediates High-Fat Diet Sensitization of Angiotensin II-Elicited Hypertension by Upregulating the Brain Renin-Angiotensin System and Inflammation. Hypertension 2016, 67, 970–976. [Google Scholar] [CrossRef] [Green Version]
- Da Fonseca, A.C.P.; Abreu, G.M.; Zembrzuski, V.M.; Campos Junior, M.; Carneiro, J.R.I.; Nogueira Neto, J.F.; Magno, F.; Rosado, E.L.; Bozza, P.T.; De Cabello, G.M.K.; et al. Study of LEP, MRAP2 and POMC genes as potential causes of severe obesity in Brazilian patients. Eat. Weight Disord. 2021, 26, 1399–1408. [Google Scholar] [CrossRef] [PubMed]
- Yoo, S.B.; Ryu, V.; Park, E.Y.; Kim, B.T.; Kang, D.W.; Lee, J.H.; Jahng, J.W. The arcuate NPY, POMC, and CART expressions responding to food deprivation are exaggerated in young female rats that experienced neonatal maternal separation. Neuropeptides 2011, 45, 343–349. [Google Scholar] [CrossRef]
- Elias, C.F.; Lee, C.; Kelly, J.; Aschkenasi, C.; Ahima, R.S.; Couceyro, P.R.; Kuhar, M.J.; Saper, C.B.; Elmquist, J.K. Leptin activates hypothalamic CART neurons projecting to the spinal cord. Neuron 1998, 21, 1375–1385. [Google Scholar] [CrossRef] [Green Version]
- Khokhar, K.K.; Sidhu, S.; Kaur, G. Correlation between leptin level and hypertension in normal and obese pre- and postmenopausal women. Eur. J. Endocrinol. 2010, 163, 873–878. [Google Scholar] [CrossRef] [Green Version]
- Smith, C.C.; Mocanu, M.M.; Davidson, S.M.; Wynne, A.M.; Simpkin, J.C.; Yellon, D.M. Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br. J. Pharmacol. 2006, 149, 5–13. [Google Scholar] [CrossRef] [Green Version]
- Kamimura, D.; Suzuki, T.; Wang, W.; DeShazo, M.; Hall, J.E.; Winniford, M.D.; Kullo, I.J.; Mosley, T.H.; Butler, K.R.; Hall, M.E. Higher plasma leptin levels are associated with reduced left ventricular mass and left ventricular diastolic stiffness in black women: Insights from the Genetic Epidemiology Network of Arteriopathy (GENOA) study. Hypertens. Res. 2018, 41, 629–638. [Google Scholar] [CrossRef]
- Korczynska, J.; Czumaj, A.; Chmielewski, M.; Swierczynski, J.; Sledzinski, T. The Causes and Potential Injurious Effects of Elevated Serum Leptin Levels in Chronic Kidney Disease Patients. Int. J. Mol. Sci. 2021, 22, 4685. [Google Scholar] [CrossRef] [PubMed]
- Iida, M.; Murakami, T.; Yamada, M.; Sei, M.; Kuwajima, M.; Mizuno, A.; Noma, Y.; Aono, T.; Shima, K. Hyperleptinemia in chronic renal failure. Horm. Metab. Res. 1996, 28, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Mak, R.H.; Cheung, W.; Cone, R.D.; Marks, D.L. Leptin and inflammation-associated cachexia in chronic kidney disease. Kidney Int. 2006, 69, 794–797. [Google Scholar] [CrossRef] [Green Version]
- Stenvinkel, P. Leptin and its clinical implications in chronic renal failure. Miner. Electrolyte Metab. 1999, 25, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Alix, P.M.; Guebre-Egziabher, F.; Soulage, C.O. Leptin as an uremic toxin: Deleterious role of leptin in chronic kidney disease. Biochimie 2014, 105, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Johansen, J.E.; Broberger, C.; Lavebratt, C.; Johansson, C.; Kuhar, M.J.; Hokfelt, T.; Schalling, M. Hypothalamic CART and serum leptin levels are reduced in the anorectic (anx/anx) mouse. Brain Res. Mol. Brain Res. 2000, 84, 97–105. [Google Scholar] [CrossRef]
- Senn, S.S.; Le Foll, C.; Whiting, L.; Tarasco, E.; Duffy, S.; Lutz, T.A.; Boyle, C.N. Unsilencing of native LepRs in hypothalamic SF1 neurons does not rescue obese phenotype in LepR-deficient mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019, 317, R451–R460. [Google Scholar] [CrossRef]
- Cardinal, P.; Andre, C.; Quarta, C.; Bellocchio, L.; Clark, S.; Elie, M.; Leste-Lasserre, T.; Maitre, M.; Gonzales, D.; Cannich, A.; et al. CB1 cannabinoid receptor in SF1-expressing neurons of the ventromedial hypothalamus determines metabolic responses to diet and leptin. Mol. Metab. 2014, 3, 705–716. [Google Scholar] [CrossRef]
- Valdearcos, M.; Xu, A.W.; Koliwad, S.K. Hypothalamic inflammation in the control of metabolic function. Annu. Rev. Physiol. 2015, 77, 131–160. [Google Scholar] [CrossRef]
- Le Foll, C.; Johnson, M.D.; Dunn-Meynell, A.A.; Boyle, C.N.; Lutz, T.A.; Levin, B.E. Amylin-induced central IL-6 production enhances ventromedial hypothalamic leptin signaling. Diabetes 2015, 64, 1621–1631. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.K.; Ryu, W.S.; Choi, I.Y.; Kim, Y.J.; Rim, D.; Kim, B.J.; Jang, H.; Yoon, B.W.; Lee, S.H. Detrimental effects of leptin on intracerebral hemorrhage via the STAT3 signal pathway. J. Cereb. Blood Flow Metab. 2013, 33, 944–953. [Google Scholar] [CrossRef] [Green Version]
- Guerrero-Garcia, J.J.; Carrera-Quintanar, L.; Lopez-Roa, R.I.; Marquez-Aguirre, A.L.; Rojas-Mayorquin, A.E.; Ortuno-Sahagun, D. Multiple Sclerosis and Obesity: Possible Roles of Adipokines. Mediat. Inflamm. 2016, 2016, 4036232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujita, Y.; Yamashita, T. The Effects of Leptin on Glial Cells in Neurological Diseases. Front. Neurosci. 2019, 13, 828. [Google Scholar] [CrossRef]
- De Git, K.C.; Adan, R.A. Leptin resistance in diet-induced obesity: The role of hypothalamic inflammation. Obes. Rev. 2015, 16, 207–224. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Estevez, L.; Gonzalez-Martinez, S.; Moreno-Bueno, G. The Leptin Axis and Its Association with the Adaptive Immune System in Breast Cancer. Front. Immunol. 2021, 12, 784823. [Google Scholar] [CrossRef] [PubMed]
- De Leon-Guerrero, S.D.; Salazar-Leon, J.; Meza-Sosa, K.F.; Valle-Garcia, D.; Aguilar-Leon, D.; Pedraza-Alva, G.; Perez-Martinez, L. An enriched environment reestablishes metabolic homeostasis by reducing obesity-induced inflammation. Dis. Models Mech. 2022. [Google Scholar] [CrossRef]
- Al-Hussaniy, H.A.; Alburghaif, A.H.; Naji, M.A. Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J. Med. Life 2021, 14, 600–605. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Garrido, J.; Shenoy, A.R. Regulation and repurposing of nutrient sensing and autophagy in innate immunity. Autophagy 2021, 17, 1571–1591. [Google Scholar] [CrossRef]
- Richer, B.C.; Salei, N.; Laskay, T.; Seeger, K. Changes in Neutrophil Metabolism upon Activation and Aging. Inflammation 2018, 41, 710–721. [Google Scholar] [CrossRef]
- Lovaszi, M.; Haas, C.B.; Antonioli, L.; Pacher, P.; Hasko, G. The role of P2Y receptors in regulating immunity and metabolism. Biochem. Pharmacol. 2021, 187, 114419. [Google Scholar] [CrossRef]
- Adinolfi, E.; Giuliani, A.L.; De Marchi, E.; Pegoraro, A.; Orioli, E.; Di Virgilio, F. The P2X7 receptor: A main player in inflammation. Biochem. Pharmacol. 2018, 151, 234–244. [Google Scholar] [CrossRef] [PubMed]
- Sennello, J.A.; Fayad, R.; Morris, A.M.; Eckel, R.H.; Asilmaz, E.; Montez, J.; Friedman, J.M.; Dinarello, C.A.; Fantuzzi, G. Regulation of T cell-mediated hepatic inflammation by adiponectin and leptin. Endocrinology 2005, 146, 2157–2164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oswald, J.; Buttner, M.; Jasinski-Bergner, S.; Jacobs, R.; Rosenstock, P.; Kielstein, H. Leptin affects filopodia and cofilin in NK-92 cells in a dose- and time-dependent manner. Eur. J. Histochem. 2018, 62, 2848. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naylor, C.; Petri, W.A., Jr. Leptin Regulation of Immune Responses. Trends Mol. Med. 2016, 22, 88–98. [Google Scholar] [CrossRef] [PubMed]
- Lo, C.K.; Lam, Q.L.; Yang, M.; Ko, K.H.; Sun, L.; Ma, R.; Wang, S.; Xu, H.; Tam, S.; Wu, C.Y.; et al. Leptin signaling protects NK cells from apoptosis during development in mouse bone marrow. Cell. Mol. Immunol. 2009, 6, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Lamas, B.; Goncalves-Mendes, N.; Nachat-Kappes, R.; Rossary, A.; Caldefie-Chezet, F.; Vasson, M.P.; Farges, M.C. Leptin modulates dose-dependently the metabolic and cytolytic activities of NK-92 cells. J. Cell. Physiol. 2013, 228, 1202–1209. [Google Scholar] [CrossRef]
- Han, H.; Zhou, W. Leptin and Its Derivatives: A Potential Target for Autoimmune Diseases. Curr. Drug Targets 2019, 20, 1563–1571. [Google Scholar] [CrossRef]
- Grases-Pinto, B.; Abril-Gil, M.; Rodriguez-Lagunas, M.J.; Castell, M.; Perez-Cano, F.J.; Franch, A. Leptin and adiponectin supplementation modifies mesenteric lymph node lymphocyte composition and functionality in suckling rats. Br. J. Nutr. 2018, 119, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Matarese, G.; Castelli-Gattinara, G.; Cancrini, C.; Bernardi, S.; Romiti, M.L.; Savarese, C.; Di Giacomo, A.; Rossi, P.; Racioppi, L. Serum leptin and CD4+ T lymphocytes in HIV+ children during highly active antiretroviral therapy. Clin. Endocrinol. 2002, 57, 643–646. [Google Scholar] [CrossRef]
- Matarese, G. Leptin and the immune system: How nutritional status influences the immune response. Eur. Cytokine Netw. 2000, 11, 7–14. [Google Scholar]
- Lord, G.M.; Matarese, G.; Howard, J.K.; Baker, R.J.; Bloom, S.R.; Lechler, R.I. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 1998, 394, 897–901. [Google Scholar] [CrossRef] [PubMed]
- Deng, J.; Liu, Y.; Yang, M.; Wang, S.; Zhang, M.; Wang, X.; Ko, K.H.; Hua, Z.; Sun, L.; Cao, X.; et al. Leptin exacerbates collagen-induced arthritis via enhancement of Th17 cell response. Arthritis Rheum. 2012, 64, 3564–3573. [Google Scholar] [CrossRef] [PubMed]
- Batra, A.; Okur, B.; Glauben, R.; Erben, U.; Ihbe, J.; Stroh, T.; Fedke, I.; Chang, H.D.; Zeitz, M.; Siegmund, B. Leptin: A critical regulator of CD4+ T-cell polarization in vitro and in vivo. Endocrinology 2010, 151, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Toro, A.R.; Maymo, J.L.; Ibarbalz, F.M.; Perez-Perez, A.; Maskin, B.; Faletti, A.G.; Sanchez-Margalet, V.; Varone, C.L. Leptin is an anti-apoptotic effector in placental cells involving p53 downregulation. PLoS ONE 2014, 9, e99187. [Google Scholar] [CrossRef]
- Ogunwobi, O.O.; Beales, I.L. The anti-apoptotic and growth stimulatory actions of leptin in human colon cancer cells involves activation of JNK mitogen activated protein kinase, JAK2 and PI3 kinase/Akt. Int. J. Colorectal Dis. 2007, 22, 401–409. [Google Scholar] [CrossRef]
- Da Silva, S.V.; Salama, C.; Renovato-Martins, M.; Helal-Neto, E.; Citelli, M.; Savino, W.; Barja-Fidalgo, C. Increased leptin response and inhibition of apoptosis in thymocytes of young rats offspring from protein deprived dams during lactation. PLoS ONE 2013, 8, e64220. [Google Scholar] [CrossRef] [Green Version]
- Rafique, N.; Salem, A.M.; Latif, R.; ALSheikh, M.H. Serum leptin level across different phases of menstrual cycle in normal weight and overweight/obese females. Gynecol. Endocrinol. 2018, 34, 601–604. [Google Scholar] [CrossRef]
- Zeng, Q.; Luo, X.; Han, M.; Liu, W.; Li, H. Leptin/Osteopontin Axis Regulated Type 2T Helper Cell Response in Allergic Rhinitis with Obesity. EBioMedicine 2018, 32, 43–49. [Google Scholar] [CrossRef]
- Reis, B.S.; Lee, K.; Fanok, M.H.; Mascaraque, C.; Amoury, M.; Cohn, L.B.; Rogoz, A.; Dallner, O.S.; Moraes-Vieira, P.M.; Domingos, A.I.; et al. Leptin receptor signaling in T cells is required for Th17 differentiation. J. Immunol. 2015, 194, 5253–5260. [Google Scholar] [CrossRef] [Green Version]
- Cassano, S.; Pucino, V.; La Rocca, C.; Procaccini, C.; De Rosa, V.; Marone, G.; Matarese, G. Leptin modulates autophagy in human CD4+CD25- conventional T cells. Metabolism 2014, 63, 1272–1279. [Google Scholar] [CrossRef]
- Sylvia, K.E.; Lorenz, T.K.; Heiman, J.R.; Demas, G.E. Physiological predictors of leptin vary during menses and ovulation in healthy women. Reprod. Biol. 2018, 18, 132–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okudan, N.; Gokbel, H.; Ucok, K.; Baltaci, A. Serum leptin concentration and anaerobic performance do not change during the menstrual cycle of young females. Neuroendocrinol. Lett. 2005, 26, 297–300. [Google Scholar] [PubMed]
- Morad, V.; Abrahamsson, A.; Dabrosin, C. Estradiol affects extracellular leptin: Adiponectin ratio in human breast tissue in vivo. J. Clin. Endocrinol. Metab. 2014, 99, 3460–3467. [Google Scholar] [CrossRef] [Green Version]
- Einollahi, N.; Dashti, N.; Nabatchian, F. Serum leptin concentrations during the menstrual cycle in Iranian healthy women. Acta Med. Iran. 2010, 48, 300–303. [Google Scholar]
- Al-Harithy, R.N.; Al-Doghaither, H.; Abualnaja, K. Correlation of leptin and sex hormones with endocrine changes in healthy Saudi women of different body weights. Ann. Saudi Med. 2006, 26, 110–115. [Google Scholar] [CrossRef] [Green Version]
- Ahrens, K.; Mumford, S.L.; Schliep, K.C.; Kissell, K.A.; Perkins, N.J.; Wactawski-Wende, J.; Schisterman, E.F. Serum leptin levels and reproductive function during the menstrual cycle. Am. J. Obstet. Gynecol. 2014, 210, 248–249.e241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahu, M.; Sahu, A. Leptin receptor expressing neurons express phosphodiesterase-3B (PDE3B) and leptin induces STAT3 activation in PDE3B neurons in the mouse hypothalamus. Peptides 2015, 73, 35–42. [Google Scholar] [CrossRef] [Green Version]
- Quennell, J.H.; Mulligan, A.C.; Tups, A.; Liu, X.; Phipps, S.J.; Kemp, C.J.; Herbison, A.E.; Grattan, D.R.; Anderson, G.M. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology 2009, 150, 2805–2812. [Google Scholar] [CrossRef] [Green Version]
- Del Bianco-Borges, B.; Franci, C.R. Estrogen-dependent post-translational change in the nitric oxide system may mediate the leptin action on LH and prolactin secretion. Brain Res. 2015, 1604, 62–73. [Google Scholar] [CrossRef]
- Yin, N.; Wang, D.; Zhang, H.; Yi, X.; Sun, X.; Shi, B.; Wu, H.; Wu, G.; Wang, X.; Shang, Y. Molecular mechanisms involved in the growth stimulation of breast cancer cells by leptin. Cancer Res. 2004, 64, 5870–5875. [Google Scholar] [CrossRef] [Green Version]
- Ishikawa, M.; Kitayama, J.; Nagawa, H. Enhanced expression of leptin and leptin receptor (OB-R) in human breast cancer. Clin. Cancer Res. 2004, 10, 4325–4331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garofalo, C.; Koda, M.; Cascio, S.; Sulkowska, M.; Kanczuga-Koda, L.; Golaszewska, J.; Russo, A.; Sulkowski, S.; Surmacz, E. Increased expression of leptin and the leptin receptor as a marker of breast cancer progression: Possible role of obesity-related stimuli. Clin. Cancer Res. 2006, 12, 1447–1453. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sundaram, S.; Yan, L. High-fat Diet Enhances Mammary Tumorigenesis and Pulmonary Metastasis and Alters Inflammatory and Angiogenic Profiles in MMTV-PyMT Mice. Anticancer Res. 2016, 36, 6279–6287. [Google Scholar] [CrossRef] [PubMed]
- Garcia, M.R.; Steinbauer, B.; Srivastava, K.; Singhal, M.; Mattijssen, F.; Maida, A.; Christian, S.; Hess-Stumpp, H.; Augustin, H.G.; Muller-Decker, K.; et al. Acetyl-CoA Carboxylase 1-Dependent Protein Acetylation Controls Breast Cancer Metastasis and Recurrence. Cell Metab. 2017, 26, 842–855.e845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landry, D.A.; Sormany, F.; Hache, J.; Roumaud, P.; Martin, L.J. Steroidogenic genes expressions are repressed by high levels of leptin and the JAK/STAT signaling pathway in MA-10 Leydig cells. Mol. Cell. Biochem. 2017, 433, 79–95. [Google Scholar] [CrossRef] [PubMed]
- Herrid, M.; O’Shea, T.; McFarlane, J.R. Ontogeny of leptin and its receptor expression in mouse testis during the postnatal period. Mol. Reprod. Dev. 2008, 75, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Giovambattista, A.; Suescun, M.O.; Nessralla, C.C.; Franca, L.R.; Spinedi, E.; Calandra, R.S. Modulatory effects of leptin on leydig cell function of normal and hyperleptinemic rats. Neuroendocrinology 2003, 78, 270–279. [Google Scholar] [CrossRef]
- Caprio, M.; Isidori, A.M.; Carta, A.R.; Moretti, C.; Dufau, M.L.; Fabbri, A. Expression of functional leptin receptors in rodent Leydig cells. Endocrinology 1999, 140, 4939–4947. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, P.P.; Gong, M.; Yi, Q.T.; Zhu, R.J. Role of leptin and the leptin receptor in the pathogenesis of varicocele-induced testicular dysfunction. Mol. Med. Rep. 2018, 17, 7065–7072. [Google Scholar] [CrossRef] [Green Version]
- Iyengar, N.M.; Brown, K.A.; Zhou, X.K.; Gucalp, A.; Subbaramaiah, K.; Giri, D.D.; Zahid, H.; Bhardwaj, P.; Wendel, N.K.; Falcone, D.J.; et al. Metabolic Obesity, Adipose Inflammation and Elevated Breast Aromatase in Women with Normal Body Mass Index. Cancer Prev. Res. 2017, 10, 235–243. [Google Scholar] [CrossRef] [Green Version]
- Alshaker, H.; Wang, Q.; Frampton, A.E.; Krell, J.; Waxman, J.; Winkler, M.; Stebbing, J.; Cooper, C.; Yague, E.; Pchejetski, D. Sphingosine kinase 1 contributes to leptin-induced STAT3 phosphorylation through IL-6/gp130 transactivation in oestrogen receptor-negative breast cancer. Breast Cancer Res. Treat. 2015, 149, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Alshaker, H.; Krell, J.; Frampton, A.E.; Waxman, J.; Blyuss, O.; Zaikin, A.; Winkler, M.; Stebbing, J.; Yague, E.; Pchejetski, D. Leptin induces upregulation of sphingosine kinase 1 in oestrogen receptor-negative breast cancer via Src family kinase-mediated, janus kinase 2-independent pathway. Breast Cancer Res. 2014, 16, 426. [Google Scholar] [CrossRef] [PubMed]
- Tena-Sempere, M.; Manna, P.R.; Zhang, F.P.; Pinilla, L.; Gonzalez, L.C.; Dieguez, C.; Huhtaniemi, I.; Aguilar, E. Molecular mechanisms of leptin action in adult rat testis: Potential targets for leptin-induced inhibition of steroidogenesis and pattern of leptin receptor messenger ribonucleic acid expression. J. Endocrinol. 2001, 170, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Tena-Sempere, M.; Barreiro, M.L. Leptin in male reproduction: The testis paradigm. Mol. Cell. Endocrinol. 2002, 188, 9–13. [Google Scholar] [CrossRef]
- Isidori, A.M.; Strollo, F.; More, M.; Caprio, M.; Aversa, A.; Moretti, C.; Frajese, G.; Riondino, G.; Fabbri, A. Leptin and aging: Correlation with endocrine changes in male and female healthy adult populations of different body weights. J. Clin. Endocrinol. Metab. 2000, 85, 1954–1962. [Google Scholar] [CrossRef] [PubMed]
- Panza, S.; Gelsomino, L.; Malivindi, R.; Rago, V.; Barone, I.; Giordano, C.; Giordano, F.; Leggio, A.; Comande, A.; Liguori, A.; et al. Leptin Receptor as a Potential Target to Inhibit Human Testicular Seminoma Growth. Am. J. Pathol. 2019, 189, 687–698. [Google Scholar] [CrossRef]
- Ni, K.; Steger, K.; Yang, H.; Wang, H.; Hu, K.; Chen, B. Expression and role of leptin under hypoxic conditions in human testis: Organotypic in vitro culture experiment and clinical study on patients with varicocele. J. Urol. 2015, 193, 360–367. [Google Scholar] [CrossRef]
- Ni, F.D.; Hao, S.L.; Yang, W.X. Molecular insights into hormone regulation via signaling pathways in Sertoli cells: With discussion on infertility and testicular tumor. Gene 2020, 753, 144812. [Google Scholar] [CrossRef]
- Gupta, A.; Herman, Y.; Ayers, C.; Beg, M.S.; Lakoski, S.G.; Abdullah, S.M.; Johnson, D.H.; Neeland, I.J. Plasma Leptin Levels and Risk of Incident Cancer: Results from the Dallas Heart Study. PLoS ONE 2016, 11, e0162845. [Google Scholar]
- Roelfsema, F.; Kok, P.; Veldhuis, J.D.; Pijl, H. Altered multihormone synchrony in obese patients with polycystic ovary syndrome. Metabolism 2011, 60, 1227–1233. [Google Scholar] [CrossRef]
- Pehlivanov, B.; Mitkov, M. Serum leptin levels correlate with clinical and biochemical indices of insulin resistance in women with polycystic ovary syndrome. Eur. J. Contracept. Reprod. Health Care 2009, 14, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Panidis, D.; Rousso, D.; Kourtis, A.; Tsimas, V.; Papathanasiou, K.; Makedos, G. Serum leptin levels in normal-weight and overweight women with polycystic ovary syndrome. Clin. Exp. Obstet. Gynecol. 2003, 30, 207–210. [Google Scholar] [PubMed]
- Oral, E.A.; Ruiz, E.; Andewelt, A.; Sebring, N.; Wagner, A.J.; Depaoli, A.M.; Gorden, P. Effect of leptin replacement on pituitary hormone regulation in patients with severe lipodystrophy. J. Clin. Endocrinol. Metab. 2002, 87, 3110–3117. [Google Scholar] [CrossRef]
- Iwasa, T.; Matsuzaki, T.; Tungalagsuvd, A.; Munkhzaya, M.; Kuwahara, A.; Yasui, T.; Irahara, M. LH and testosterone production are more sensitive to the suppressive effects of food deprivation in prenatally undernourished male rats. Int. J. Dev. Neurosci. 2015, 43, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.K.; Alobaidi, A.H.A. Evaluation of the Role of Ghrelin and Leptin as Biochemical Markers in Female with Polycystic Ovarian Syndrome. Anti-Inflamm. Anti-Allergy Agents Med. Chem. 2021, 20, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Gregoraszczuk, E.L.; Wojtowicz, A.K.; Ptak, A.; Nowak, K. In vitro effect of leptin on steroids’ secretion by FSH- and LH-treated porcine small, medium and large preovulatory follicles. Reprod. Biol. 2003, 3, 227–239. [Google Scholar] [PubMed]
- Won, E.T.; Douros, J.D.; Hurt, D.A.; Borski, R.J. Leptin stimulates hepatic growth hormone receptor and insulin-like growth factor gene expression in a teleost fish, the hybrid striped bass. Gen. Comp. Endocrinol. 2016, 229, 84–91. [Google Scholar] [CrossRef] [Green Version]
- Krawczuk-Rybak, M.; Muszynska-Roslan, K.; Kitszel, A.; Sawicka-Zukowska, M.; Wolczynski, S. Relationship between insulin-like growth factors (IGF-I and IGF-II), IGF-binding proteins (IGFBP-3, IGFBP-2), leptin and anthropometric parameters (height, body mass index) during antileukaemic treatment in children. Rocz Akad. Med. Bialymst. 2005, 50, 208–211. [Google Scholar]
- Hernandez, M.I.; Rossel, K.; Pena, V.; Cavada, G.; Avila, A.; Iniguez, G.; Mericq, V. Leptin and IGF-I/II during the first weeks of life determine body composition at 2 years in infants born with very low birth weight. J. Pediatr. Endocrinol. Metab. 2012, 25, 951–955. [Google Scholar] [CrossRef]
- Aiceles, V.; Gombar, F.; Da Fonte Ramos, C. Hormonal and testicular changes in rats submitted to congenital hypothyroidism in early life. Mol. Cell. Endocrinol. 2017, 439, 65–73. [Google Scholar] [CrossRef]
- Grasemann, C.; Wessels, H.T.; Knauer-Fischer, S.; Richter-Unruh, A.; Hauffa, B.P. Increase of serum leptin after short-term pulsatile GnRH administration in children with delayed puberty. Eur. J. Endocrinol. 2004, 150, 691–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atamer, A.; Demir, B.; Bayhan, G.; Atamer, Y.; Ilhan, N.; Akkus, Z. Serum levels of leptin and homocysteine in women with polycystic ovary syndrome and its relationship to endocrine, clinical and metabolic parameters. J. Int. Med. Res. 2008, 36, 96–105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Awadhi, S.A.; Al Khaldi, R.M.; Al Rammah, T.; Kapila, K.; Mojiminiyi, O.A. Associations of adipokines & insulin resistance with sex steroids in patients with breast cancer. Indian J. Med. Res. 2012, 135, 500–505. [Google Scholar] [PubMed]
- Abel, B.S.; Muniyappa, R.; Stratton, P.; Skarulis, M.C.; Gorden, P.; Brown, R.J. Effects of Recombinant Human Leptin (Metreleptin) on Nocturnal Luteinizing Hormone Secretion in Lipodystrophy Patients. Neuroendocrinology 2016, 103, 402–407. [Google Scholar] [CrossRef] [PubMed]
- Belobrajdic, D.P.; Frystyk, J.; Jeyaratnaganthan, N.; Espelund, U.; Flyvbjerg, A.; Clifton, P.M.; Noakes, M. Moderate energy restriction-induced weight loss affects circulating IGF levels independent of dietary composition. Eur. J. Endocrinol. 2010, 162, 1075–1082. [Google Scholar] [CrossRef] [Green Version]
- Zafeiridis, A.; Smilios, I.; Considine, R.V.; Tokmakidis, S.P. Serum leptin responses after acute resistance exercise protocols. J. Appl. Physiol. 2003, 94, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Will, K.; Kuzinski, J.; Kalbe, C.; Palin, M.F.; Rehfeldt, C. Effects of leptin and adiponectin on the growth of porcine myoblasts are associated with changes in p44/42 MAPK signaling. Domest. Anim. Endocrinol. 2013, 45, 196–205. [Google Scholar] [CrossRef]
- Masuda, S.; Tanaka, T.; Masuzaki, H.; Nakao, K.; Taguchi, S. Overexpression of leptin reduces the ratio of glycolytic to oxidative enzymatic activities without changing muscle fiber types in mouse skeletal muscle. Biol. Pharm. Bull. 2014, 37, 169–173. [Google Scholar] [CrossRef] [Green Version]
- Higuchi, T.; Shirai, N.; Saito, M.; Suzuki, H.; Kagawa, Y. Levels of plasma insulin, leptin and adiponectin, and activities of key enzymes in carbohydrate metabolism in skeletal muscle and liver in fasted ICR mice fed dietary n-3 polyunsaturated fatty acids. J. Nutr. Biochem. 2008, 19, 577–586. [Google Scholar] [CrossRef]
- Ceddia, R.B.; William, W.N., Jr.; Curi, R. Comparing effects of leptin and insulin on glucose metabolism in skeletal muscle: Evidence for an effect of leptin on glucose uptake and decarboxylation. Int. J. Obes. Relat. Metab. Disord. 1999, 23, 75–82. [Google Scholar] [CrossRef] [Green Version]
- Ceddia, R.B.; William, W.N., Jr.; Curi, R. Leptin increases glucose transport and utilization in skeletal muscle in vitro. Gen. Pharmacol. 1998, 31, 799–801. [Google Scholar] [CrossRef]
- Berti, L.; Kellerer, M.; Capp, E.; Haring, H.U. Leptin stimulates glucose transport and glycogen synthesis in C2C12 myotubes: Evidence for a P13-kinase mediated effect. Diabetologia 1997, 40, 606–609. [Google Scholar] [CrossRef] [Green Version]
- Sarmiento, U.; Benson, B.; Kaufman, S.; Ross, L.; Qi, M.; Scully, S.; DiPalma, C. Morphologic and molecular changes induced by recombinant human leptin in the white and brown adipose tissues of C57BL/6 mice. Lab. Investig. 1997, 77, 243–256. [Google Scholar]
- Sainz, N.; Rodriguez, A.; Catalan, V.; Becerril, S.; Ramirez, B.; Lancha, A.; Burgos-Ramos, E.; Gomez-Ambrosi, J.; Fruhbeck, G. Leptin reduces the expression and increases the phosphorylation of the negative regulators of GLUT4 traffic TBC1D1 and TBC1D4 in muscle of ob/ob mice. PLoS ONE 2012, 7, e29389. [Google Scholar] [CrossRef] [Green Version]
- Sajan, M.P.; Ivey, R.A.; Lee, M.C.; Farese, R.V. Hepatic insulin resistance in ob/ob mice involves increases in ceramide, aPKC activity, and selective impairment of Akt-dependent FoxO1 phosphorylation. J. Lipid Res. 2015, 56, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Balland, E.; Chen, W.; Dodd, G.T.; Conductier, G.; Coppari, R.; Tiganis, T.; Cowley, M.A. Leptin Signaling in the Arcuate Nucleus Reduces Insulin’s Capacity to Suppress Hepatic Glucose Production in Obese Mice. Cell Rep. 2019, 26, 346–355.e343. [Google Scholar] [CrossRef] [Green Version]
- Lundasen, T.; Liao, W.; Angelin, B.; Rudling, M. Leptin induces the hepatic high density lipoprotein receptor scavenger receptor B type I (SR-BI) but not cholesterol 7alpha-hydroxylase (Cyp7a1) in leptin-deficient (ob/ob) mice. J. Biol. Chem. 2003, 278, 43224–43228. [Google Scholar] [CrossRef] [Green Version]
- Liang, C.P.; Tall, A.R. Transcriptional profiling reveals global defects in energy metabolism, lipoprotein, and bile acid synthesis and transport with reversal by leptin treatment in ob/ob mouse liver. J. Biol. Chem. 2001, 276, 49066–49076. [Google Scholar] [CrossRef] [Green Version]
- Kalaivanisailaja, J.; Manju, V.; Nalini, N. Lipid profile in mice fed a high-fat diet after exogenous leptin administration. Pol. J. Pharmacol. 2003, 55, 763–769. [Google Scholar]
- Tariq, S.; Baig, M.; Tariq, S.; Shahzad, M. Association of serum leptin with bone mineral density in postmenopausal osteoporotic females. Gynecol. Endocrinol. 2017, 33, 287–291. [Google Scholar] [CrossRef]
- Roux, C.; Arabi, A.; Porcher, R.; Garnero, P. Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone 2003, 33, 847–852. [Google Scholar] [CrossRef]
- Petzel, M. Action of leptin on bone and its relationship to menopause. Biomed. Pap. Med. Fac. Palacky Univ. Olomouc 2007, 151, 195–199. [Google Scholar] [CrossRef] [Green Version]
- Kocyigit, H.; Bal, S.; Atay, A.; Koseoglu, M.; Gurgan, A. Plasma leptin values in postmenopausal women with osteoporosis. Bosn. J. Basic Med. Sci. 2013, 13, 192–196. [Google Scholar] [CrossRef] [Green Version]
- Di Carlo, C.; Tommaselli, G.A.; Sammartino, A.; Bifulco, G.; Nasti, A.; Nappi, C. Serum leptin levels and body composition in postmenopausal women: Effects of hormone therapy. Menopause 2004, 11, 466–473. [Google Scholar] [CrossRef]
- Bednarek-Tupikowska, G.; Filus, A.; Kuliczkowska-Plaksej, J.; Tupikowski, K.; Bohdanowicz-Pawlak, A.; Milewicz, A. Serum leptin concentrations in pre- and postmenopausal women on sex hormone therapy. Gynecol. Endocrinol. 2006, 22, 207–212. [Google Scholar] [CrossRef]
- Larcher, F.; Del Rio, M.; Serrano, F.; Segovia, J.C.; Ramirez, A.; Meana, A.; Page, A.; Abad, J.L.; Gonzalez, M.A.; Bueren, J.; et al. A cutaneous gene therapy approach to human leptin deficiencies: Correction of the murine ob/ob phenotype using leptin-targeted keratinocyte grafts. FASEB J. 2001, 15, 1529–1538. [Google Scholar] [CrossRef] [Green Version]
- Polyakova, E.A.; Mikhaylov, E.N.; Galagudza, M.M.; Shlyakhto, E.V. Hyperleptinemia results in systemic inflammation and the exacerbation of ischemia-reperfusion myocardial injury. Heliyon 2021, 7, e08491. [Google Scholar] [CrossRef]
- Leon-Cabrera, S.; Solis-Lozano, L.; Suarez-Alvarez, K.; Gonzalez-Chavez, A.; Bejar, Y.L.; Robles-Diaz, G.; Escobedo, G. Hyperleptinemia is associated with parameters of low-grade systemic inflammation and metabolic dysfunction in obese human beings. Front. Integr. Neurosci. 2013, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Van den Heuvel, J.K.; Eggels, L.; Van Rozen, A.J.; Luijendijk, M.C.; Fliers, E.; Kalsbeek, A.; Adan, R.A.; La Fleur, S.E. Neuropeptide Y and leptin sensitivity is dependent on diet composition. J. Neuroendocrinol. 2014, 26, 377–385. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, X.; Li, J.; Jia, X.; Bai, X.; Zhao, Y.; Cheng, W.; Shu, M.; Zhu, Y.; Jin, S. Leptin gene-targeted editing in ob/ob mouse adipose tissue based on the CRISPR/Cas9 system. J. Genet. Genom. 2021, 48, 134–146. [Google Scholar] [CrossRef]
- Tsigos, C.; Kyrou, I. Raptis SA: Monogenic forms of obesity and diabetes mellitus. J. Pediatr. Endocrinol. Metab. 2002, 15, 241–253. [Google Scholar]
- O’Rahilly, S. Human obesity and insulin resistance: Lessons from experiments of nature. Biochem. Soc. Trans. 2007, 35, 33–36. [Google Scholar] [CrossRef]
- Vega, J.A.; Salazar, G.; Hodgson, M.I.; Cataldo, L.R.; Valladares, M.; Obregon, A.M.; Santos, J.L. Melanocortin-4 Receptor Gene Variation Is Associated with Eating Behavior in Chilean Adults. Ann. Nutr. Metab. 2016, 68, 35–41. [Google Scholar] [CrossRef]
- Tao, Y.X. Mutations in melanocortin-4 receptor and human obesity. Prog. Mol. Biol. Transl. Sci. 2009, 88, 173–204. [Google Scholar]
- Obradovic, M.; Sudar-Milovanovic, E.; Soskic, S.; Essack, M.; Arya, S.; Stewart, A.J.; Gojobori, T.; Isenovic, E.R. Leptin and Obesity: Role and Clinical Implication. Front. Endocrinol 2021, 12, 585887. [Google Scholar] [CrossRef]
- Hyogo, H.; Roy, S.; Paigen, B.; Cohen, D.E. Leptin promotes biliary cholesterol elimination during weight loss in ob/ob mice by regulating the enterohepatic circulation of bile salts. J. Biol. Chem. 2002, 277, 34117–34124. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Misch, M.; Puthanveetil, P. The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. Int. J. Mol. Sci. 2022, 23, 5439. https://doi.org/10.3390/ijms23105439
Misch M, Puthanveetil P. The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. International Journal of Molecular Sciences. 2022; 23(10):5439. https://doi.org/10.3390/ijms23105439
Chicago/Turabian StyleMisch, Monica, and Prasanth Puthanveetil. 2022. "The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems" International Journal of Molecular Sciences 23, no. 10: 5439. https://doi.org/10.3390/ijms23105439
APA StyleMisch, M., & Puthanveetil, P. (2022). The Head-to-Toe Hormone: Leptin as an Extensive Modulator of Physiologic Systems. International Journal of Molecular Sciences, 23(10), 5439. https://doi.org/10.3390/ijms23105439