Comprehensive Analysis of Oligo/Polysialylglycoconjugates in Cancer Cell Lines
Abstract
:1. Introduction
2. Results
2.1. Bioinformatic Analysis
2.2. Flow Cytometry and Western Blotting
3. Discussion
4. Materials and Methods
4.1. Materials
4.2. Cell Culture
4.3. Flow Cytometric Analysis
4.4. Western Blotting
4.5. Bioinformatic Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pearce, O.M.; Läubli, H. Sialic acids in cancer biology and immunity. Glycobiology 2016, 26, 111–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, S.; Sato, C.; Yin, J.; Kannagi, R.; Kitajima, K. Hypoxia-enhanced expression of free deaminoneuraminic acid in human cancer cells. Biochem. Biophys. Res. Commun. 2007, 357, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Inoue, S.; Sato, C.; Kitajima, K. Extensive enrichment of N-glycolylneuraminic acid in extracellular sialoglycoproteins abundantly synthesized and secreted by human cancer cells. Glycobiology 2010, 20, 752–762. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Samraj, A.N.; Läubli, H.; Varki, N.; Varki, A. Involvement of a non-human sialic Acid in human cancer. Front. Oncol. 2014, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Go, S.; Sato, C.; Furuhata, K.; Kitajima, K. Oral ingestion of mannose alters the expression level of deaminoneuraminic acid (KDN) in mouse organs. Glycoconj. J. 2006, 23, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Samraj, A.N.; Pearce, O.M.; Läubli, H.; Crittenden, A.N.; Bergfeld, A.K.; Banda, K.; Gregg, C.J.; Bingman, A.E.; Secrest, P.; Diaz, S.L.; et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl. Acad. Sci. USA 2015, 112, 542–547. [Google Scholar] [CrossRef] [Green Version]
- Sato, C.; Kitajima, K. Polysialylation and disease. Mol. Asp. Med. 2021, 79, 100892. [Google Scholar] [CrossRef] [PubMed]
- Falconer, R.A.; Errington, R.J.; Shnyder, S.D.; Smith, P.J.; Patterson, L.H. Polysialyltransferase: A new target in metastatic cancer. Curr. Cancer Drug Targets 2012, 12, 925–939. [Google Scholar] [CrossRef]
- Elkashef, S.M.; Allison, S.J.; Sadiq, M.; Basheer, H.A.; Ribeiro Morais, G.; Loadman, P.M.; Pors, K.; Falconer, R.A. Polysialic acid sustains cancer cell survival and migratory capacity in a hypoxic environment. Sci. Rep. 2016, 6, 33026. [Google Scholar] [CrossRef] [Green Version]
- Hatanaka, R.; Araki, E.; Hane, M.; Go, S.; Wu, D.; Kitajima, K.; Sato, C. The α2,8-sialyltransferase 6 (St8sia6) localizes in the ER and enhances the anchorage-independent cell growth in cancer. Biochem. Biophys. Res. Commun. 2022, 608, 52–58. [Google Scholar] [CrossRef]
- Hamamura, K.; Furukawa, K.; Hayashi, T.; Hattori, T.; Nakano, J.; Nakashima, H.; Okuda, T.; Mizutani, H.; Hattori, H.; Ueda, M.; et al. Ganglioside GD3 promotes cell growth and invasion through p130Cas and paxillin in malignant melanoma cells. Proc. Natl. Acad. Sci. USA 2005, 102, 11041–11046. [Google Scholar] [CrossRef] [Green Version]
- Kasprowicz, A.; Sophie, G.D.; Lagadec, C.; Delannoy, P. Role of GD3 Synthase ST8Sia I in Cancers. Cancers 2022, 14, 1299. [Google Scholar] [CrossRef]
- Visser, E.A.; Moons, S.J.; Timmermans, S.B.P.E.; de Jong, H.; Boltje, T.J.; Büll, C. Sialic acid O-acetylation: From biosynthesis to roles in health and disease. J. Biol. Chem. 2021, 297, 100906. [Google Scholar] [CrossRef]
- Yamada, I.; Shiota, M.; Shinmachi, D.; Ono, T.; Tsuchiya, S.; Hosoda, M.; Fujita, A.; Aoki, N.P.; Watanabe, Y.; Fujita, N.; et al. The GlyCosmos Portal: A unified and comprehensive web resource for the glycosciences. Nat. Methods 2020, 17, 649–650. [Google Scholar] [CrossRef]
- Huang, Y.F.; Aoki, K.; Akase, S.; Ishihara, M.; Liu, Y.S.; Yang, G.; Kizuka, Y.; Mizumoto, S.; Tiemeyer, M.; Gao, X.D.; et al. Global mapping of glycosylation pathways in human-derived cells. Dev. Cell 2021, 56, 1195–1209.e1197. [Google Scholar] [CrossRef]
- Sato, C.; Kitajima, K. Disialic, oligosialic and polysialic acids: Distribution, functions and related disease. J. Biochem. 2013, 154, 115–136. [Google Scholar] [CrossRef] [Green Version]
- Sato, C.; Kitajima, K.; Inoue, S.; Seki, T.; Troy, F.A.; Inoue, Y. Characterization of the antigenic specificity of four different anti-(alpha 2-->8-linked polysialic acid) antibodies using lipid-conjugated oligo/polysialic acids. J. Biol. Chem. 1995, 270, 18923–18928. [Google Scholar] [CrossRef] [Green Version]
- Inoko, E.; Nishiura, Y.; Tanaka, H.; Takahashi, T.; Furukawa, K.; Kitajima, K.; Sato, C. Developmental stage-dependent expression of an alpha2,8-trisialic acid unit on glycoproteins in mouse brain. Glycobiology 2010, 20, 916–928. [Google Scholar] [CrossRef] [Green Version]
- Dubois, C.; Manuguerra, J.C.; Hauttecoeur, B.; Maze, J. Monoclonal antibody A2B5, which detects cell surface antigens, binds to ganglioside GT3 (II3 (NeuAc)3LacCer) and to its 9-O-acetylated derivative. J. Biol. Chem. 1990, 265, 2797–2803. [Google Scholar] [CrossRef]
- Saito, M.; Kitamura, H.; Sugiyama, K. The specificity of monoclonal antibody A2B5 to c-series gangliosides. J. Neurochem. 2001, 78, 64–74. [Google Scholar] [CrossRef] [Green Version]
- Sato, C.; Fukuoka, H.; Ohta, K.; Matsuda, T.; Koshino, R.; Kobayashi, K.; Troy, F.A.; Kitajima, K. Frequent occurrence of pre-existing alpha 2-->8-linked disialic and oligosialic acids with chain lengths up to 7 Sia residues in mammalian brain glycoproteins. Prevalence revealed by highly sensitive chemical methods and anti-di-, oligo-, and poly-Sia antibodies specific for defined chain lengths. J. Biol. Chem. 2000, 275, 15422–15431. [Google Scholar] [PubMed] [Green Version]
- Koga, M.; Gilbert, M.; Li, J.; Koike, S.; Takahashi, M.; Furukawa, K.; Hirata, K.; Yuki, N. Antecedent infections in Fisher syndrome: A common pathogenesis of molecular. mimicry. Neurology 2005, 64, 1605–1611. [Google Scholar] [CrossRef]
- Fukami, Y.; Wong, A.H.; Funakoshi, K.; Safri, A.Y.; Shahrizaila, N.; Yuki, N. Anti-GQ1b antibody syndrome: Anti-ganglioside complex reactivity determines clinical spectrum. Eur. J. Neurol. 2016, 23, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Sato, C.; Kitajima, K.; Inoue, S.; Inoue, Y. Identification of oligo-N-glycolylneuraminic acid residues in mammal-derived glycoproteins by a newly developed immunochemical reagent and biochemical methods. J. Biol. Chem. 1998, 273, 2575–2582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanamori, A.; Inoue, S.; Xulei, Z.; Zuber, C.; Roth, J.; Kitajima, K.; Ye, J.; Troy, F.A.; Inoue, Y. Monoclonal antibody specific for alpha 2-->8-linked oligo deaminated neuraminic acid (KDN) sequences in glycoproteins. Preparation and characterization of a monoclonal antibody and its application in immunohistochemistry. Histochemistry 1994, 101, 333–340. [Google Scholar] [CrossRef] [PubMed]
- Ohta, K.; Sato, C.; Matsuda, T.; Toriyama, M.; Lennarz, W.J.; Kitajima, K. Isolation and characterization of low density detergent-insoluble membrane (LD-DIM) fraction from sea urchin sperm. Biochem. Biophys. Res. Commun. 1999, 258, 616–623. [Google Scholar] [CrossRef]
- Davies, L.R.; Pearce, O.M.; Tessier, M.B.; Assar, S.; Smutova, V.; Pajunen, M.; Sumida, M.; Sato, C.; Kitajima, K.; Finne, J.; et al. Metabolism of vertebrate amino sugars with N-glycolyl groups: Resistance of α2-8-linked N-glycolylneuraminic acid to enzymatic cleavage. J. Biol. Chem. 2012, 287, 28917–28931. [Google Scholar] [CrossRef] [Green Version]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.J.; Dutta, S.; Gajbhiye, R.L.; Jaisankar, P.; Sen, A.K. Synthesis, in vitro evaluation and molecular docking studies of novel amide linked triazolyl glycoconjugates as new inhibitors of α-glucosidase. Bioorg. Chem. 2017, 72, 11–20. [Google Scholar] [CrossRef]
- Du, J.; Meledeo, M.A.; Wang, Z.; Khanna, H.S.; Paruchuri, V.D.; Yarema, K.J. Metabolic glycoengineering: Sialic acid and beyond. Glycobiology 2009, 19, 1382–1401. [Google Scholar] [CrossRef] [Green Version]
- Yamakawa, N.; Sato, C.; Miyata, S.; Maehashi, E.; Toriyama, M.; Sato, N.; Furuhata, K.; Kitajima, K. Development of sensitive chemical and immunochemical methods for detecting sulfated sialic acids and their application to glycoconjugates from sea urchin sperm and eggs. Biochimie 2007, 89, 1396–1408. [Google Scholar] [CrossRef] [PubMed]
- Rollenhagen, M.; Kuckuck, S.; Ulm, C.; Hartmann, M.; Galuska, S.P.; Geyer, R.; Geyer, H.; Mühlenhoff, M. Polysialylation of the synaptic cell adhesion molecule 1 (SynCAM 1) depends exclusively on the polysialyltransferase ST8SiaII in vivo. J. Biol. Chem. 2012, 287, 35170–35180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rollenhagen, M.; Buettner, F.F.; Reismann, M.; Jirmo, A.C.; Grove, M.; Behrens, G.M.; Gerardy-Schahn, R.; Hanisch, F.G.; Mühlenhoff, M. Polysialic acid on neuropilin-2 is exclusively synthesized by the polysialyltransferase ST8SiaIV and attached to mucin-type o-glycans located between the b2 and c domain. J. Biol. Chem. 2013, 288, 22880–22892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galuska, S.P.; Rollenhagen, M.; Kaup, M.; Eggers, K.; Oltmann-Norden, I.; Schiff, M.; Hartmann, M.; Weinhold, B.; Hildebrandt, H.; Geyer, R.; et al. Synaptic cell adhesion molecule SynCAM 1 is a target for polysialylation in postnatal mouse brain. Proc. Natl. Acad. Sci. USA 2010, 107, 10250–10255. [Google Scholar] [CrossRef] [Green Version]
- Mori, A.; Yang, Y.; Takahashi, Y.; Hane, M.; Kitajima, K.; Sato, C. Combinational Analyses with Multiple Methods Reveal the Existence of Several Forms of Polysialylated Neural Cell Adhesion Molecule in Mouse Developing Brains. Int. J. Mol. Sci. 2020, 21, 5892. [Google Scholar] [CrossRef]
- Depmap Portal. Available online: https://depmap.org/portal/ (accessed on 12 May 2022).
- GlycoMaple. Available online: https://beta.glycosmos.org/glycomaple/index (accessed on 12 May 2022).
Cell | Cell Type | Depmap ID a | Note |
---|---|---|---|
MOLT-4 | T-leukemia | ACH-000964 | Variant of MOLT-3 |
HEL | erythroblast leukemia | ACH-000004 | |
IMR-32 | neuroblastoma | ACH-000310 | |
SK-N-SH | neuroblastoma | ACH-000149 | |
U-251MG | astrocytoma | ACH-000232 | |
HepG2 | hepatoma | ACH-000739 | |
A549 | lung adeno carcinoma | ACH-000681 | |
SW-13 | adrenal cortex small-cell carcinoma | ACH-001401 | |
Caki-1 | kidney carcinoma clear cell | ACH-000433 | |
MIA PaCa-2 | pancreatic carcinoma | ACH-000601 | |
LS174T | colon adenocarcinoma | ACH-000957 | Variant of LS180 |
SK-MEL-2 | melanoma | ACH-001190 | |
HeLa | Cervical cancer | ACH-001086 | |
PA-1 | ovarian teratocarcinoma | ACH-001374 | |
MCF-7 | breast cancer | ACH-000019 | |
PC-3 | prostatic cancer | ACH-000090 |
Antibody | Isotype | Sia Component | DP | Linkage | Epitope | Ref. |
---|---|---|---|---|---|---|
12E3 | IgM | Neu5Ac | 5≤ | α2,8 | oligo/polyNeu5Ac | [17] |
A2B5 | IgM | Neu5Ac | 3 | α2,8 | triNeu5Ac, GT3, GQ1c, GP1c, GH1c, OAcGT3 | [18,19,20] |
S2-566 | IgM | Neu5Ac | 2 | α2,8 | diNeu5Ac2-3Gal, GD3, GT1b | [21] |
FS1 | IgG3 | Neu5Ac | 2 | α2,8 | GD3, GQ1b * | [22,23] |
FS3 | IgG3 | Neu5Ac | 2 | α2,8 | GQ1b | [22,23] |
2-4B | IgM | Neu5Gc | 2≤ | α2,8 | oligoNeu5Gc | [24] |
Kdn8kdn | IgM | Kdn | 2–3 | α2,8 | di/triKdn | [17,25] |
3G9 | IgM | Sulfated Neu5Ac | - | - | HO3S-8O-Neu5Ac | [26] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hane, M.; Kitajima, K.; Sato, C. Comprehensive Analysis of Oligo/Polysialylglycoconjugates in Cancer Cell Lines. Int. J. Mol. Sci. 2022, 23, 5569. https://doi.org/10.3390/ijms23105569
Hane M, Kitajima K, Sato C. Comprehensive Analysis of Oligo/Polysialylglycoconjugates in Cancer Cell Lines. International Journal of Molecular Sciences. 2022; 23(10):5569. https://doi.org/10.3390/ijms23105569
Chicago/Turabian StyleHane, Masaya, Ken Kitajima, and Chihiro Sato. 2022. "Comprehensive Analysis of Oligo/Polysialylglycoconjugates in Cancer Cell Lines" International Journal of Molecular Sciences 23, no. 10: 5569. https://doi.org/10.3390/ijms23105569
APA StyleHane, M., Kitajima, K., & Sato, C. (2022). Comprehensive Analysis of Oligo/Polysialylglycoconjugates in Cancer Cell Lines. International Journal of Molecular Sciences, 23(10), 5569. https://doi.org/10.3390/ijms23105569