Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity
Abstract
:1. Introduction
2. Results
2.1. Ribosomal S1 Protein Is a Unique Target: Amyloidogenic Properties of S1 Proteins
2.2. Sequence Analysis of Ribosomal S1 Proteins of Model Organisms, Both Strain-Specific and Species-Specific Features of T. thermophilus, E. coli, P. aeruginosa, and S. aureus
2.3. Antimicrobial Peptides
2.4. Physicochemical Properties of AMPs
2.5. Amyloidogenic Peptides
2.6. Antibacterial Activity of Hybrid Amyloidogenic Peptides
2.7. Potential Limitations and Benefits of Using AAMPs
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
A.A. | Amino acid |
AMP | Antimicrobial peptide |
AAMP | Amyloidogenic antimicrobial peptide |
co-aggregation LPS | Lipopolysaccharide |
NMR | Nuclear magnetic resonance |
MIC | Minimal inhibitory concentration |
APRs | Aggregation-prone regions |
OB-fold | Oligonucleotide-Binding Fold |
FDA | Food and Drug Administration |
MRSA | Methicillin-resistant Staphylococcus aureus |
PG-1 | Protegrin-1 |
BTD-2 | Baboon θ-defensins |
PM-1 | Polyphemusin-1 |
References
- Bednarska, N.G.; van Eldere, J.; Gallardo, R.; Ganesan, A.; Ramakers, M.; Vogel, I.; Baatsen, P.; Staes, A.; Goethals, M.; Hammarström, P.; et al. Protein Aggregation as an Antibiotic Design Strategy: Aggregating Antimicrobial Peptides. Mol. Microbiol. 2016, 99, 849–865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betti, C.; Vanhoutte, I.; Coutuer, S.; De Rycke, R.M.; Mishev, K.; Vuylsteke, M.; Aesaert, S.; Rombaut, D.; Gallardo, R.; De Smet, F.; et al. Sequence-Specific Protein Aggregation Generates Defined Protein Knockdowns in Plants. Plant Physiol. 2016, 2016, 00335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chu, H.; Pazgier, M.; Jung, G.; Nuccio, S.-P.; Castillo, P.A.; de Jong, M.F.; Winter, M.G.; Winter, S.E.; Wehkamp, J.; Shen, B.; et al. Human α-Defensin 6 Promotes Mucosal Innate Immunity Through Self-Assembled Peptide Nanonets. Science 2012, 337, 477–481. [Google Scholar] [CrossRef] [Green Version]
- Martin, L.L.; Kubeil, C.; Piantavigna, S.; Tikkoo, T.; Gray, N.P.; John, T.; Calabrese, A.N.; Liu, Y.; Hong, Y.; Hossain, M.A.; et al. Amyloid Aggregation and Membrane Activity of the Antimicrobial Peptide Uperin 3.5. Pept. Sci. 2018, 110, e24052. [Google Scholar] [CrossRef]
- Romero, D.; Aguilar, C.; Losick, R.; Kolter, R. Amyloid Fibers Provide Structural Integrity to Bacillus Subtilis Biofilms. Proc. Natl. Acad. Sci. USA 2010, 107, 2230–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siemons, M.; Luyten, K.; Khodaparast, L.; Khodaparast, L.; Lecina, J.; Claes, F.; Gallardo, R.; Koole, M.; Ramakers, M.; Schymkowitz, J.; et al. Synthetic Pept-Ins as a Generic Amyloid-Like Aggregation-Based Platform for In Vivo PET Imaging of Intracellular Targets. Bioconjug. Chem. 2021, 32, 2052–2064. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, P.; Condic, M.; Herrmann, M.; Oberstein, T.J.; Scharin-Mehlmann, M.; Gilbert, D.F.; Friedrich, O.; Grömer, T.; Kornhuber, J.; Lang, R.; et al. Amyloidogenic Amyloid-β-Peptide Variants Induce Microbial Agglutination and Exert Antimicrobial Activity. Sci. Rep. 2016, 6, 32228. [Google Scholar] [CrossRef]
- Van Gerven, N.; Van der Verren, S.E.; Reiter, D.M.; Remaut, H. The Role of Functional Amyloids in Bacterial Virulence. J. Mol. Biol. 2018, 430, 3657–3684. [Google Scholar] [CrossRef]
- Zhang, M.; Zhao, J.; Zheng, J. Molecular Understanding of a Potential Functional Link between Antimicrobial and Amyloid Peptides. Soft Matter 2014, 10, 7425–7451. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Baumann, G.; Mueller, P. A Molecular Model of Membrane Excitability. J. Supramol. Struct. 1974, 2, 538–557. [Google Scholar] [CrossRef] [PubMed]
- Matsuzaki, K.; Murase, O.; Fujii, N.; Miyajima, K. An Antimicrobial Peptide, Magainin 2, Induced Rapid Flip-Flop of Phospholipids Coupled with Pore Formation and Peptide Translocation. Biochemistry 1996, 35, 11361–11368. [Google Scholar] [CrossRef] [PubMed]
- Ludtke, S.J.; He, K.; Heller, W.T.; Harroun, T.A.; Yang, L.; Huang, H.W. Membrane Pores Induced by Magainin. Biochemistry 1996, 35, 13723–13728. [Google Scholar] [CrossRef]
- Pouny, Y.; Rapaport, D.; Mor, A.; Nicolas, P.; Shai, Y. Interaction of Antimicrobial Dermaseptin and Its Fluorescently Labeled Analogs with Phospholipid Membranes. Biochemistry 1992, 31, 12416–12423. [Google Scholar] [CrossRef] [PubMed]
- Henzler Wildman, K.A.; Lee, D.-K.; Ramamoorthy, A. Mechanism of Lipid Bilayer Disruption by the Human Antimicrobial Peptide, LL-37. Biochemistry 2003, 42, 6545–6558. [Google Scholar] [CrossRef] [PubMed]
- Halder, A.; Karmakar, S. An Evidence of Pores in Phospholipid Membrane Induced by an Antimicrobial Peptide NK-2. Biophys. Chem. 2022, 282, 106759. [Google Scholar] [CrossRef]
- Fatafta, H.; Kav, B.; Bundschuh, B.F.; Loschwitz, J.; Strodel, B. Disorder-to-Order Transition of the Amyloid-β Peptide upon Lipid Binding. Biophys. Chem. 2022, 280, 106700. [Google Scholar] [CrossRef]
- Sciacca, M.F.M.; Kotler, S.A.; Brender, J.R.; Chen, J.; Lee, D.; Ramamoorthy, A. Two-Step Mechanism of Membrane Disruption by Aβ through Membrane Fragmentation and Pore Formation. Biophys. J. 2012, 103, 702–710. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Tang, Y.; Liu, Y.; Zhang, D.; Zheng, J. Design and Engineering of Amyloid Aggregation-Prone Fragments and Their Antimicrobial Conjugates with Multi-Target Functionality. Adv. Funct. Mater. 2021, 31, 2102978. [Google Scholar] [CrossRef]
- Nguyen, P.H.; Ramamoorthy, A.; Sahoo, B.R.; Zheng, J.; Faller, P.; Straub, J.E.; Dominguez, L.; Shea, J.-E.; Dokholyan, N.V.; De Simone, A.; et al. Amyloid Oligomers: A Joint Experimental/Computational Perspective on Alzheimer’s Disease, Parkinson’s Disease, Type II Diabetes, and Amyotrophic Lateral Sclerosis. Chem. Rev. 2021, 121, 2545–2647. [Google Scholar] [CrossRef]
- Wang, C.K.; King, G.J.; Conibear, A.C.; Ramos, M.C.; Chaousis, S.; Henriques, S.T.; Craik, D.J. Mirror Images of Antimicrobial Peptides Provide Reflections on Their Functions and Amyloidogenic Properties. J. Am. Chem. Soc. 2016, 138, 5706–5713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotler, S.A.; Walsh, P.; Brender, J.R.; Ramamoorthy, A. Differences between Amyloid-β Aggregation in Solution and on the Membrane: Insights into Elucidation of the Mechanistic Details of Alzheimer’s Disease. Chem. Soc. Rev. 2014, 43, 6692–6700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torrent, M.; Pulido, D.; Nogués, M.V.; Boix, E. Exploring New Biological Functions of Amyloids: Bacteria Cell Agglutination Mediated by Host Protein Aggregation. PLoS Pathog. 2012, 8, e1003005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinha, S.; Zheng, L.; Mu, Y.; Ng, W.J.; Bhattacharjya, S. Structure and Interactions of A Host Defense Antimicrobial Peptide Thanatin in Lipopolysaccharide Micelles Reveal Mechanism of Bacterial Cell Agglutination. Sci. Rep. 2017, 7, 17795. [Google Scholar] [CrossRef] [Green Version]
- Park, C.B.; Kim, H.S.; Kim, S.C. Mechanism of Action of the Antimicrobial Peptide Buforin II: Buforin II Kills Microorganisms by Penetrating the Cell Membrane and Inhibiting Cellular Functions. Biochem. Biophys. Res. Commun. 1998, 244, 253–257. [Google Scholar] [CrossRef] [Green Version]
- Jenssen, H.; Hamill, P.; Hancock, R.E.W. Peptide Antimicrobial Agents. Clin. Microbiol. Rev. 2006, 19, 491–511. [Google Scholar] [CrossRef] [Green Version]
- Subbalakshmi, C.; Sitaram, N. Mechanism of Antimicrobial Action of Indolicidin. FEMS Microbiol. Lett. 1998, 160, 91–96. [Google Scholar] [CrossRef]
- Cawood, E.E.; Karamanos, T.K.; Wilson, A.J.; Radford, S.E. Visualizing and Trapping Transient Oligomers in Amyloid Assembly Pathways. Biophys. Chem. 2021, 268, 106505. [Google Scholar] [CrossRef]
- Cremades, N.; Dobson, C.M. The Contribution of Biophysical and Structural Studies of Protein Self-Assembly to the Design of Therapeutic Strategies for Amyloid Diseases. Neurobiol. Dis. 2018, 109, 178–190. [Google Scholar] [CrossRef]
- Lee, H.-K.; Kumar, P.; Fu, Q.; Rosen, K.M.; Querfurth, H.W. The Insulin/Akt Signaling Pathway Is Targeted by Intracellular β-Amyloid. Mol. Biol. Cell 2009, 20, 1533–1544. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Escamilla, A.-M.; Rousseau, F.; Schymkowitz, J.; Serrano, L. Prediction of Sequence-Dependent and Mutational Effects on the Aggregation of Peptides and Proteins. Nat. Biotechnol. 2004, 22, 1302–1306. [Google Scholar] [CrossRef] [PubMed]
- Khodaparast, L.; Khodaparast, L.; Gallardo, R.; Louros, N.N.; Michiels, E.; Ramakrishnan, R.; Ramakers, M.; Claes, F.; Young, L.; Shahrooei, M.; et al. Aggregating Sequences That Occur in Many Proteins Constitute Weak Spots of Bacterial Proteostasis. Nat. Commun. 2018, 9, 866. [Google Scholar] [CrossRef] [PubMed]
- Kurpe, S.; Grishin, S.; Surin, A.; Selivanova, O.; Fadeev, R.; Dzhus, U.; Gorbunova, E.; Mustaeva, L.; Azev, V.; Galzitskaya, O. Antimicrobial and Amyloidogenic Activity of Peptides Synthesized on the Basis of the Ribosomal S1 Protein from Thermus Thermophilus. Int. J. Mol. Sci. 2020, 21, 6382. [Google Scholar] [CrossRef] [PubMed]
- Kurpe, S.R.; Grishin, S.Y.; Glyakina, A.V.; Slizen, M.V.; Panfilov, A.V.; Kochetov, A.P.; Surin, A.K.; Kobyakova, M.I.; Fadeev, R.S.; Galzitskaya, O.V. Antibacterial effects of peptides synthesized based on the sequence of ribosome protein S1. Biomeditsinskaya Khimiya 2021, 67, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Grishin, S.Y.; Domnin, P.A.; Kravchenko, S.V.; Azev, V.N.; Mustaeva, L.G.; Gorbunova, E.Y.; Kobyakova, M.I.; Surin, A.K.; Makarova, M.A.; Kurpe, S.R.; et al. Is It Possible to Create Antimicrobial Peptides Based on the Amyloidogenic Sequence of Ribosomal S1 Protein of P. Aeruginosa? Int. J. Mol. Sci. 2021, 22, 9776. [Google Scholar] [CrossRef]
- Kravchenko, S.V.; Domnin, P.A.; Grishin, S.Y.; Panfilov, A.V.; Azev, V.N.; Mustaeva, L.G.; Gorbunova, E.Y.; Kobyakova, M.I.; Surin, A.K.; Glyakina, A.V.; et al. Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 524. [Google Scholar] [CrossRef]
- Garbuzynskiy, S.O.; Lobanov, M.Y.; Galzitskaya, O.V. FoldAmyloid: A Method of Prediction of Amyloidogenic Regions from Protein Sequence. Bioinformatics 2010, 26, 326–332. [Google Scholar] [CrossRef]
- Walsh, I.; Seno, F.; Tosatto, S.C.E.; Trovato, A. PASTA 2.0: An Improved Server for Protein Aggregation Prediction. Nucleic Acids Res. 2014, 42, W301–W307. [Google Scholar] [CrossRef]
- Maurer-Stroh, S.; Debulpaep, M.; Kuemmerer, N.; Lopez de la Paz, M.; Martins, I.C.; Reumers, J.; Morris, K.L.; Copland, A.; Serpell, L.; Serrano, L.; et al. Exploring the Sequence Determinants of Amyloid Structure Using Position-Specific Scoring Matrices. Nat. Methods 2010, 7, 237–242. [Google Scholar] [CrossRef]
- Conchillo-Solé, O.; de Groot, N.S.; Avilés, F.X.; Vendrell, J.; Daura, X.; Ventura, S. AGGRESCAN: A Server for the Prediction and Evaluation of “Hot Spots” of Aggregation in Polypeptides. BMC Bioinform. 2007, 8, 65. [Google Scholar] [CrossRef] [Green Version]
- Kazantsev, A.; Preisinger, E.; Dranovsky, A.; Goldgaber, D.; Housman, D. Insoluble Detergent-Resistant Aggregates Form between Pathological and Nonpathological Lengths of Polyglutamine in Mammalian Cells. Proc. Natl. Acad. Sci. USA 1999, 96, 11404–11409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krebs, M.R.H.; Morozova-Roche, L.A.; Daniel, K.; Robinson, C.V.; Dobson, C.M. Observation of Sequence Specificity in the Seeding of Protein Amyloid Fibrils. Protein Sci. 2004, 13, 1933–1938. [Google Scholar] [CrossRef] [PubMed]
- Morell, M.; Bravo, R.; Espargaró, A.; Sisquella, X.; Avilés, F.X.; Fernàndez-Busquets, X.; Ventura, S. Inclusion Bodies: Specificity in Their Aggregation Process and Amyloid-like Structure. Biochim. Biophys. Acta BBA Mol. Cell Res. 2008, 1783, 1815–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rousseau, F.; Serrano, L.; Schymkowitz, J.W.H. How Evolutionary Pressure against Protein Aggregation Shaped Chaperone Specificity. J. Mol. Biol. 2006, 355, 1037–1047. [Google Scholar] [CrossRef]
- Goldschmidt, L.; Teng, P.K.; Riek, R.; Eisenberg, D. Identifying the Amylome, Proteins Capable of Forming Amyloid-like Fibrils. Proc. Natl. Acad. Sci. USA 2010, 107, 3487–3492. [Google Scholar] [CrossRef] [Green Version]
- Makin, O.S.; Atkins, E.; Sikorski, P.; Johansson, J.; Serpell, L.C. Molecular Basis for Amyloid Fibril Formation and Stability. Proc. Natl. Acad. Sci. USA 2005, 102, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Sawaya, M.R.; Sambashivan, S.; Nelson, R.; Ivanova, M.I.; Sievers, S.A.; Apostol, M.I.; Thompson, M.J.; Balbirnie, M.; Wiltzius, J.J.W.; McFarlane, H.T.; et al. Atomic Structures of Amyloid Cross-β Spines Reveal Varied Steric Zippers. Nature 2007, 447, 453–457. [Google Scholar] [CrossRef]
- Malekkhaiat Häffner, S.; Malmsten, M. Influence of Self-Assembly on the Performance of Antimicrobial Peptides. Curr. Opin. Colloid Interface Sci. 2018, 38, 56–79. [Google Scholar] [CrossRef]
- McCourt, J.; O’Halloran, D.P.; McCarthy, H.; O’Gara, J.P.; Geoghegan, J.A. Fibronectin-Binding Proteins Are Required for Biofilm Formation by Community-Associated Methicillin-Resistant Staphylococcus aureus Strain LAC. FEMS Microbiol. Lett. 2014, 353, 157–164. [Google Scholar] [CrossRef] [Green Version]
- Corrigan, R.M.; Rigby, D.; Handley, P.; Foster, T.J. The Role of Staphylococcus aureus Surface Protein SasG in Adherence and Biofilm Formation. Microbiology 2007, 153, 2435–2446. [Google Scholar] [CrossRef] [Green Version]
- Cucarella, C.; Solano, C.; Valle, J.; Amorena, B.; Lasa, Í.; Penadés, J.R. Bap, a Staphylococcus aureus Surface Protein Involved in Biofilm Formation. J. Bacteriol. 2001, 183, 2888–2896. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, J.; Cheng, X.; Xu, Z.; Zhang, Y.; Valle, J.; Fan, S.; Zuo, X.; Lasa, I.; Fang, X. Structural Mechanism for Modulation of Functional Amyloid and Biofilm Formation by Staphylococcal Bap Protein Switch. EMBO J. 2021, 40, e107500. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Li, J.; Pan, T.; Wu, R.; Tao, Y.; Lin, H. The Broad-spectrum Antibiofilm Activity of Amyloid-forming Hexapeptides. Microb. Biotechnol. 2021, 14, 656–667. [Google Scholar] [CrossRef] [PubMed]
- Machulin, A.V.; Deryusheva, E.I.; Selivanova, O.M.; Galzitskaya, O.V. The Number of Domains in the Ribosomal Protein S1 as a Hallmark of the Phylogenetic Grouping of Bacteria. PLoS ONE 2019, 14, e0221370. [Google Scholar] [CrossRef] [Green Version]
- Suryanarayana, T.; Subramanian, A.R. Functional Domains of Escherichia Coli Ribosomal Protein S1. J. Mol. Biol. 1979, 127, 41–54. [Google Scholar] [CrossRef]
- Subramanian, A.-R. Structure Qnd Functions of Ribosomal Protein S1. In Progress in Nucleic Acid Research and Molecular Biology; Academic Press: London, New York, 1983; Volume 28, pp. 101–142. ISBN 9780125400282. [Google Scholar]
- McGinness, K.E.; Sauer, R.T. Ribosomal Protein S1 Binds MRNA and TmRNA Similarly but Plays Distinct Roles in Translation of These Molecules. Proc. Natl. Acad. Sci. USA 2004, 101, 13454–13459. [Google Scholar] [CrossRef] [Green Version]
- Boni, I.V.; Artamonova, V.S.; Dreyfus, M. The Last RNA-Binding Repeat of the Escherichia Coli Ribosomal Protein S1 Is Specifically Involved in Autogenous Control. J. Bacteriol. 2000, 182, 5872–5879. [Google Scholar] [CrossRef] [Green Version]
- Grishin, S.Y.; Deryusheva, E.I.; Machulin, A.V.; Selivanova, O.M.; Glyakina, A.V.; Gorbunova, E.Y.; Mustaeva, L.G.; Azev, V.N.; Rekstina, V.V.; Kalebina, T.S.; et al. Amyloidogenic Propensities of Ribosomal S1 Proteins: Bioinformatics Screening and Experimental Checking. Int. J. Mol. Sci. 2020, 21, E5199. [Google Scholar] [CrossRef]
- Sengupta, J.; Agrawal, R.K.; Frank, J. Visualization of Protein S1 within the 30S Ribosomal Subunit and Its Interaction with Messenger RNA. Proc. Natl. Acad. Sci. USA 2001, 98, 11991–11996. [Google Scholar] [CrossRef] [Green Version]
- Wahba, A.J.; Miller, M.J.; Niveleau, A.; Landers, T.A.; Carmichael, G.G.; Weber, K.; Hawley, D.A.; Slobin, L.I. Subunit I of Qβ Replicase and 30 S Ribosomal Protein Sl of Escherichia coli. J. Biol. Chem. 1974, 249, 3314–3316. [Google Scholar] [CrossRef]
- Aseev, L.V.; Levandovskaya, A.A.; Tchufistova, L.S.; Scaptsova, N.V.; Boni, I.V. A New Regulatory Circuit in Ribosomal Protein Operons: S2-Mediated Control of the RpsB-Tsf Expression in Vivo. RNA 2008, 14, 1882–1894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckert, B.; Turk, M.; Czech, A.; Berninghausen, O.; Beckmann, R.; Ignatova, Z.; Plitzko, J.M.; Wilson, D.N. Structure of a Hibernating 100S Ribosome Reveals an Inactive Conformation of the Ribosomal Protein S1. Nat. Microbiol. 2018, 3, 1115–1121. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.T.; Khan, A.; Rehman, A.U.; Wang, Y.; Akhtar, K.; Malik, S.I.; Wei, D.-Q. Structural and Free Energy Landscape of Novel Mutations in Ribosomal Protein S1 (RpsA) Associated with Pyrazinamide Resistance. Sci. Rep. 2019, 9, 7482. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Galzitskaya, O.V. Exploring Amyloidogenicity of Peptides From Ribosomal S1 Protein to Develop Novel AMPs. Front. Mol. Biosci. 2021, 8, 705069. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera? A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grishin, S.Y.; Dzhus, U.F.; Selivanova, O.M.; Balobanov, V.A.; Surin, A.K.; Galzitskaya, O.V. Comparative Analysis of Aggregation of Thermus Thermophilus Ribosomal Protein BS1 and Its Stable Fragment. Biochem. Biokhimiia 2020, 85, 344–354. [Google Scholar] [CrossRef]
- Grishin, S.Y.; Dzhus, U.F.; Glukhov, A.S.; Selivanova, O.M.; Surin, A.K.; Galzitskaya, O.V. Identification of Amyloidogenic Regions in Pseudomonas Aeruginosa Ribosomal S1 Protein. Int. J. Mol. Sci. 2021, 22, 7291. [Google Scholar] [CrossRef]
- Cava, F.; Hidalgo, A.; Berenguer, J. Thermus Thermophilus as Biological Model. Extremophiles 2009, 13, 213–231. [Google Scholar] [CrossRef]
- Flygaard, R.K.; Boegholm, N.; Yusupov, M.; Jenner, L.B. Cryo-EM Structure of the Hibernating Thermus Thermophilus 100S Ribosome Reveals a Protein-Mediated Dimerization Mechanism. Nat. Commun. 2018, 9, 4179. [Google Scholar] [CrossRef]
- Lee, D.S.; Lee, S.-J.; Choe, H.-S. Community-Acquired Urinary Tract Infection by Escherichia coli in the Era of Antibiotic Resistance. BioMed Res. Int. 2018, 2018, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Vihta, K.-D.; Stoesser, N.; Llewelyn, M.J.; Quan, T.P.; Davies, T.; Fawcett, N.J.; Dunn, L.; Jeffery, K.; Butler, C.C.; Hayward, G.; et al. Trends over Time in Escherichia Coli Bloodstream Infections, Urinary Tract Infections, and Antibiotic Susceptibilities in Oxfordshire, UK, 1998–2016: A Study of Electronic Health Records. Lancet Infect. Dis. 2018, 18, 1138–1149. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Lopez, M.; Monterio, R.; Pizza, M.; Desvaux, M.; Rosini, R. Intestinal Pathogenic Escherichia coli: Insights for Vaccine Development. Front. Microbiol. 2018, 9, 440. [Google Scholar] [CrossRef] [PubMed]
- Sarowska, J.; Futoma-Koloch, B.; Jama-Kmiecik, A.; Frej-Madrzak, M.; Ksiazczyk, M.; Bugla-konska, G.; Choroszy-Krol, I. Virulence Factors, Prevalence and Potential Transmission of Extraintestinal Pathogenic Escherichia Coli Isolated from Different Sources: Recent Reports. Gut Pathog. 2019, 11, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, C.; Baral, R.; Bartaula, B.; Shrestha, L.B. Virulence Factors of Uropathogenic Escherichia coli (UPEC) and Correlation with Antimicrobial Resistance. BMC Microbiol. 2019, 19, 204. [Google Scholar] [CrossRef] [Green Version]
- Gellatly, S.L.; Hancock, R.E.W. Pseudomonas aeruginosa: New Insights into Pathogenesis and Host Defenses. Pathog. Dis. 2013, 67, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Slizen, M.V.; Galzitskaya, O.V. Comparative Analysis of Proteomes of a Number of Nosocomial Pathogens by KEGG Modules and KEGG Pathways. Int. J. Mol. Sci. 2020, 21, E7839. [Google Scholar] [CrossRef]
- Kourtis, A.P.; Hatfield, K.; Baggs, J.; Mu, Y.; See, I.; Epson, E.; Nadle, J.; Kainer, M.A.; Dumyati, G.; Petit, S.; et al. Vital signs: Epidemiology and Recent Trends in Methicillin-Resistant and in Methicillin-Susceptible Staphylococcus aureus Bloodstream Infections—United States. MMWR Morb. Mortal. Wkly. Rep. 2019, 68, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Ghanizadeh, A.; Najafizade, M.; Rashki, S.; Marzhoseyni, Z.; Motallebi, M. Genetic Diversity, Antimicrobial Resistance Pattern, and Biofilm Formation in Klebsiella Pneumoniae Isolated from Patients with Coronavirus Disease 2019 (COVID-19) and Ventilator-Associated Pneumonia. BioMed Res. Int. 2021, 2021, 2347872. [Google Scholar] [CrossRef]
- Marazzato, M.; Scribano, D.; Sarshar, M.; Brunetti, F.; Fillo, S.; Fortunato, A.; Lista, F.; Palamara, A.T.; Zagaglia, C.; Ambrosi, C. Genetic Diversity of Antimicrobial Resistance and Key Virulence Features in Two Extensively Drug-Resistant Acinetobacter Baumannii Isolates. Int. J. Environ. Res. Public Health 2022, 19, 2870. [Google Scholar] [CrossRef]
- Mbhele, Z.N.; Shobo, C.O.; Amoako, D.G.; Zishiri, O.T.; Bester, L.A. Occurrence, Antibiotic Resistance, Virulence Factors, and Genetic Diversity of Bacillus Spp. from Public Hospital Environments in South Africa. Microb. Drug Resist. Larchmt. N 2021, 27, 1692–1704. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Li, X.; Wang, Z. APD3: The Antimicrobial Peptide Database as a Tool for Research and Education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moravej, H.; Moravej, Z.; Yazdanparast, M.; Heiat, M.; Mirhosseini, A.; Moosazadeh Moghaddam, M.; Mirnejad, R. Antimicrobial Peptides: Features, Action, and Their Resistance Mechanisms in Bacteria. Microb. Drug Resist. 2018, 24, 747–767. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Lu, T.K. Development and Challenges of Antimicrobial Peptides for Therapeutic Applications. Antibiotics 2020, 9, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moser, S.; Chileveru, H.R.; Tomaras, J.; Nolan, E.M. A Bacterial Mutant Library as a Tool to Study the Attack of a Defensin Peptide. Chembiochem. Eur. J. Chem. Biol. 2014, 15, 2684–2688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wallace, B.A. Gramicidin Channels and Pores. Annu. Rev. Biophys. Biophys. Chem. 1990, 19, 127–157. [Google Scholar] [CrossRef]
- Andrade, F.F.; Silva, D.; Rodrigues, A.; Pina-Vaz, C. Colistin Update on Its Mechanism of Action and Resistance, Present and Future Challenges. Microorganisms 2020, 8, 1716. [Google Scholar] [CrossRef]
- Baltz, R.H. Daptomycin: Mechanisms of Action and Resistance, and Biosynthetic Engineering. Curr. Opin. Chem. Biol. 2009, 13, 144–151. [Google Scholar] [CrossRef]
- Hammes, W.P.; Neuhaus, F.C. On the Mechanism of Action of Vancomycin: Inhibition of Peptidoglycan Synthesis in Gaffkya Homari. Antimicrob. Agents Chemother. 1974, 6, 722–728. [Google Scholar] [CrossRef] [Green Version]
- Zhanel, G.G.; Calic, D.; Schweizer, F.; Zelenitsky, S.; Adam, H.; Lagacé-Wiens, P.R.S.; Rubinstein, E.; Gin, A.S.; Hoban, D.J.; Karlowsky, J.A. New Lipoglycopeptides: A Comparative Review of Dalbavancin, Oritavancin and Telavancin. Drugs 2010, 70, 859–886. [Google Scholar] [CrossRef]
- Parenti, F. Structure and Mechanism of Action of Teicoplanin. J. Hosp. Infect. 1986, 7, 79–83. [Google Scholar] [CrossRef]
- Xiao, J.; Zhang, H.; Niu, L.; Wang, X. Efficient Screening of a Novel Antimicrobial Peptide from Jatropha Curcas by Cell Membrane Affinity Chromatography. J. Agric. Food Chem. 2011, 59, 1145–1151. [Google Scholar] [CrossRef] [PubMed]
- Järvå, M.; Lay, F.T.; Hulett, M.D.; Kvansakul, M. Structure of the Defensin NsD7 in Complex with PIP 2 Reveals That Defensin: Lipid Oligomer Topologies Are Dependent on Lipid Type. FEBS Lett. 2017, 591, 2482–2490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Järvå, M.; Lay, F.T.; Phan, T.K.; Humble, C.; Poon, I.K.H.; Bleackley, M.R.; Anderson, M.A.; Hulett, M.D.; Kvansakul, M. X-ray Structure of a Carpet-like Antimicrobial Defensin–Phospholipid Membrane Disruption Complex. Nat. Commun. 2018, 9, 1962. [Google Scholar] [CrossRef]
- Poon, I.K.; Baxter, A.A.; Lay, F.T.; Mills, G.D.; Adda, C.G.; Payne, J.A.; Phan, T.K.; Ryan, G.F.; White, J.A.; Veneer, P.K.; et al. Phosphoinositide-Mediated Oligomerization of a Defensin Induces Cell Lysis. eLife 2014, 3, e01808. [Google Scholar] [CrossRef]
- Kvansakul, M.; Lay, F.T.; Adda, C.G.; Veneer, P.K.; Baxter, A.A.; Phan, T.K.; Poon, I.K.H.; Hulett, M.D. Binding of Phosphatidic Acid by NsD7 Mediates the Formation of Helical Defensin–Lipid Oligomeric Assemblies and Membrane Permeabilization. Proc. Natl. Acad. Sci. USA 2016, 113, 11202–11207. [Google Scholar] [CrossRef] [Green Version]
- Stambuk, F.; Ojeda, C.; Machado Matos, G.; Rosa, R.D.; Mercado, L.; Schmitt, P. Big Defensin from the Scallop Argopecten Purpuratus ApBD1 Is an Antimicrobial Peptide Which Entraps Bacteria through Nanonets Formation. Fish Shellfish Immunol. 2021, 119, 456–461. [Google Scholar] [CrossRef]
- Polesello, V.; Segat, L.; Crovella, S.; Zupin, L. Candida Infections and Human Defensins. Protein Pept. Lett. 2017, 24, 747–756. [Google Scholar] [CrossRef]
- Krieger, E.; Koraimann, G.; Vriend, G. Increasing the Precision of Comparative Models with YASARA NOVA—A Self-Parameterizing Force Field. Proteins 2002, 47, 393–402. [Google Scholar] [CrossRef]
- Garvey, M.; Meehan, S.; Gras, S.L.; Schirra, H.J.; Craik, D.J.; Van der Weerden, N.L.; Anderson, M.A.; Gerrard, J.A.; Carver, J.A. A Radish Seed Antifungal Peptide with a High Amyloid Fibril-Forming Propensity. Biochim. Biophys. Acta BBA Proteins Proteom. 2013, 1834, 1615–1623. [Google Scholar] [CrossRef]
- Ramos-Martín, F.; Annaval, T.; Buchoux, S.; Sarazin, C.; D’Amelio, N. ADAPTABLE: A Comprehensive Web Platform of Antimicrobial Peptides Tailored to the User’s Research. Life Sci. Alliance 2019, 2, e201900512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boman, H.G. Antibacterial Peptides: Basic Facts and Emerging Concepts. J. Intern. Med. 2003, 254, 197–215. [Google Scholar] [CrossRef] [PubMed]
- Guruprasad, K.; Reddy, B.V.B.; Pandit, M.W. Correlation between Stability of a Protein and Its Dipeptide Composition: A Novel Approach for Predicting in Vivo Stability of a Protein from Its Primary Sequence. Protein Eng. Des. Sel. 1990, 4, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Soscia, S.J.; Kirby, J.E.; Washicosky, K.J.; Tucker, S.M.; Ingelsson, M.; Hyman, B.; Burton, M.A.; Goldstein, L.E.; Duong, S.; Tanzi, R.E.; et al. The Alzheimer’s Disease-Associated Amyloid β-Protein Is an Antimicrobial Peptide. PLoS ONE 2010, 5, e9505. [Google Scholar] [CrossRef]
- Hirakura, Y.; Carreras, I.; Sipe, J.D.; Kagan, B.L. Channel Formation by Serum Amyloid A: A Potential Mechanism for Amyloid Pathogenesis and Host Defense. Amyloid 2002, 9, 13–23. [Google Scholar] [CrossRef]
- De Lorenzo, V. Isolation and Characterization of Microcin E 492 FromKlebsiella Pneumoniae. Arch. Microbiol. 1984, 139, 72–75. [Google Scholar] [CrossRef]
- Mahalka, A.K.; Kinnunen, P.K.J. Binding of Amphipathic α-Helical Antimicrobial Peptides to Lipid Membranes: Lessons from Temporins B and L. Biochim. Biophys. Acta BBA Biomembr. 2009, 1788, 1600–1609. [Google Scholar] [CrossRef] [Green Version]
- Jang, H.; Arce, F.T.; Mustata, M.; Ramachandran, S.; Capone, R.; Nussinov, R.; Lal, R. Antimicrobial Protegrin-1 Forms Amyloid-Like Fibrils with Rapid Kinetics Suggesting a Functional Link. Biophys. J. 2011, 100, 1775–1783. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, G.; Zhou, M. Inhibitory and anti-inflammatory effects of two antimicrobial peptides moronecidin and temporin-1Dra against Propionibacterium acnes in vitro and in vivo. J. Pept. Sci. 2020, 26. [Google Scholar] [CrossRef]
- Mohanram, H.; Bhattacharjya, S. Cysteine Deleted Protegrin-1 (CDP-1): Anti-Bacterial Activity, Outer-Membrane Disruption and Selectivity. Biochim. Biophys. Acta BBA Gen. Subj. 2014, 1840, 3006–3016. [Google Scholar] [CrossRef]
- Kagan, B.L.; Jang, H.; Capone, R.; Teran Arce, F.; Ramachandran, S.; Lal, R.; Nussinov, R. Antimicrobial Properties of Amyloid Peptides. Mol. Pharm. 2012, 9, 708–717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selivanova, O.M.; Glyakina, A.V.; Gorbunova, E.Y.; Mustaeva, L.G.; Suvorina, M.Y.; Grigorashvili, E.I.; Nikulin, A.D.; Dovidchenko, N.V.; Rekstina, V.V.; Kalebina, T.S.; et al. Structural Model of Amyloid Fibrils for Amyloidogenic Peptide from Bgl2p–Glucantransferase of S. Cerevisiae Cell Wall and Its Modifying Analog. New Morphology of Amyloid Fibrils. Biochim. Biophys. Acta BBA Proteins Proteom. 2016, 1864, 1489–1499. [Google Scholar] [CrossRef] [PubMed]
- Selivanova, O.M.; Surin, A.K.; Ryzhykau, Y.L.; Glyakina, A.V.; Suvorina, M.Y.; Kuklin, A.I.; Rogachevsky, V.V.; Galzitskaya, O.V. To Be Fibrils or To Be Nanofilms? Oligomers Are Building Blocks for Fibril and Nanofilm Formation of Fragments of Aβ Peptide. Langmuir ACS J. Surf. Colloids 2018, 34, 2332–2343. [Google Scholar] [CrossRef] [PubMed]
- Xiu Lv, M.; Duan, B.C.; Lu, K.; Wu, Y.J.; Zhao, Y.F. Synthesis, DNA-Binding and Antibacterial Activity of the Cell-Penetrating Peptide HIV-1 Tat (49-57). Indian J. Pharm. Sci. 2017, 79, 893–899. [Google Scholar] [CrossRef]
- Richards, F. Gentamicin Treatment of Staphylococcal Infections. JAMA J. Am. Med. Assoc. 1971, 215, 1297. [Google Scholar] [CrossRef]
- Paduszynska, M.A.; Greber, K.E.; Paduszynski, W.; Sawicki, W.; Kamysz, W. Activity of Temporin A and Short Lipopeptides Combined with Gentamicin against Biofilm Formed by Staphylococcus aureus and Pseudomonas Aeruginosa. Antibiotics 2020, 9, 566. [Google Scholar] [CrossRef]
- Morales, R.; Moreno-Gonzalez, I.; Soto, C. Cross-Seeding of Misfolded Proteins: Implications for Etiology and Pathogenesis of Protein Misfolding Diseases. PLoS Pathog. 2013, 9, e1003537. [Google Scholar] [CrossRef] [Green Version]
- Ono, K.; Takahashi, R.; Ikeda, T.; Yamada, M. Cross-Seeding Effects of Amyloid β-Protein and α-Synuclein: Cross-Seeding Effects of Aβ and AS. J. Neurochem. 2012, 122, 883–890. [Google Scholar] [CrossRef] [Green Version]
- Gsponer, J.; Babu, M.M. Cellular Strategies for Regulating Functional and Nonfunctional Protein Aggregation. Cell Rep. 2012, 2, 1425–1437. [Google Scholar] [CrossRef] [Green Version]
- Pallarès, I.; Ventura, S. Understanding and Predicting Protein Misfolding and Aggregation: Insights from Proteomics. PROTEOMICS 2016, 16, 2570–2581. [Google Scholar] [CrossRef]
- Sanchez de Groot, N.; Torrent, M.; Villar-Piqué, A.; Lang, B.; Ventura, S.; Gsponer, J.; Babu, M.M. Evolutionary Selection for Protein Aggregation. Biochem. Soc. Trans. 2012, 40, 1032–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berchowitz, L.E.; Kabachinski, G.; Walker, M.R.; Carlile, T.M.; Gilbert, W.V.; Schwartz, T.U.; Amon, A. Regulated Formation of an Amyloid-like Translational Repressor Governs Gametogenesis. Cell 2015, 163, 406–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between Hemolytic Activity, Cytotoxicity and Systemic in Vivo Toxicity of Synthetic Antimicrobial Peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef] [PubMed]
Name of AMP | Structure of AMP | Mechanism of Action | Reference |
---|---|---|---|
Gramicidin | Linear, forms a spiral | Pore formation from dimers | [87] |
Colistin | Cyclic lipopeptide | Membrane-lytic peptide | [88] |
Daptomycin | Cyclic lipopeptide | Membrane-lytic peptide | [89] |
Vancomycin | Lipoglycopeptide | Inhibitor of cell wall synthesis | [90] |
Oritavancin | Lipoglycopeptide | Dual-mechanism: membrane-lytic peptide and inhibitor of cell wall synthesis | [91] |
Dalbavancin | Lipoglycopeptide | Inhibitor of cell wall synthesis | |
Telavancin | Lipoglycopeptide | Dual-mechanism: membrane-lytic peptide and inhibitor of cell wall synthesis | |
Teicoplanin | Lipoglycopeptide | Inhibitor of cell wall synthesis | [92] |
Sequence of Hybrid Peptides and Folding Patterns Predicted by AlphaFold 2 | Strain of the Pathogenic Microorganism | MIC for the Tested Hybrid Peptide (µM) |
---|---|---|
Based on the sequence S1 protein from P. aeruginosa | ||
RKKRRQRRRGGGGITDFGIFIGL | MRSA strain ATCC 43,300 (resistant to ampicillin) S. | 12 |
aureus strain 209 (resistant to aztreonam) | >12 | |
P. aeruginosa (strain ATCC 28,753) (resistant to sulfamethoxazole) | 12 | |
RKKRRQRRRGGSarGLHITD-Nle-AWKR | P. aeruginosa (strain ATCC 28,753) (resistant to sulfamethoxazole) | 12 |
P. aeruginosa (strain PA 103) (resistant to levomycetin) | >12 | |
RKKRRQRRRGGSarGITDFGIFIGL | P. aeruginosa (strain ATCC 28,753) (resistant to sulfamethoxazole) | 12 |
P. aeruginosa (strain PA 103) (resistant to levomycetin) | >12 | |
Based on the sequence S1 protein from S. aureus | ||
RKKRRQRRRGGSarGVVVHI-Asi-GGKF | MRSA strain ATCC 43,300 (resistant only to ampicillin) | 3 |
S. aureus strain 209 (resistant to aztreonam) | 3 | |
P. aeruginosa strain ATCC 28,753 (resistant to sulfamethoxazole) | 12 | |
RKKRRQRRRGGSarGLTQFGAFIDI | MRSA strain ATCC 43,300 (resistant only to ampicillin) | 3 |
S. aureus strain 209 (resistant to aztreonam) | 6 | |
P. aeruginosa strain ATCC 28,753 (resistant to sulfamethoxazole) | 12 | |
RKKRRQRRRGGSarGVQGLVHISEI | MRSA strain ATCC 43,300 (resistant only to ampicillin) | 6 |
S. aureus strain 209 (resistant to aztreonam) | 12 | |
P. aeruginosa strain ATCC 28,753 (resistant to sulfamethoxazole) | >12 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galzitskaya, O.V.; Kurpe, S.R.; Panfilov, A.V.; Glyakina, A.V.; Grishin, S.Y.; Kochetov, A.P.; Deryusheva, E.I.; Machulin, A.V.; Kravchenko, S.V.; Domnin, P.A.; et al. Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity. Int. J. Mol. Sci. 2022, 23, 5463. https://doi.org/10.3390/ijms23105463
Galzitskaya OV, Kurpe SR, Panfilov AV, Glyakina AV, Grishin SY, Kochetov AP, Deryusheva EI, Machulin AV, Kravchenko SV, Domnin PA, et al. Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity. International Journal of Molecular Sciences. 2022; 23(10):5463. https://doi.org/10.3390/ijms23105463
Chicago/Turabian StyleGalzitskaya, Oxana V., Stanislav R. Kurpe, Alexander V. Panfilov, Anna V. Glyakina, Sergei Y. Grishin, Alexey P. Kochetov, Evgeniya I. Deryusheva, Andrey V. Machulin, Sergey V. Kravchenko, Pavel A. Domnin, and et al. 2022. "Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity" International Journal of Molecular Sciences 23, no. 10: 5463. https://doi.org/10.3390/ijms23105463
APA StyleGalzitskaya, O. V., Kurpe, S. R., Panfilov, A. V., Glyakina, A. V., Grishin, S. Y., Kochetov, A. P., Deryusheva, E. I., Machulin, A. V., Kravchenko, S. V., Domnin, P. A., Surin, A. K., Azev, V. N., & Ermolaeva, S. A. (2022). Amyloidogenic Peptides: New Class of Antimicrobial Peptides with the Novel Mechanism of Activity. International Journal of Molecular Sciences, 23(10), 5463. https://doi.org/10.3390/ijms23105463