Design and Synthesis of Novel Raman Reporters for Bioorthogonal SERS Nanoprobes Engineering
Abstract
:1. Introduction
2. Results and Discussions
2.1. Rational Design and Synthesis of Novel RRs Molecules
2.2. SERS Bioorthogonal Nanoprobes Engineering and Characterization
2.3. SERS Bioorthogonal Nanoprobes against Biological Relevant Environments
3. Materials and Methods
3.1. Raw Materials
3.2. Synthesis of Raman Reporters (RR) Molecules
3.3. Gold-Nanoparticles Synthesis
3.4. Preparation of RR@AuNSts Complexes
3.5. Preparation of RR@AuNSts Bioconjugates
3.6. Preparation of the Proof Immunoassay
3.7. Cells Culture
3.8. Characterization Techniques
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moisoiu, V.; Iancu, S.D.; Stefancu, A.; Moisoiu, T.; Pardini, B.; Dragomir, M.P.; Crisan, N.; Avram, L.; Crisan, D.; Andras, I.; et al. SERS Liquid Biopsy: An Emerging Tool for Medical Diagnosis. Colloids Surf. B Biointerfaces 2021, 208, 112064. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, S.; Zhang, F. Optical Multiplexed Bioassays for Improved Biomedical Diagnostics. Angew. Chemie Int. Ed. 2019, 58, 13208–13219. [Google Scholar] [CrossRef] [PubMed]
- Hanash, S. Integrated Global Profiling of Cancer. Nat. Rev. Cancer 2004, 4, 638–644. [Google Scholar] [CrossRef] [PubMed]
- Tanwar, S.; Haldar, K.K.; Sen, T. DNA Origami Directed Au Nanostar Dimers for Single-Molecule Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2017, 139, 17639–17648. [Google Scholar] [CrossRef]
- Qian, X.M.; Nie, S.M. Single-Molecule and Single-Nanoparticle SERS: From Fundamental Mechanisms to Biomedical Applications. Chem. Soc. Rev. 2008, 37, 912–920. [Google Scholar] [CrossRef]
- Dallari, C.; Capitini, C.; Calamai, M.; Trabocchi, A.; Pavone, F.S.; Credi, C. Gold Nanostars Bioconjugation for Selective Targeting and Sers Detection of Biofluids. Nanomaterials 2021, 11, 665. [Google Scholar] [CrossRef]
- Oliveira, M.J.; Cunha, I.; de Almeida, M.P.; Calmeiro, T.; Fortunato, E.; Martins, R.; Pereira, L.; Byrne, H.J.; Pereira, E.; Águas, H.; et al. Reusable and highly sensitive SERS immunoassay utilizing gold nanostars and a cellulose hydrogel-based platform. J. Mater. Chem. B 2021, 9, 7516. [Google Scholar] [CrossRef]
- Arruebo, M.; Valladares, M.; González-Fernández, Á. Antibody-Conjugated Nanoparticles for Biomedical Applications. J. Nanomater. 2009, 2009, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chemie Int. Ed. 2014, 53, 4756–4795. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, L. Chemisorption Assembly of Au Nanorods on Mercaptosilanized Glass Substrate for Label-Free Nanoplasmon Biochip. Anal. Chim. Acta 2013, 796, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Xue, Y.; Li, X.; Li, H.; Zhang, W. Quantifying Thiol-Gold Interactions towards the Efficient Strength Control. Nat. Commun. 2014, 5, 4348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavaleta, C.L.; Smith, B.R.; Walton, I.; Doering, W.; Davis, G.; Shojaei, B.; Natan, M.J.; Gambhir, S.S. Multiplexed Imaging of Surface Enhanced Raman Scattering Nanotags in Living Mice Using Noninvasive Raman Spectroscopy. Proc. Natl. Acad. Sci. USA 2009, 106, 13511–13516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yan, S.; He, Z.; Ding, C.; Zhai, T.; Chen, Y.; Li, H.; Yang, G.; Zhou, X.; Wang, P. Small Unnatural Amino Acid Carried Raman Tag for Molecular Imaging of Genetically Targeted Proteins. J. Phys. Chem. Lett. 2018, 9, 4679–4685. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.; Ray, A.; Andreou, C.; Zhou, Y.; Rakshit, T.; Wlodarczyk, M.; Maeda, M.; Toledo-Crow, R.; Berisha, N.; Yang, J.; et al. DNA-Enabled Rational Design of Fluorescence-Raman Bimodal Nanoprobes for Cancer Imaging and Therapy. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef]
- Maiti, K.K.; Dinish, U.S.; Samanta, A.; Vendrell, M.; Soh, K.S.; Park, S.J.; Olivo, M.; Chang, Y.T. Multiplex Targeted in Vivo Cancer Detection Using Sensitive Near-Infrared SERS Nanotags. Nano Today 2012, 7, 85–93. [Google Scholar] [CrossRef]
- Wang, J.; Liang, D.; Jin, Q.; Feng, J.; Tang, X. Bioorthogonal SERS Nanotags as a Precision Theranostic Platform for in Vivo SERS Imaging and Cancer Photothermal Therapy. Bioconjug. Chem. 2020, 31, 182–193. [Google Scholar] [CrossRef]
- Li, M.; Wu, J.; Ma, M.; Feng, Z.; Mi, Z.; Rong, P.; Liu, D. Alkyne-and Nitrile-Anchored Gold Nanoparticles for Multiplex SERS Imaging of Biomarkers in Cancer Cells and Tissues. Nanotheranostics 2019, 3, 113–119. [Google Scholar] [CrossRef]
- Lin, L.; Tian, X.; Hong, S.; Dai, P.; You, Q.; Wang, R.; Feng, L.; Xie, C.; Tian, Z.Q.; Chen, X. A Bioorthogonal Raman Reporter Strategy for SERS Detection of Glycans on Live Cells. Angew. Chemie Int. Ed. 2013, 52, 7266–7271. [Google Scholar] [CrossRef]
- Hong, S.; Chen, T.; Zhu, Y.; Li, A.; Huang, Y.; Chen, X. Live-Cell Stimulated Raman Scattering Imaging of Alkyne-Tagged Biomolecules. Angew. Chemie Int. Ed. 2014, 53, 5827–5831. [Google Scholar] [CrossRef]
- Wei, L.; Chen, Z.X.; Shi, L.X.; Long, R.; Anzalone, A.V.; Zhang, L.Y.; Hu, F.H.; Yuste, R.; Cornish, V.W.; Min, W. Super-Multiplex Vibrational Imaging. Nature 2017, 176, 465–470. [Google Scholar] [CrossRef]
- Hu, F.; Zeng, C.; Long, R.; Miao, Y.; Wei, L.; Xu, Q.; Min, W. Supermultiplexed Optical Imaging and Barcoding with Engineered Polyynes. Nat. Methods 2018, 15, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.L.; Chen, Z.; Bian, X.; Zhou, L.Y.; Ding, D.; Liang, H.; Zou, Y.X.; Wang, S.S.; Chen, L.; Yang, C.; et al. Alkyne-Functionalized Superstable Graphitic Silver Nanoparticles for Raman Imaging. J. Am. Chem. Soc. 2014, 136, 13558–13561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennedy, D.C.; Hoop, K.A.; Tay, L.L.; Pezacki, J.P. Development of Nanoparticle Probes for Multiplex SERS Imaging of Cell Surface Proteins. Nanoscale 2010, 2, 1413–1416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabris, L. Gold Nanostars in Biology and Medicine: Understanding Physicochemical Properties to Broaden Applicability. J. Phys. Chem. C 2020, 124, 26540–26553. [Google Scholar] [CrossRef]
- Peica, N. Vibrational Spectroscopy and Density Functional Theory Calculations on Biological Molecules. Ph.D. Thesis, Bayer Julius-Maximilians-Universität Würzbg, Wurzburg, Germany, 2006. [Google Scholar]
- Javaid, R.; Sayyadi, N.; Mylvaganam, K.; Koushi Venkatesan, K.; Wang, Y.; Rodge, A. Design and synthesis of boron complexes as new Raman reporter molecules for sensitive SERS nanotags. J. Raman Spectrosc. 2020, 51, 2408–2415. [Google Scholar] [CrossRef]
- Credi, C.; Bibikova, O.; Dallari, C.; Tiribilli, B.; Ratto, F.; Centi, S.; Pini, R.; Artyushenko, V.; Cicchi, R.; Pavone, F.S. Fiber-Cap Biosensors for SERS Analysis of Liquid Samples. J. Mater. Chem. B 2020, 8, 1629–1639. [Google Scholar] [CrossRef]
- Dallari, C.; Credi, C.; Lenci, E.; Trabocchi, A.; Cicchi, R.; Pavone, F.S. Nanostars-Decorated Microfluidic Sensors for Surface Enhanced Raman Scattering Targeting of Biomolecules. J. Phys. Photonics 2020, 2, 2. [Google Scholar] [CrossRef]
- Kong, X.T.; Wang, Z.; Govorov, A.O. Plasmonic Nanostars with Hot Spots for Efficient Generation of Hot Electrons under Solar Illumination. Adv. Opt. Mater. 2017, 5, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Khoury, C.G.; Hwang, H.; Wilson, C.M.; Grant, G.A.; Vo-Dinh, T. Gold Nanostars: Surfactant-Free Synthesis, 3D Modelling, and Two-Photon Photoluminescence Imaging. Nanotechnology 2012, 23, 075102. [Google Scholar] [CrossRef] [Green Version]
- De Puig, H.; Tam, J.O.; Yen, C.-W.; Gehrke, L.; Hamad-Schifferli, K. Extinction Coefficient of Gold Nanostars HHS Public Access. J. Phys. Chem C Nanomater. Interfaces 2015, 30, 17408–17415. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Lui, H.; Mclean, D.I.; Zeng, H. Automated Autofluorescence Background Subtraction Algorithm for Biomedical Raman Spectroscopy. Appl. Spectrosc. 2007, 61, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Dub, P.A.; Batrice, R.J.; Gordon, J.C.; Scott, B.L.; Minko, Y.; Schmidt, J.G.; Williams, R.F. Engineering catalysts for selective ester hydrogenation. Org. Proc. Res. Dev. 2020, 24, 415. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallari, C.; Innocenti, R.; Lenci, E.; Trabocchi, A.; Pavone, F.S.; Credi, C. Design and Synthesis of Novel Raman Reporters for Bioorthogonal SERS Nanoprobes Engineering. Int. J. Mol. Sci. 2022, 23, 5573. https://doi.org/10.3390/ijms23105573
Dallari C, Innocenti R, Lenci E, Trabocchi A, Pavone FS, Credi C. Design and Synthesis of Novel Raman Reporters for Bioorthogonal SERS Nanoprobes Engineering. International Journal of Molecular Sciences. 2022; 23(10):5573. https://doi.org/10.3390/ijms23105573
Chicago/Turabian StyleDallari, Caterina, Riccardo Innocenti, Elena Lenci, Andrea Trabocchi, Francesco Saverio Pavone, and Caterina Credi. 2022. "Design and Synthesis of Novel Raman Reporters for Bioorthogonal SERS Nanoprobes Engineering" International Journal of Molecular Sciences 23, no. 10: 5573. https://doi.org/10.3390/ijms23105573
APA StyleDallari, C., Innocenti, R., Lenci, E., Trabocchi, A., Pavone, F. S., & Credi, C. (2022). Design and Synthesis of Novel Raman Reporters for Bioorthogonal SERS Nanoprobes Engineering. International Journal of Molecular Sciences, 23(10), 5573. https://doi.org/10.3390/ijms23105573