The Involvement of Alarmins in the Pathogenesis of Sjögren’s Syndrome
Abstract
:1. Introduction
2. Nuclear Alarmins in SS
2.1. HMGB1
2.2. IL-1α
2.3. IL-33
3. Cytoplasmic Alarmins in SS
3.1. Heat Shock Proteins
3.2. S100 Proteins
3.3. ATP
3.4. Uric Acid
3.5. Galectin-3
3.6. Calreticulin
3.7. Thymosin Beta 4
3.8. Ribonuclease 7
3.9. Cathelicidin (LL37)
4. Granule-Derived Alarmins in SS
Defensins
5. Plasma Membrane Alarmins in SS
Annexins
6. Extra-Cellular Matrix Alarmins in SS
Decorin
7. Conclusions
Origin | Alarmins | Receptors | Biological Effects |
---|---|---|---|
Nuclear | HMBG-1 | RAGE, TLR-4 | ↑ HMGB-1 in SG [19,20] and serum [20,21,22] ↑ sRAGE [22] Involvement of HMGB1/RAGE axis [22] and HMGB1/TLR4/NF-κB [24] Correlation with anti-SSA [21], ESSDAI [20], extra-glandular involvement [22] |
IL-1α | IL-1Ra | ↑ IL-1α in saliva, tears, conjunctival epithelium, serum, SGEC [27,28,29,35,36] IL-1α in SG induce inflammation and SG dysfunction [26] ↓ IL-1Ra in saliva [31] Imbalance in salivary IL-1/IL-Ra associated with inflammation and SG dysfunction [33] Topical anti-IL-1 ↓ dry eye symptoms and corneal damage [27,39] | |
IL-33 | ST2, sST2 | ↑ IL-33 in blood, SGEC, tears [12,45,53,54] ↑ sST2 in blood [12,45] and correlate with ESSDAI [45] IL-33 stimulate IFN-γ secretion by NK and NK T cells [12] IFN-γ ↑ IL-33 production by SGEC [45] IL-33 and ST2 correlate with ILD [47] | |
Granule-derived | Defensins (α-defensin, β-defensin) | - | α-defensin-1 ↑ in tears, saliva and SG [177,178,179] α-defensin-1 ↑ type I IFN response genes [180] β-defensin-2-↑ in conjunctival epithelial cells, saliva [177,183] β-defensins 1 and 2 ↓ in SG [184] |
Cytoplasmic | HSPs (HSP47, 60, 72 and 90) | TLR-2 and TLR-4 | ↑ HSP60 expression SG [65] ↑ HSP47 in blood [73] ↑ HSP72 and HSP90 in plasma of pSS with high fatigue scores [74] |
S100 proteins (S100A8/A9, S100B) | TLR-4, RAGE | ↑ S100 A8/A9 in serum, SG, saliva, feces [87,88,89,90,92,93,94]. S100A8/A9 correlate with SG FS and MALT lymphoma [89,95] ↑ S100B in CSF [97,98,99] ↑ TLR-4 and RAGE in SGEC [102,103] | |
ATP | P2X7R, P2Y2R | ↑ P2X7R in SG, PBMC [109,110,113] ATP/P2X7R ↑ apoptosis of SGEC, NLRP3, IL-1β and IL-18 [111,112] P2X7R correlate with SG FS [109,110] and with MALT lymphoma [110] ↑ P2Y2R in SG [118,119] | |
Uric acid | - | ↑ in saliva and serum [130] ↓ in saliva [131] | |
Gal-3 | - | ↑ in serum [142] ↑ Th17 and IL-17 [142] | |
Calreticulin | - | Bind Ro peptide and ↑ autoimmune response against Ro60 [144,145,146,147] | |
Tβ4 | - | ↑ in saliva [154] | |
RNase 7 | ↑ SG [162] | ||
LL37 | TLR-9 | ↑ SG [166] stabilize apoptotic DNA and activate maturation of B-cells via TLR-9 [166] | |
Plasma membrane | Annexins (annexin A2) | - | ↑ in SG and saliva [186,187] Correlation with MALT [186] |
ECM | Decorins | TLR-2 and TLR-4 | Signal through TLR-4 [196]. Induction of TNF-α in splenic tissue [196] |
Funding
Conflicts of Interest
Abbreviations
ADP | adenosine diphosphate |
APC | Antigen presenting cells |
AQP5 | aquaporin 5 |
ATP | adenosine triphosphate |
BAFF | B cell activating factor |
cCAP18 | cationic antimicrobial peptide 18 |
CCL2 | chemokine (C-C motif) ligand 2 |
CD | cluster of differentiation |
CRP | C-reactive protein |
CSF | cerebrospinal fluid |
CXCL8 | C-X-C motif chemokine type 8 |
DAMP | damage associated molecular pattern |
DC | dendritic cells |
DCN | decorin |
DMARDs | disease-modifying antirheumatic drugs |
DNA | deoxyribonucleic acid |
dsRNA | double-stranded ribonucleic acid |
ECM | extra-cellular membrane |
EGF | epidermal growth factor |
EMSA | electrophoretic mobility shift assay |
ESSDAI | EULAR Sjögren’s syndrome disease activity index |
FMS | fibromyalgia syndrome |
FS | focus score |
Gal-3 | galectin-3 |
GC | germinal centers |
HMGB1 | high mobility group box 1 |
HSP | Heat shock proteins |
IFN | interferon |
Ig | immunoglobulin |
IL | interleukin |
IL-1R1 | IL-1 receptor 1 |
IL-1Ra | IL-1 receptor antagonist |
ILD | interstitial lung disease |
LL37 | cathelicidin |
MAPK | mitogen-activated protein kinase |
MALT | mucosa-associated lymphoid tissue |
MC | macrophage |
MCTD | mixed connective tissue disease |
MHC | major histocompatibility complex |
MIP | macrophage inflammatory protein |
MMP | matrix metalloproteinase |
MRP | myeloid related protein |
MSU | monosodium urate |
NF-κB | nuclear factor-kappa B |
NK | natural killer |
NLRP3 | Nod-like receptor protein 3 |
P2X7R | P2X7 receptor |
P2Y2R | P2Y2 receptor |
PAMP | pathogen-associated molecular patterns |
PBMC | peripheral blood mononuclear cell |
pDC | plasmacytoid dendritic cells |
PDCD4 | programmed cell death 4 |
PRR | pattern recognition receptors |
pSS | primary Sjögren’s syndrome |
RA | rheumatoid arthritis |
RAGE | receptors for advanced glycation end products |
RNase 7 | ribonuclease 7 |
SG | salivary glands |
SGEC | salivary gland epithelial cells |
SLE | systemic lupus erythematosus |
sRAGE | soluble RAGE |
SS | Sjögren’s syndrome |
SSc | systemic sclerosis |
sSS | secondary Sjögren’s syndrome |
sST2 | soluble ST2 |
ST2 | suppression of tumorigenicity 2 |
Tβ4 | thymosin beta 4 |
Th1 | type 1 helper cells |
Th17 | type 17 helper cells |
TLR | toll-like receptors |
TNF | tumor necrosis factor |
UA | uric acid |
UTP | uridine triphosphate |
References
- Mariette, X.; Criswell, L.A. Primary Sjögren’s Syndrome. N. Engl. J. Med. 2018, 378, 931–939. [Google Scholar] [CrossRef] [PubMed]
- Fox, R.I.; Kang, H.I. Pathogenesis of Sjögren’s syndrome. Rheum. Dis. Clin. N. Am. 1992, 18, 517–538. [Google Scholar] [CrossRef]
- Fox, R.I.; Michelson, P. Approaches to the treatment of Sjögren’s syndrome. J. Rheumatol. Suppl. 2000, 61, 15–21. [Google Scholar] [PubMed]
- Parisis, D.; Chivasso, C.; Perret, J.; Soyfoo, M.S.; Delporte, C. Current State of Knowledge on Primary Sjögren’s Syndrome, an Autoimmune Exocrinopathy. J. Clin. Med. 2020, 9, 2299. [Google Scholar] [CrossRef]
- Goules, A.V.; Tzioufas, A.G. Lymphomagenesis in Sjögren’s syndrome: Predictive biomarkers towards precision medicine. Autoimmun. Rev. 2019, 18, 137–143. [Google Scholar] [CrossRef]
- Kiripolsky, J.; McCabe, L.G.; Kramer, J.M. Innate immunity in Sjögren’s syndrome. Clin. Immunol. 2017, 182, 4–13. [Google Scholar] [CrossRef]
- Deshmukh, U.S.; Nandula, S.R.; Thimmalapura, P.R.; Scindia, Y.M.; Bagavant, H. Activation of innate immune responses through Toll-like receptor 3 causes a rapid loss of salivary gland function. J. Oral Pathol. Med. 2009, 38, 42–47. [Google Scholar] [CrossRef]
- Kawakami, A.; Nakashima, K.; Tamai, M.; Nakamura, H.; Iwanaga, N.; Fujikawa, K.; Aramaki, T.; Arima, K.; Iwamoto, N.; Ichinose, K.; et al. Toll-like receptor in salivary glands from patients with Sjögren’s syndrome: Functional analysis by human salivary gland cell line. J. Rheumatol. 2007, 34, 1019–1026. [Google Scholar]
- Spachidou, M.P.; Bourazopoulou, E.; Maratheftis, C.I.; Kapsogeorgou, E.K.; Moutsopoulos, H.M.; Tzioufas, A.G.; Manoussakis, M.N. Expression of functional Toll-like receptors by salivary gland epithelial cells: Increased mRNA expression in cells derived from patients with primary Sjögren’s syndrome. Clin. Exp. Immunol. 2007, 147, 497–503. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Z.; Yu, C.; Yang, C. Expression of Toll-like receptors 7, 8, and 9 in primary Sjögren’s syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010, 109, 844–850. [Google Scholar] [CrossRef]
- Brito-Zeron, P.; Baldini, C.; Bootsma, H.; Bowman, S.J.; Jonsson, R.; Mariette, X.; Sivils, K.; Theander, E.; Tzioufas, A.; Ramos-Casals, M. Sjögren syndrome. Nat. Rev. Dis. Primers 2016, 2, 16047. [Google Scholar] [CrossRef]
- Soyfoo, M.S.; Nicaise, C. Pathophysiologic role of Interleukin-33/ST2 in Sjögren’s syndrome. Autoimmun. Rev. 2021, 20, 102756. [Google Scholar] [CrossRef]
- Bianchi, M.E. DAMPs, PAMPs and alarmins: All we need to know about danger. J. Leukoc. Biol. 2007, 81, 1–5. [Google Scholar] [CrossRef]
- Oppenheim, J.J.; Yang, D. Alarmins: Chemotactic activators of immune responses. Curr. Opin. Immunol. 2005, 17, 359–365. [Google Scholar] [CrossRef]
- Yang, H.Z.; Oppenheim, J.J. Alarmins and immunity. Immunol. Rev. 2017, 280, 41–56. [Google Scholar] [CrossRef]
- Harris, H.E.; Raucci, A. Alarmin(g) news about danger: Workshop on innate danger signals and HMGB1. EMBO Rep. 2006, 7, 774–778. [Google Scholar] [CrossRef] [Green Version]
- Harris, H.E.; Andersson, U.; Pisetsky, D.S. HMGB1: A multifunctional alarmin driving autoimmune and inflammatory disease. Nat. Rev. Rheumatol. 2012, 8, 195–202. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, Q.; Li, N.; Wu, T.; Liu, S.; Liu, S. Association of serum/plasma high mobility group box 1 with autoimmune diseases: A systematic review and meta-analysis. Medicine 2018, 97, e11531. [Google Scholar] [CrossRef]
- Ek, M.; Popovic, K.; Harris, H.E.; Naucler, C.S.; Wahren-Herlenius, M. Increased extracellular levels of the novel proinflammatory cytokine high mobility group box chromosomal protein 1 in minor salivary glands of patients with Sjögren’s syndrome. Arthritis Rheum. 2006, 54, 2289–2294. [Google Scholar] [CrossRef]
- Dupire, G.; Nicaise, C.; Gangji, V.; Soyfoo, M.S. Increased serum levels of high-mobility group box 1 (HMGB1) in primary Sjögren’s syndrome. Scand. J. Rheumatol. 2012, 41, 120–123. [Google Scholar] [CrossRef]
- Urbonaviciute, V.; Fürnrohr, B.G.; Meister, S.; Munoz, L.; Heyder, P.; De Marchis, F.; Bianchi, M.E.; Kirschning, C.; Wagner, H.; Manfredi, A.A.; et al. Induction of inflammatory and immune responses by HMGB1–nucleosome complexes: Implications for the pathogenesis of SLE. J. Exp. Med. 2008, 205, 3007–3018. [Google Scholar] [CrossRef] [Green Version]
- Kanne, A.M.; Jülich, M.; Mahmutovic, A.; Tröster, I.; Sehnert, B.; Urbonaviciute, V.; Voll, R.E.; Kollert, F. Association of High Mobility Group Box Chromosomal Protein 1 and Receptor for Advanced Glycation End Products Serum Concentrations With Extraglandular Involvement and Disease Activity in Sjögren’s Syndrome. Arthritis Care Res. 2018, 70, 944–948. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Kim, D.H.; Jeong, H.J.; Ryu, J.S.; Kim, Y.J.; Oh, J.Y.; Kim, M.K.; Wee, W.R. Effects of subconjunctival administration of anti-high mobility group box 1 on dry eye in a mouse model of Sjgren’s syndrome. PLoS ONE 2017, 12, e0183678. [Google Scholar]
- Wang, D.; Zhou, M.; Wang, Y.; Sun, S. Suppression of high-mobility group box 1 ameliorates xerostomia in a Sjögren syndrome-triggered mouse model. Can. J. Physiol. Pharmacol. 2020, 98, 351–356. [Google Scholar] [CrossRef]
- Dinarello, C.A. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol. Rev. 2017, 281, 8–27. [Google Scholar] [CrossRef]
- Cavalli, G.; Colafrancesco, S.; Emmi, G.; Imazio, M.; Lopalco, G.; Maggio, M.C.; Sota, J.; Dinarello, C.A. Interleukin 1α: A comprehensive review on the role of IL-1α in the pathogenesis and treatment of autoimmune and inflammatory diseases. Autoimmun. Rev. 2021, 20, 102763. [Google Scholar] [CrossRef]
- Lopalco, G.; Cantarini, L.; Vitale, A.; Iannone, F.; Anelli, M.G.; Andreozzi, L.; Lapadula, G.; Galeazzi, M.; Rigante, D. Interleukin-1 as a Common Denominator from Autoinflammatory to Autoimmune Disorders: Premises, Perils, and Perspectives. Mediat. Inflamm. 2015, 2015, 194864. [Google Scholar] [CrossRef] [Green Version]
- Ajjan, R.A.; McIntosh, R.S.; Waterman, E.A.; Watson, P.F.; Franklin, C.D.; Yeoman, C.M.; Weetman, A.P. Analysis of the T-cell receptor Valpha repertoire and cytokine gene expression in Sjögren’s syndrome. Br. J. Rheumatol. 1998, 37, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Fox, R.I.; Kang, H.I.; Ando, D.; Abrams, J.; Pisa, E. Cytokine mRNA expression in salivary gland biopsies of Sjögren’s syndrome. J. Immunol. 1994, 152, 5532–5539. [Google Scholar]
- Dietrich, J.; Schlegel, C.; Roth, M.; Witt, J.; Geerling, G.; Mertsch, S.; Schrader, S. Comparative analysis on the dynamic of lacrimal gland damage and regeneration after Interleukin-1α or duct ligation induced dry eye disease in mice. Exp. Eye Res. 2018, 172, 66–77. [Google Scholar] [CrossRef]
- Matsumura, R.; Umemiya, K.; Kagami, M.; Tomioka, H.; Tanabe, E.; Sugiyama, T.; Sueishi, M.; Kayagaki, N.; Yagita, H.; Okumura, K. Expression of TNF-related apoptosis inducing ligand (TRAIL) on infiltrating cells and of TRAIL receptors on salivary glands in patients with Sjögren’s syndrome. Clin. Exp. Rheumatol. 2002, 20, 791–798. [Google Scholar] [PubMed]
- Yamada, A.; Arakaki, R.; Kudo, Y.; Ishimaru, N. Targeting IL-1 in Sjögren’s syndrome. Expert Opin. Ther. Targets 2013, 17, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Dubost, J.J.; Perrier, S.; Afane, M.; Viallard, J.L.; Roux-Lombard, P.; Baudet-Pommel, M.; Begue, C.; Kemeny, J.L.; Sauvezie, B. IL-1 receptor antagonist in saliva; characterization in normal saliva and reduced concentration in Sjögren’s syndrome (SS). Clin. Exp. Immunol. 1996, 106, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Pflugfelder, S.C.; Jones, D.; Ji, Z.; Afonso, A.; Monroy, D. Altered cytokine balance in the tear fluid and conjunctiva of patients with Sjögren’s syndrome keratoconjunctivitis sicca. Curr. Eye Res. 1999, 19, 201–211. [Google Scholar] [CrossRef]
- Jones, D.T.; Monroy, D.; Ji, Z.; Pflugfelder, S.C. Alterations of Ocular Surface Gene Expression in Sjögren’s Syndrome. Adv. Exp. Med. Biol. 1998, 438, 533–536. [Google Scholar] [CrossRef]
- Solomon, A.; Dursun, D.; Liu, Z.; Xie, Y.; Macri, A.; Pflugfelder, S.C. Pro- and anti-inflammatory forms of interleukin-1 in the tear fluid and conjunctiva of patients with dry-eye disease. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2283–2292. [Google Scholar]
- Chen, Y.T.; Lazarev, S.; Bahrami, A.F.; Noble, L.B.; Chen, F.Y.; Zhou, D.; Gallup, M.; Yadav, M.; McNamara, N.A. Interleukin-1 receptor mediates the interplay between CD4+ T cells and ocular resident cells to promote keratinizing squamous metaplasia in Sjögren’s syndrome. Lab. Investig. 2012, 92, 556–570. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.T.; Nikulina, K.; Lazarev, S.; Bahrami, A.F.; Noble, L.B.; Gallup, M.; McNamara, N.A. Interleukin-1 as a phenotypic immunomodulator in keratinizing squamous metaplasia of the ocular surface in Sjögren’s syndrome. Am. J. Pathol. 2010, 177, 1333–1343. [Google Scholar] [CrossRef]
- Amparo, F.; Dastjerdi, M.H.; Okanobo, A.; Ferrari, G.; Smaga, L.; Hamrah, P.; Jurkunas, U.; Schaumberg, D.A.; Dana, R. Topical interleukin 1 receptor antagonist for treatment of dry eye disease: A randomized clinical trial. JAMA Ophthalmol. 2013, 131, 715–723. [Google Scholar] [CrossRef] [Green Version]
- Hurst, S.; Collins, S.M. Interleukin-1 beta modulation of norepinephrine release from rat myenteric nerves. Am. J. Physiol. Liver Physiol. 1993, 264, G30–G35. [Google Scholar] [CrossRef]
- Murray, C.A.; McGahon, B.; McBennett, S.; Lynch, M.A. Interleukin-1 beta inhibits glutamate release in hippocampus of young, but not aged, rats. Neurobiol. Aging 1997, 18, 343–348. [Google Scholar] [CrossRef]
- Zoukhri, D.; Hodges, R.R.; Byon, D.; Kublin, C.L. Role of proinflammatory cytokines in the impaired lacrimation associated with autoimmune xerophthalmia. Investig. Opthalmol. Vis. Sci. 2002, 43, 1429–1436. [Google Scholar]
- Collins, K.S.; Balasubramaniam, K.; Viswanathan, G.; Natasari, A.; Tarn, J.; Lendrem, D.; Mitchell, S.; Zaman, A.; Ng, W.F. Assessment of blood clot formation and platelet receptor function ex vivo in patients with primary Sjögren’s syndrome. BMJ Open 2013, 3, e002739. [Google Scholar] [CrossRef]
- Travers, J.; Rochman, M.; Miracle, C.E.; Habel, J.E.; Brusilovsky, M.; Caldwell, J.M.; Rymer, J.K.; Rothenberg, M.E. Chromatin regulates IL-33 release and extracellular cytokine activity. Nat. Commun. 2018, 9, 3244. [Google Scholar] [CrossRef]
- Jung, S.M.; Lee, J.; Baek, S.Y.; Lee, J.H.; Lee, J.; Park, K.S.; Park, S.H.; Kim, H.Y.; Kwok, S.K. The Interleukin 33/ST2 axis in patients with primary Sjögren syndrome: Expression in serum and salivary glands, and the clinical association. J. Rheumatol. 2015, 42, 264–271. [Google Scholar] [CrossRef]
- Yasuda, K.; Muto, T.; Kawagoe, T.; Matsumoto, M.; Sasaki, Y.; Matsushita, K.; Taki, Y.; Futatsugi-Yumikura, S.; Tsutsui, H.; Ishii, K.J.; et al. Contribution of IL-33–activated type II innate lymphoid cells to pulmonary eosinophilia in intestinal nematode-infected mice. Proc. Natl. Acad. Sci. USA 2012, 109, 3451–3456. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Yao, L.; Yuan, L.; Xia, L.; Shen, H.; Lu, J. Potential contribution of interleukin-33 to the development of interstitial lung disease in patients with primary Sjögren’s Syndrome. Cytokine 2013, 64, 22–24. [Google Scholar] [CrossRef]
- Matsuyama, Y.; Okazaki, H.; Tamemoto, H.; Kimura, H.; Kamata, Y.; Nagatani, K.; Nagashima, T.; Hayakawa, M.; Iwamoto, M.; Yoshio, T.; et al. Increased Levels of Interleukin 33 in Sera and Synovial Fluid from Patients with Active Rheumatoid Arthritis. J. Rheumatol. 2010, 37, 18–25. [Google Scholar] [CrossRef]
- Mok, M.Y.; Huang, F.P.; Ip, W.K.; Lo, Y.; Wong, F.Y.; Chan, E.Y.T.; Lam, K.; Xu, D. Serum levels of IL-33 and soluble ST2 and their association with disease activity in systemic lupus erythematosus. Rheumatology 2010, 49, 520–527. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S.; Hayakawa, M.; Ozaki, H.; Takezako, N.; Obata, H.; Ibaraki, N.; Tsuru, T.; Tominaga, S.-I.; Yanagisawa, K. ST2 gene expression is proliferation-dependent and its ligand, IL-33, induces inflammatory reaction in endothelial cells. Mol. Cell. Biochem. 2010, 335, 75–81. [Google Scholar] [CrossRef]
- Ishikawa, S.; Shimizu, M.; Ueno, K.; Sugimoto, N.; Yachie, A. Soluble ST2 as a marker of disease activity in systemic juvenile idiopathic arthritis. Cytokine 2013, 62, 272–277. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, S.; Duan, Z.; Zeng, Z.; Pan, F. Serum levels of IL-33 and its receptor ST2 are elevated in patients with ankylosing spondylitis. Scand. J. Rheumatol. 2013, 42, 226–231. [Google Scholar] [CrossRef]
- Luo, G.; Xin, Y.; Qin, D.; Yan, A.; Zhou, Z.; Liu, Z. Correlation of interleukin-33 with Th cytokines and clinical severity of dry eye disease. Indian J. Ophthalmol. 2018, 66, 39–43. [Google Scholar] [CrossRef]
- Liu, O.; Xu, J.; Wang, F.; Jin, W.; Zanvit, P.; Wang, D.; Goldberg, N.; Cain, A.; Guo, N.; Han, Y.; et al. Adipose-mesenchymal stromal cells suppress experimental Sjögren syndrome by IL-33-driven expansion of ST2+ regulatory T cells. iScience 2021, 24, 102446. [Google Scholar] [CrossRef]
- Schmitt, E.; Gehrmann, M.; Brunet, M.; Multhoff, G.; Garrido, C. Intracellular and extracellular functions of heat shock proteins: Repercussions in cancer therapy. J. Leukoc. Biol. 2007, 81, 15–27. [Google Scholar] [CrossRef]
- Van Eden, W.; Van der Zee, R.; Prakken, B. Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat. Rev. Immunol. 2005, 5, 318–330. [Google Scholar] [CrossRef] [Green Version]
- Asea, A.; Rehli, M.; Kabingu, E.; Boch, J.A.; Baré, O.; Auron, P.E.; Stevenson, M.A.; Calderwood, S.K. Novel signal transduction pathway utilized by extracellular HSP70: Role of toll-like receptor (TLR) 2 and TLR4. J. Biol. Chem. 2002, 277, 15028–15034. [Google Scholar] [CrossRef] [Green Version]
- Vabulas, R.M.; Wagner, H.; Schild, H. Heat Shock Proteins as Ligands of Toll-Like Receptors. Tuberculosis 2002, 270, 169–184. [Google Scholar] [CrossRef]
- Quintana, F.J.; Cohen, I.R. Heat Shock Proteins as Endogenous Adjuvants in Sterile and Septic Inflammation. J. Immunol. 2005, 175, 2777–2782. [Google Scholar] [CrossRef] [Green Version]
- Vabulas, R.M.; Ahmad-Nejad, P.; Da Costa, C.; Miethke, T.; Kirschning, C.J.; Häcker, H.; Wagner, H. Endocytosed HSP60s Use Toll-like Receptor 2 (TLR2) and TLR4 to Activate the Toll/Interleukin-1 Receptor Signaling Pathway in Innate Immune Cells. J. Biol. Chem. 2001, 276, 31332–31339. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.-Y.; Tang, J.; Zheng, P.; Liu, Y. CD24 and Siglec-10 Selectively Repress Tissue Damage–Induced Immune Responses. Science 2009, 323, 1722–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basu, S.; Binder, R.J.; Ramalingam, T.; Srivastava, P.K. CD91 Is a Common Receptor for Heat Shock Proteins gp96, hsp90, hsp70, and Calreticulin. Immunity 2001, 14, 303–313. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Menoret, A.; Srivastava, P. Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr. Opin. Immunol. 2002, 14, 45–51. [Google Scholar] [CrossRef]
- Jarjour, W.N.; Jeffries, B.D.; Davis, J.S.; Welch, W.J.; Mimura, T.; Winfield, J.B. Autoantibodies to Human Stress Proteins. A Survey of Various Rheumatic and Other Inflammatory Diseases. Arthritis Care Res. 1991, 34, 1133–1138. [Google Scholar] [CrossRef]
- De Jong, H.; De Jager, W.; Wenting-van Wijk, M.; Prakken, B.J.; Kruize, A.A.; Bijlsma, J.W.; Lafeber, F.P.J.G.; Van Roon, J.A. Increased immune reactivity towards human hsp60 in patients with primary Sjögren’s syndrome is associated with increased cytokine levels and glandular inflammation. Clin. Exp. Rheumatol. 2012, 30, 594–595. [Google Scholar]
- Aragona, P.; Magazzu, G.; Macchia, G.; Bartolone, S.; Di Pasquale, G.; Vitali, C.; Ferreri, G. Presence of antibodies against Helicobacter pylori and its heat-shock protein 60 in the serum of patients with Sjögren’s syndrome. J. Rheumatol. 1999, 26, 1306–1311. [Google Scholar]
- Yokota, S.-I.; Hirata, D.; Minota, S.; Higashiyama, T.; Kurimoto, M.; Yanagi, H.; Yura, T.; Kubota, H. Autoantibodies against chaperonin CCT in human sera with rheumatic autoimmune diseases: Comparison with antibodies against other Hsp60 family proteins. Cell Stress Chaperones 2000, 5, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Shovman, O.; Sherer, Y.; Gliburd, B.; Gerli, R.; Bocci, E.B.; Monache, F.D.; Luccioli, F.; Shoenfeld, Y. Low levels of heat shock proteins-60 and -65 autoantibodies in Sjögren’s syndrome. Isr. Med. Assoc. J. 2005, 7, 778–780. [Google Scholar]
- Delaleu, N.; Madureira, A.C.; Immervoll, H.; Jonsson, R. Inhibition of experimental Sjögren’s syndrome through immunization with HSP60 and its peptide amino acids 437–460. Arthritis Rheum. 2008, 58, 2318–2328. [Google Scholar] [CrossRef]
- Kamphuis, S.; Kuis, W.; De Jager, W.; Teklenburg, G.; Massa, M.; Gordon, G.; Boerhof, M.; Rijkers, G.T.; Uiterwaal, C.S.; Otten, H.G.; et al. Tolerogenic immune responses to novel T-cell epitopes from heat-shock protein 60 in juvenile idiopathic arthritis. Lancet 2005, 366, 50–56. [Google Scholar] [CrossRef]
- De Jong, H.; Lafeber, F.F.; De Jager, W.; Haverkamp, M.H.; Kuis, W.; Bijlsma, J.W.; Prakken, B.J.; Albani, S. Pan-DR-binding Hsp60 self epitopes induce an interleukin-10-mediated immune response in rheumatoid arthritis. Arthritis Rheum. 2009, 60, 1966–1976. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Minardi, L.M.; Kuenstner, J.T.; Zhang, S.T.; Zekan, S.M.; Kruzelock, R. Serological Testing for Mycobacterial Heat Shock Protein Hsp65 Antibody in Health and Diseases. Microorganisms 2019, 8, 47. [Google Scholar] [CrossRef] [Green Version]
- Yokota, S.-I.; Kubota, H.; Matsuoka, Y.; Naitoh, M.; Hirata, D.; Minota, S.; Takahashi, H.; Fujii, N.; Nagata, K. Prevalence of HSP47 antigen and autoantibodies to HSP47 in the sera of patients with mixed connective tissue disease. Biochem. Biophys. Res. Commun. 2003, 303, 413–418. [Google Scholar] [CrossRef]
- Bårdsen, K.; Nilsen, M.M.; Kvaløy, J.T.; Norheim, K.B.; Jonsson, G.; Omdal, R. Heat shock proteins and chronic fatigue in primary Sjögren’s syndrome. Innate Immun. 2016, 22, 162–167. [Google Scholar] [CrossRef] [Green Version]
- Danieli, M.G.; Candela, M.; Ricciatti, A.M.; Reginelli, R.; Danieli, G.; Cohen, I.R.; Gabrielli, A. Antibodies to mycobacterial 65 kDa heat shock protein in systemic sclerosis (scleroderma). J. Autoimmun. 1992, 5, 443–452. [Google Scholar] [CrossRef]
- Rambukkana, A.; Das, P.K.; Witkamp, L.; Yong, S.; Meinardi, M.M.; Bos, J.D. Antibodies to Mycobacterial 65-kDa Heat Shock Protein and Other Immunodominant Antigens in Patients with Psoriasis. J. Investig. Dermatol. 1993, 100, 87–92. [Google Scholar] [CrossRef] [Green Version]
- Lehner, T.; Lavery, E.; Smith, R.; Van Der Zee, R.; Mizushima, Y.; Shinnick, T. Association between the 65-kilodalton heat shock protein, Streptococcus sanguis, and the corresponding antibodies in Behçet’s syndrome. Infect. Immun. 1991, 59, 1434–1441. [Google Scholar] [CrossRef] [Green Version]
- Donato, R. Intracellular and extracellular roles of S100 proteins. Microsc. Res. Tech. 2003, 60, 540–551. [Google Scholar] [CrossRef]
- Vogl, T.; Tenbrock, K.; Ludwig, S.; Leukert, N.; Ehrhardt, C.; Zoelen, M.A.D.V.; Nacken, W.; Foell, D.; Van Der Poll, T.; Sorg, C.; et al. Mrp8 and Mrp14 are endogenous activators of Toll-like receptor 4, promoting lethal, endotoxin-induced shock. Nat. Med. 2007, 13, 1042–1049. [Google Scholar] [CrossRef]
- Gross, S.R.; Sin, C.G.; Barraclough, R.; Rudland, P.S. Joining S100 proteins and migration: For better or for worse, in sickness and in health. Cell. Mol. Life Sci. 2014, 71, 1551–1579. [Google Scholar] [CrossRef] [Green Version]
- Kozlyuk, N.; Monteith, A.J.; Garcia, V.; Damo, S.M.; Skaar, E.P.; Chazin, W.J. S100 Proteins in the Innate Immune Response to Pathogens. Adv. Struct. Saf. Stud. 2019, 1929, 275–290. [Google Scholar] [CrossRef]
- Roth, J.; Vogl, T.; Sorg, C.; Sunderkötter, C. Phagocyte-specific S100 proteins: A novel group of proinflammatory molecules. Trends Immunol. 2003, 24, 155–158. [Google Scholar] [CrossRef]
- Nacken, W.; Roth, J.; Sorg, C.; Kerkhoff, C. S100A9/S100A8: Myeloid representatives of the S100 protein family as prominent players in innate immunity. Microsc. Res. Tech. 2003, 60, 569–580. [Google Scholar] [CrossRef]
- De Moel, E.C.; Rech, J.; Mahler, M.; Roth, J.; Vogl, T.; Schouffoer, A.; Goekoop, R.J.; Huizinga, T.W.; Allaart, C.F.; Toes, R.E.; et al. Circulating calprotectin (S100A8/A9) is higher in rheumatoid arthritis patients that relapse within 12 months of tapering anti-rheumatic drugs. Arthritis Res. Ther. 2019, 21, 268. [Google Scholar] [CrossRef] [Green Version]
- Soyfoo, M.S.; Roth, J.; Vogl, T.; Pochet, R.; Decaux, G. Phagocyte-specific S100A8/A9 protein levels during disease exacerbations and infections in systemic lupus erythematosus. J. Rheumatol. 2009, 36, 2190–2194. [Google Scholar] [CrossRef]
- Inciarte-Mundo, J.; Hernández, M.V.; Ruiz-Esquide, V.; Cabrera-Villalba, S.R.; Ramirez, J.; Cuervo, A.; Pascal, M.; Yagüe, J.; Cañete, J.D.; Sanmarti, R. Serum Calprotectin Versus Acute-Phase Reactants in the Discrimination of Inflammatory Disease Activity in Rheumatoid Arthritis Patients Receiving Tumor Necrosis Factor Inhibitors. Arthritis Care Res. 2016, 68, 899–906. [Google Scholar] [CrossRef]
- Nicaise, C.; Weichselbaum, L.; Schandene, L.; Gangji, V.; Dehavay, F.; Bouchat, J.; Balau, B.; Vogl, T.; Soyfoo, M.S. Phagocyte-specific S100A8/A9 is upregulated in primary Sjögren’s syndrome and triggers the secretion of pro-inflammatory cytokines in vitro. Clin. Exp. Rheumatol. 2017, 35, 129–136. [Google Scholar]
- Baldini, C.; Giusti, L.; Ciregia, F.; Da Valle, Y.; Giacomelli, C.; Donadio, E.; Sernissi, F.; Bazzichi, L.; Giannaccini, G.; Bombardieri, S.; et al. Proteomic analysis of saliva: A unique tool to distinguish primary Sjögren’s syndrome from secondary Sjögren’s syndrome and other sicca syndromes. Arthritis Res. Ther. 2011, 13, R194. [Google Scholar] [CrossRef] [Green Version]
- Cuida, M.; Halse, A.K.; Johannessen, A.C.; Tynning, T.; Jonsson, R. Indicators of salivary gland inflammation in primary Sjögren’s syndrome. Eur. J. Oral Sci. 1997, 105, 228–233. [Google Scholar] [CrossRef]
- Nordal, H.H.; Brun, J.G.; Halse, A.K.; Madland, T.M.; Fagerhol, M.K.; Jonsson, R. Calprotectin (S100A8/A9), S100A12, and EDTA-resistant S100A12 complexes (ERAC) in primary Sjögren’s syndrome. Scand. J. Rheumatol. 2014, 43, 76–78. [Google Scholar] [CrossRef]
- Brun, J.G.; Cuida, M.; Jacobsen, H.; Kloster, R.; Johannesen, A.C.; Høyeraal, H.M.; Jonsson, R. Sjögren’s syndrome in inflammatory rheumatic diseases: Analysis of the leukocyte protein calprotectin in plasma and saliva. Scand. J. Rheumatol. 1994, 23, 114–118. [Google Scholar] [CrossRef]
- Andréasson, K.; Ohlsson, B.; Mandl, T. Elevated levels of faecal calprotectin in primary Sjögren’s syndrome is common and associated with concomitant organic gastrointestinal disease. Arthritis Res. Ther. 2016, 18, 9. [Google Scholar] [CrossRef] [Green Version]
- Mandl, T.; Marsal, J.; Olsson, P.; Ohlsson, B.; Andréasson, K. Severe intestinal dysbiosis is prevalent in primary Sjögren’s syndrome and is associated with systemic disease activity. Arthritis Res. Ther. 2017, 19, 237. [Google Scholar] [CrossRef]
- Andréasson, K.; Saxne, T.; Scheja, A.; Bartosik, I.; Mandl, T.; Hesselstrand, R. Faecal levels of calprotectin in systemic sclerosis are stable over time and are higher compared to primary Sjögren’s syndrome and rheumatoid arthritis. Arthritis Res. Ther. 2014, 16, R46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jazzar, A.A.; Shirlaw, P.J.; Carpenter, G.H.; Challacombe, S.J.; Proctor, G.B. Salivary S100A8/A9 in Sjögren’s syndrome accompanied by lymphoma. J. Oral Pathol. Med. 2018, 47, 900–906. [Google Scholar] [CrossRef] [Green Version]
- Donato, R.; Sorci, G.; Riuzzi, F.; Arcuri, C.; Bianchi, R.; Brozzi, F.; Tubaro, C.; Giambanco, I. S100B’s double life: Intracellular regulator and extracellular signal. Biochim. Biophys. Acta 2009, 1793, 1008–1022. [Google Scholar] [CrossRef] [Green Version]
- Tjensvoll, A.B.; Lauvsnes, M.B.; Zetterberg, H.; Kvaløy, J.T.; Kvivik, I.; Maroni, S.S.; Greve, O.J.; Beyer, M.K.; Hirohata, S.; Putterman, C.; et al. Neurofilament light is a biomarker of brain involvement in lupus and primary Sjögren’s syndrome. J. Neurol. 2021, 268, 1385–1394. [Google Scholar] [CrossRef]
- Bårdsen, K.; Brede, C.; Kvivik, I.; Kvaløy, J.T.; Jonsdottir, K.; Tjensvoll, A.B.; Ruoff, P.; Omdal, R. Interleukin-1-related activity and hypocretin-1 in cerebrospinal fluid contribute to fatigue in primary Sjögren’s syndrome. J. Neuroinflamm. 2019, 16, 102. [Google Scholar] [CrossRef]
- Lauvsnes, M.B.; Tjensvoll, A.B.; Maroni, S.S.; Kvivik, I.; Grimstad, T.; Greve, O.J.; Harboe, E.; Gøransson, L.G.; Putterman, C.; Omdal, R. The blood-brain barrier, TWEAK, and neuropsychiatric involvement in human systemic lupus erythematosus and primary Sjögren’s syndrome. Lupus 2018, 27, 2101–2111. [Google Scholar] [CrossRef]
- Hofmann, M.A.; Drury, S.; Fu, C.; Qu, W.; Taguchi, A.; Lu, Y.; Avila, C.; Kambham, N.; Bierhaus, A.; Nawroth, P.; et al. RAGE mediates a novel proinflammatory axis: A central cell surface receptor for S100/calgranulin polypeptides. Cell 1999, 97, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Bertheloot, D.; Latz, E. HMGB1, IL-1alpha, IL-33 and S100 proteins: Dual-function alarmins. Cell. Mol. Immunol. 2017, 14, 43–64. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Yin, H.; Zhao, M.; Lu, Q. TLR2 and TLR4 in Autoimmune Diseases: A Comprehensive Review. Clin. Rev. Allergy Immunol. 2014, 47, 136–147. [Google Scholar] [CrossRef] [PubMed]
- Katz, J.; Stavropoulos, F.; Bhattacharyya, I.; Stewart, C.; Perez, F.M.; Caudle, R.M. Receptor of advanced glycation end product (RAGE) expression in the minor salivary glands of patients with Sjögren’s syndrome: A preliminary study. Scand. J. Rheumatol. 2004, 33, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Surprenant, A.; North, R.A. Signaling at Purinergic P2X Receptors. Annu. Rev. Physiol. 2009, 71, 333–359. [Google Scholar] [CrossRef] [Green Version]
- Erlinge, D. P2Y Receptors in Health and Disease. Adv. Pharmacol. 2011, 61, 417–439. [Google Scholar] [CrossRef]
- Kurashima, Y.; Amiya, T.; Nochi, T.; Fujisawa, K.; Haraguchi, T.; Iba, H.; Tsutsui, H.; Sato, S.; Nakajima, S.; Iijima, H.; et al. Extracellular ATP mediates mast cell-dependent intestinal inflammation through P2X7 purinoceptors. Nat. Commun. 2012, 3, 1034. [Google Scholar] [CrossRef]
- Wilkin, F.; Duhant, X.; Bruyns, C.; Suarez-Huerta, N.; Boeynaems, J.-M.; Robaye, B. The P2Y11Receptor Mediates the ATP-Induced Maturation of Human Monocyte-Derived Dendritic Cells. J. Immunol. 2001, 166, 7172–7177. [Google Scholar] [CrossRef] [Green Version]
- Iyer, S.S.; Pulskens, W.P.; Sadler, J.J.; Butter, L.M.; Teske, G.J.; Ulland, T.K.; Eisenbarth, S.C.; Florquin, S.; Flavell, R.A.; Leemans, J.C.; et al. Necrotic cells trigger a sterile inflammatory response through the Nlrp3 inflammasome. Proc. Natl. Acad. Sci. USA 2009, 106, 20388–20393. [Google Scholar] [CrossRef] [Green Version]
- Baldini, C.; Rossi, C.; Ferro, F.; Santini, E.; Seccia, V.; Donati, V.; Solini, A. The P2X7 receptor-inflammasome complex has a role in modulating the inflammatory response in primary Sjögren’s syndrome. J. Intern. Med. 2013, 274, 480–489. [Google Scholar] [CrossRef]
- Baldini, C.; Santini, E.; Rossi, C.; Donati, V.; Solini, A. The P2X7 receptor-NLRP3 inflammasome complex predicts the development of non-Hodgkin’s lymphoma in Sjögren’s syndrome: A prospective, observational, single-centre study. J. Intern. Med. 2017, 282, 175–186. [Google Scholar] [CrossRef]
- Khalafalla, M.G.; Woods, L.T.; Camden, J.M.; Khan, A.A.; Limesand, K.H.; Petris, M.J.; Erb, L.; Weisman, G.A. P2X7 receptor antagonism prevents IL-1beta release from salivary epithelial cells and reduces inflammation in a mouse model of autoimmune exocrinopathy. J. Biol. Chem. 2017, 292, 16626–16637. [Google Scholar] [CrossRef] [Green Version]
- Woods, L.T.; Camden, J.M.; Batek, J.M.; Petris, M.J.; Erb, L.; Weisman, G.A. P2X7 receptor activation induces inflammatory responses in salivary gland epithelium. Am. J. Physiol. Physiol. 2012, 303, C790–C801. [Google Scholar] [CrossRef] [Green Version]
- Xie, B.; Chen, Y.; Zhang, S.; Wu, X.; Zhang, Z.; Peng, Y.; Huang, X. The expression of P2X7 receptors on peripheral blood mononuclear cells in patients with primary Sjögren’s syndrome and its correlation with anxiety and depression. Clin. Exp. Rheumatol. 2014, 32, 354–360. [Google Scholar]
- Turner, C.M.; Tam, F.W.K.; Lai, P.-C.; Tarzi, R.M.; Burnstock, G.; Pusey, C.D.; Cook, H.T.; Unwin, R.J. Increased expression of the pro-apoptotic ATP-sensitive P2X7 receptor in experimental and human glomerulonephritis. Nephrol. Dial. Transplant. 2007, 22, 386–395. [Google Scholar] [CrossRef] [Green Version]
- Taylor, S.R.; Turner, C.M.; Elliott, J.I.; McDaid, J.; Hewitt, R.; Smith, J.; Pickering, M.C. P2X7 deficiency attenuates renal injury in experimental glomerulonephritis. J. Am. Soc. Nephrol. 2009, 20, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
- Arulkumaran, N.; Unwin, R.J.; Tam, F.W.K. A potential therapeutic role for P2X7 receptor (P2X7R) antagonists in the treatment of inflammatory diseases. Expert Opin. Investig. Drugs 2011, 20, 897–915. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Chen, Y.; Li, M.; Gao, Q.; Peng, Y.; Gong, Q.; Zhang, Z.; Wu, X. Paeoniflorin down-regulates ATP-induced inflammatory cytokine production and P2X7R expression on peripheral blood mononuclear cells from patients with primary Sjögren’s syndrome. Int. Immunopharmacol. 2015, 28, 115–120. [Google Scholar] [CrossRef]
- Schrader, A.M.; Camden, J.M.; Weisman, G.A. P2Y2 nucleotide receptor up-regulation in submandibular gland cells from the NOD.B10 mouse model of Sjögren’s syndrome. Arch. Oral Biol. 2005, 50, 533–540. [Google Scholar] [CrossRef]
- Woods, L.T.; Camden, J.M.; Khalafalla, M.G.; Petris, M.J.; Erb, L.; Ambrus, J.L.; Weisman, G.A. P2Y2 R deletion ameliorates sialadenitis in IL-14α-transgenic mice. Oral Dis. 2018, 24, 761–771. [Google Scholar] [CrossRef]
- Chen, Y.; Corriden, R.; Inoue, Y.; Yip, L.; Hashiguchi, N.; Zinkernagel, A.; Nizet, V.; Insel, P.A.; Junger, W.G. ATP Release Guides Neutrophil Chemotaxis via P2Y2 and A3 Receptors. Science 2006, 314, 1792–1795. [Google Scholar] [CrossRef] [Green Version]
- Elliott, M.; Chekeni, F.B.; Trampont, P.C.; Lazarowski, E.R.; Kadl, A.; Walk, S.F.; Park, D.; Woodson, R.I.; Ostankovitch, M.; Sharma, P.; et al. Nucleotides released by apoptotic cells act as a find-me signal to promote phagocytic clearance. Nature 2009, 461, 282–286. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Evans, J.E.; Rock, K.L. Molecular identification of a danger signal that alerts the immune system to dying cells. Nature 2003, 425, 516–521. [Google Scholar] [CrossRef]
- Strowig, T.; Henao-Mejia, J.; Elinav, E.; Flavell, R. Inflammasomes in health and disease. Nature 2012, 481, 278–286. [Google Scholar] [CrossRef]
- Martinon, F.; Petrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Lima, H., Jr.; Jacobson, L.; Goldberg, M.; Chandran, K.; Diaz-Griffero, F.; Lisanti, M.P.; Brojatsch, J. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle 2013, 12, 1868–1878. [Google Scholar] [CrossRef] [Green Version]
- Braga, T.T.; Forni, M.F.; Correa-Costa, M.; Ramos, R.N.; Barbuto, J.A.M.; Branco, P.; Castoldi, A.; Hiyane, M.I.; Davanso, M.R.; Latz, E.; et al. Soluble Uric Acid Activates the NLRP3 Inflammasome. Sci. Rep. 2017, 7, 39884. [Google Scholar] [CrossRef]
- Hsu, D.-Z.; Chu, P.-Y.; Chen, S.-J.; Liu, M.-Y. Mast Cell Stabilizer Ketotifen Inhibits Gouty Inflammation in Rats. Am. J. Ther. 2016, 23, e1009–e1015. [Google Scholar] [CrossRef]
- Getting, S.J.; Flower, R.J.; Parente, L.; De Medicis, R.; Lussier, A.; A Woliztky, B.; A Martins, M.; Perretti, M. Molecular determinants of monosodium urate crystal-induced murine peritonitis: A role for endogenous mast cells and a distinct requirement for endothelial-derived selectins. J. Pharmacol. Exp. Ther. 1997, 283, 123–130. [Google Scholar]
- Kobayashi, T.; Kouzaki, H.; Kita, H. Human Eosinophils Recognize Endogenous Danger Signal Crystalline Uric Acid and Produce Proinflammatory Cytokines Mediated by Autocrine ATP. J. Immunol. 2010, 184, 6350–6358. [Google Scholar] [CrossRef] [Green Version]
- Stefancu, A.; Badarinza, M.; Moisoiu, V.; Iancu, S.D.; Serban, O.; Leopold, N.; Fodor, D. SERS-based liquid biopsy of saliva and serum from patients with Sjögren’s syndrome. Anal. Bioanal. Chem. 2019, 411, 5877–5883. [Google Scholar] [CrossRef]
- Kageyama, G.; Saegusa, J.; Irino, Y.; Tanaka, S.; Tsuda, K.; Takahashi, S.; Sendo, S.; Morinobu, A. Metabolomics analysis of saliva from patients with primary Sjögren’s syndrome. Clin. Exp. Immunol. 2015, 182, 149–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishi, Y.; Sano, H.; Kawashima, T.; Okada, T.; Kuroda, T.; Kikkawa, K.; Kawashima, S.; Tanabe, M.; Goto, T.; Matsuzawa, Y.; et al. Role of Galectin-3 in Human Pulmonary Fibrosis. Allergol. Int. 2007, 56, 57–65. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saccon, F.; Gatto, M.; Ghirardello, A.; Iaccarino, L.; Punzi, L.; Doria, A. Role of galectin-3 in autoimmune and non-autoimmune nephropathies. Autoimmun. Rev. 2017, 16, 34–47. [Google Scholar] [CrossRef] [PubMed]
- Rabinovich, G.A.; Toscano, M.A. Turning ‘sweet’ on immunity: Galectin–glycan interactions in immune tolerance and inflammation. Nat. Rev. Immunol. 2009, 9, 338–352. [Google Scholar] [CrossRef]
- Filer, A.; Bik, M.; Parsonage, G.N.; Fitton, J.; Trebilcock, E.; Howlett, K.; Cook, M.; Raza, K.; Simmons, D.L.; Thomas, A.M.C.; et al. Galectin 3 induces a distinctive pattern of cytokine and chemokine production in rheumatoid synovial fibroblasts via selective signaling pathways. Arthritis Care Res. 2009, 60, 1604–1614. [Google Scholar] [CrossRef] [Green Version]
- Fritsch, K.; Mernberger, M.; Nist, A.; Stiewe, T.; Brehm, A.; Jacob, R. Galectin-3 interacts with components of the nuclear ribonucleoprotein complex. BMC Cancer 2016, 16, 502. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.G.; Kim, D.-H.; Kim, S.-J.; Cho, Y.; Jung, J.; Jang, W.; Chun, K.-H. Galectin-3 supports stemness in ovarian cancer stem cells by activation of the Notch1 intracellular domain. Oncotarget 2016, 7, 68229–68241. [Google Scholar] [CrossRef] [Green Version]
- Kang, E.; Moon, K.; Lee, E.; Lee, Y.; Lee, E.; Ahn, C.; Song, Y. Renal expression of galectin-3 in systemic lupus erythematosus patients with nephritis. Lupus 2009, 18, 22–28. [Google Scholar] [CrossRef]
- Özden, M.; Çaycı, Y.; Tekin, H.; Çoban, A.; Aydin, F.; Senturk, N.; Bek, Y.; Canturk, T.; Turanli, A. Serum galectin-3 levels in patients with Behçet’s disease: Association with disease activity over a long-term follow-up. J. Eur. Acad. Dermatol. Venereol. 2011, 25, 1168–1173. [Google Scholar] [CrossRef]
- Mora, G.F.; Zubieta, M.R. Galectin-1 and Galectin-3 Expression in Lesional Skin of Patients With Systemic Sclerosis—Association With Disease Severity. JCR: J. Clin. Rheumatol. 2020, 27, 317–323. [Google Scholar] [CrossRef]
- Ezzat, M.H.M.; El-Gammasy, T.M.A.; Shaheen, K.Y.A.; Osman, A.O.Y. Elevated production of galectin-3 is correlated with juvenile idiopathic arthritis disease activity, severity, and progression. Int. J. Rheum. Dis. 2011, 14, 345–352. [Google Scholar] [CrossRef]
- Zhang, R.; Sun, T.; Song, L.; Zuo, D.; Xiao, W. Increased levels of serum galectin-3 in patients with primary Sjögren’s syndrome: Associated with interstitial lung disease. Cytokine 2014, 69, 289–293. [Google Scholar] [CrossRef]
- Michalak, M.; Robert Parker, J.M.; Opas, M. Ca2+ signaling and calcium binding chaperones of the endoplasmic reticulum. Cell Calcium 2002, 32, 269–278. [Google Scholar] [CrossRef]
- Rosen, A.; Casciola-Rosen, L. Autoantigens as substrates for apoptotic proteases: Implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 1999, 6, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Basu, S.; Binder, R.J.; Suto, R.; Anderson, K.M.; Srivastava, P.K. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int. Immunol. 2000, 12, 1539–1546. [Google Scholar] [CrossRef]
- Dupuis, M.; Schaerer, E.; Krause, K.-H.; Tschopp, J.-M. The calcium-binding protein calreticulin is a major constituent of lytic granules in cytolytic T lymphocytes. J. Exp. Med. 1993, 177, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Staikou, E.V.; Routsias, J.G.; Makri, A.A.; Terzoglou, A.; Sakarellos-Daitsiotis, M.; Sakarellos, C.; Panayotou, G.; Moutsopoulos, H.M.; Tzioufas, A.G. Calreticulin binds preferentially with B cell linear epitopes of Ro60 kD autoantigen, enhancing recognition by anti-Ro60 kD autoantibodies. Clin. Exp. Immunol. 2003, 134, 143–150. [Google Scholar] [CrossRef]
- Yu, F.X.; Lin, S.C.; Morrison-Bogorad, M.; Yin, H.L. Effects of thymosin beta 4 and thymosin beta 10 on actin structures in living cells. Cell. Motil. Cytoskeleton. 1994, 27, 13–25. [Google Scholar] [CrossRef]
- Koutrafouri, V.; Leondiadis, L.; Avgoustakis, K.; Livaniou, E.; Czarnecki, J.; Ithakissios, D.; Evangelatos, G. Effect of thymosin peptides on the chick chorioallantoic membrane angiogenesis model. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2001, 1568, 60–66. [Google Scholar] [CrossRef]
- Malinda, K.M.; Kleinman, H.K.; Sidhu, G.S.; Mani, H.; Banaudha, K.; Maheshwari, R.K.; Goldstein, A.L. Thymosin beta4 accelerates wound healing. J. Investig. Dermatol. 1999, 113, 364–368. [Google Scholar] [CrossRef] [Green Version]
- Badamchian, M.; Fagarasan, M.O.; Danner, R.L.; Suffredini, A.F.; Damavandy, H.; Goldstein, A.L. Thymosin beta(4) reduces lethality and down-regulates inflammatory mediators in endotoxin-induced septic shock. Int. Immunopharmacol. 2003, 3, 1225–1233. [Google Scholar] [CrossRef]
- Bock-Marquette, I.; Saxena, A.; White, M.D.; Dimaio, J.M.; Srivastava, D. Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair. Nature 2004, 432, 466–472. [Google Scholar] [CrossRef]
- Reti, R.; Kwon, E.; Qiu, P.; Wheater, M.; Sosne, G. Thymosin beta4 is cytoprotective in human gingival fibroblasts. Eur. J. Oral Sci. 2008, 116, 424–430. [Google Scholar] [CrossRef]
- Bosello, S.; Peluso, G.; Iavarone, F.; Tolusso, B.; Messana, I.; Faa, G.; Castagnola, M.; Ferraccioli, G. Thymosin beta4 and beta10 in Sjögren’s syndrome: Saliva proteomics and minor salivary glands expression. Arthritis Res. Ther. 2016, 18, 229. [Google Scholar] [CrossRef] [Green Version]
- Sosne, G.; Chan, C.C.; Thai, K.; Kennedy, M.; Szliter, E.A.; Hazlett, L.D.; Kleinman, H.K. Thymosin Beta 4 Promotes Corneal Wound Healing and Modulates Inflammatory Mediators in vivo. Exp. Eye Res. 2001, 72, 605–608. [Google Scholar] [CrossRef]
- Polihronis, M.; Tapinos, N.I.; Theocharis, S.E.; Economou, A.; Kittas, C.; Moutsopoulos, H.M. Modes of epithelial cell death and repair in Sjögren’s syndrome (SS). Clin. Exp. Immunol. 1998, 114, 485–490. [Google Scholar] [CrossRef]
- Simanski, M.; Rademacher, F.; Schroder, L.; Schumacher, H.M.; Glaser, R.; Harder, J. IL-17A and IFN-gamma synergistically induce RNase 7 expression via STAT3 in primary keratinocytes. PLoS ONE 2013, 8, e59531. [Google Scholar] [CrossRef] [Green Version]
- Eberhard, J.; Menzel, N.; Dommisch, H.; Winter, J.; Jepsen, S.; Mutters, R. The stage of native biofilm formation determines the gene expression of human β-defensin-2, psoriasin, ribonuclease 7 and inflammatory mediators: A novel approach for stimulation of keratinocytes with in situ formed biofilms. Oral Microbiol. Immunol. 2008, 23, 21–28. [Google Scholar] [CrossRef]
- Neopane, P.; Paudel, D.; Yoshida, K.; Adhikari, B.R.; Morikawa, T.; Onishi, A.; Hiraki, D.; Uehara, O.; Sato, J.; Nishimura, M.; et al. Immunohistochemical Localization of RNase 7 in Normal and Inflamed Oral Epithelia and Salivary Glands. Acta Histochem. Cytochem. 2019, 52, 35–43. [Google Scholar] [CrossRef] [Green Version]
- Kopfnagel, V.; Wagenknecht, S.; Harder, J.; Hofmann, K.; Kleine, M.; Buch, A.; Sodeik, B.; Werfel, T. RNase 7 Strongly Promotes TLR9-Mediated DNA Sensing by Human Plasmacytoid Dendritic Cells. J. Investig. Dermatol. 2018, 138, 872–881. [Google Scholar] [CrossRef] [Green Version]
- Kopfnagel, V.; Wagenknecht, S.; Brand, L.; Zeitvogel, J.; Harder, J.; Hofmann, K.; Kleine, M.; Werfel, T. RNase 7 downregulates TH2 cytokine production by activated human T cells. Allergy 2017, 72, 1694–1703. [Google Scholar] [CrossRef] [PubMed]
- Harder, J.; Schröder, J.-M. RNase 7, a Novel Innate Immune Defense Antimicrobial Protein of Healthy Human Skin. J. Biol. Chem. 2002, 277, 46779–46784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, J.-S.; Jeong, J.Y.; Hwang, Y.J.; Chae, S.W.; Hwang, S.J.; Lee, H.-M. Expression of cathelicidin in human salivary glands. Arch. Otolaryngol.-Head Neck Surg. 2003, 129, 211–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murakami, M.; Ohtake, T.; Dorschner, R.; Gallo, R. Cathelicidin Antimicrobial Peptides are Expressed in Salivary Glands and Saliva. J. Dent. Res. 2002, 81, 845–850. [Google Scholar] [CrossRef]
- Stoeckelhuber, M.; Loeffelbein, D.J.; Olzowy, B.; Schmitz, C.; Koerdt, S.; Kesting, M.R. Labial Salivary Glands in Infants: Histochemical Analysis of Cytoskeletal and Antimicrobial Proteins. J. Histochem. Cytochem. 2016, 64, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Guerrier, T.; Le Pottier, L.; Devauchelle, V.; Saraux, A.; Youinou, P.; Jamin, C.; Pers, J.O. Toll-like receptor 9 drives the maturation of B lymphocytes in the salivary glands of patients with Sjögren’s syndrome. Bull. Group Int. Rech. Sci. Stomatol. Odontol. 2011, 50, 21–22. [Google Scholar]
- Moreno-Angarita, A.; Aragón, C.C.; Tobón, G.J. Cathelicidin LL-37: A new important molecule in the pathophysiology of systemic lupus erythematosus. J. Transl. Autoimmun. 2020, 3, 100029. [Google Scholar] [CrossRef]
- Ganz, T.; Lehrer, R.I. Defensins. Curr. Opin. Immunol. 1994, 6, 584–589. [Google Scholar] [CrossRef]
- E Jones, D.; Bevins, C.L. Paneth cells of the human small intestine express an antimicrobial peptide gene. J. Biol. Chem. 1992, 267, 23216–23225. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, I.; Lehrer, R.I. Widespread expression of beta-defensin hBD-1 in human secretory glands and epithelial cells. FEBS Lett. 1996, 396, 319–322. [Google Scholar] [CrossRef] [Green Version]
- Territo, M.C.; Ganz, T.; E Selsted, M.; Lehrer, R. Monocyte-chemotactic activity of defensins from human neutrophils. J. Clin. Investig. 1989, 84, 2017–2020. [Google Scholar] [CrossRef]
- Yang, D.; Chen, Q.; Chertov, O.; Oppenheim, J.J. Human neutrophil defensins selectively chemoattract naive T and immature dendritic cells. J. Leukoc. Biol. 2000, 68, 9–14. [Google Scholar]
- Van Wetering, S.; Mannesse-Lazeroms, S.P.; Van Sterkenburg, M.A.; Daha, M.R.; Dijkman, J.H.; Hiemstra, P.S. Effect of defensins on interleukin-8 synthesis in airway epithelial cells. Am. J. Physiol. 1997, 272, L888–L896. [Google Scholar] [CrossRef]
- Lillard, J.W., Jr.; Boyaka, P.N.; Chertov, O.; Oppenheim, J.J.; McGhee, J.R. Mechanisms for induction of acquired host immunity by neutrophil peptide defensins. Proc. Natl. Acad. Sci. USA 1999, 96, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Hancock, R.E.; Diamond, G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000, 8, 402–410. [Google Scholar] [CrossRef]
- Yang, D.; Chertov, O.B.S.N.; Bykovskaia, S.N.; Chen, Q.; Buffo, M.J.; Shogan, J.; Anderson, M.; Schroder, J.M.; Wang, J.M.; Howard, O.M.Z.; et al. Beta-defensins: Linking innate and adaptive immunity through dendritic and T cell CCR6. Science 1999, 286, 525–528. [Google Scholar] [CrossRef]
- Peluso, G.; De Santis, M.; Inzitari, R.; Fanali, C.; Cabras, T.; Messana, I.; Castagnola, M.; Ferraccioli, G.F. Proteomic study of salivary peptides and proteins in patients with Sjögren’s syndrome before and after pilocarpine treatment. Arthritis Rheum. 2007, 56, 2216–2222. [Google Scholar] [CrossRef]
- Li, B.; Sheng, M.; Li, J.; Yan, G.; Lin, A.; Li, M.; Wang, W.; Chen, Y. Tear proteomic analysis of Sjögren syndrome patients with dry eye syndrome by two-dimensional-nano-liquid chromatography coupled with tandem mass spectrometry. Sci. Rep. 2014, 4, srep05772. [Google Scholar] [CrossRef] [Green Version]
- Hjelmervik, T.O.; Jonsson, R.; Bolstad, A.I. The minor salivary gland proteome in Sjögren’s syndrome. Oral Dis. 2009, 15, 342–353. [Google Scholar] [CrossRef]
- Falco, A.; Mas, V.; Tafalla, C.; Perez, L.; Coll, J.; Estepa, A. Dual antiviral activity of human alpha-defensin-1 against viral haemorrhagic septicaemia rhabdovirus (VHSV): Inactivation of virus particles and induction of a type I interferon-related response. Antivir. Res. 2007, 76, 111–123. [Google Scholar] [CrossRef]
- Hjelmervik, T.O.; Petersen, K.; Jonassen, I.; Jonsson, R.; Bolstad, A.I. Gene expression profiling of minor salivary glands clearly distinguishes primary Sjögren’s syndrome patients from healthy control subjects. Arthritis Rheum. 2005, 52, 1534–1544. [Google Scholar] [CrossRef]
- Gottenberg, J.-E.; Cagnard, N.; Lucchesi, C.; Letourneur, F.; Mistou, S.; Lazure, T.; Jacques, S.; Ba, N.; Ittah, M.; Lepajolec, C.; et al. Activation of IFN pathways and plasmacytoid dendritic cell recruitment in target organs of primary Sjögren’s syndrome. Proc. Natl. Acad. Sci. USA 2006, 103, 2770–2775. [Google Scholar] [CrossRef] [Green Version]
- Kawasaki, S.; Kawamoto, S.; Yokoi, N.; Connon, C.; Minesaki, Y.; Kinoshita, S.; Okubo, K. Up-regulated gene expression in the conjunctival epithelium of patients with Sjögren’s syndrome. Exp. Eye Res. 2003, 77, 17–26. [Google Scholar] [CrossRef]
- Kaneda, Y.; Yamaai, T.; Mizukawa, N.; Nagatsuka, H.; Yamachika, E.; Gunduz, M.; Sawaki, K.; Yamanishi, Y.; Matsubara, M.; Katase, N.; et al. Localization of antimicrobial peptides human beta-defensins in minor salivary glands with Sjögren’s syndrome. Eur. J. Oral Sci. 2009, 117, 506–510. [Google Scholar] [CrossRef]
- Iaccarino, L.; Ghirardello, A.; Canova, M.; Zen, M.; Bettio, S.; Nalotto, L.; Punzi, L.; Doria, A. Anti-annexins autoantibodies: Their role as biomarkers of autoimmune diseases. Autoimmun. Rev. 2011, 10, 553–558. [Google Scholar] [CrossRef]
- Cui, L.; Elzakra, N.; Xu, S.; Xiao, G.G.; Yang, Y.; Hu, S. Investigation of three potential autoantibodies in Sjögren’s syndrome and associated MALT lymphoma. Oncotarget 2017, 8, 30039–30049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finamore, F.; Cecchettini, A.; Ceccherini, E.; Signore, G.; Ferro, F.; Rocchiccioli, S.; Baldini, C. Characterization of Extracellular Vesicle Cargo in Sjögren’s Syndrome through a SWATH-MS Proteomics Approach. Int. J. Mol. Sci. 2021, 22, 4864. [Google Scholar] [CrossRef] [PubMed]
- Gheita, T.A.; El Sisi, R.W.; Raafat, H.A.; Khalil, H.M. Anti-Annexin V Antibodies in Primary Fibromyalgia Syndrome: Relation to Associated Sjögren’s Syndrome. J. Clin. Immunol. 2013, 33, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Van Venrooij, W.J.; Wodzig, K.W.; Habets, W.J.; De Rooij, D.J.; Van de Putte, L.B. Anti-56K: A novel, frequently occurring autoantibody specificity in connective tissue disease. Clin. Exp. Rheumatol. 1989, 7, 277–282. [Google Scholar] [PubMed]
- Sorokin, L.M. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 2010, 10, 712–723. [Google Scholar] [CrossRef]
- Goldoni, S.; Seidler, D.G.; Heath, J.; Fassan, M.; Baffa, R.; Thakur, M.L.; Owens, R.T.; McQuillan, D.J.; Iozzo, R.V. An Antimetastatic Role for Decorin in Breast Cancer. Am. J. Pathol. 2008, 173, 844–855. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, L.T.-H.; Nastase, M.-V.; Zeng-Brouwers, J.; Iozzo, R.V.; Schaefer, L. Soluble biglycan as a biomarker of inflammatory renal diseases. Int. J. Biochem. Cell Biol. 2014, 54, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Merline, R.; Moreth, K.; Beckmann, J.; Nastase, M.V.; Zeng-Brouwers, J.; Tralhão, J.G.; Lemarchand, P.; Pfeilschifter, J.; Schaefer, R.M.; Iozzo, R.V.; et al. Signaling by the Matrix Proteoglycan Decorin Controls Inflammation and Cancer Through PDCD4 and MicroRNA-21. Sci. Signal. 2011, 4, ra75. [Google Scholar] [CrossRef] [Green Version]
- Moreth, K.; Brodbeck, R.; Babelova, A.; Gretz, N.; Spieker, T.; Zeng-Brouwers, J.; Pfeilschifter, J.; Young, M.F.; Schaefer, R.M.; Schaefer, L. The proteoglycan biglycan regulates expression of the B cell chemoattractant CXCL13 and aggravates murine lupus nephritis. J. Clin. Investig. 2010, 120, 4251–4272. [Google Scholar] [CrossRef] [Green Version]
- Köninger, J.; Giese, N.A.; Bartel, M.; Di Mola, F.F.; Berberat, P.O.; Di Sebastiano, P.; Giese, T.; Büchler, M.W.; Friess, H. The ECM proteoglycan decorin links desmoplasia and inflammation in chronic pancreatitis. J. Clin. Pathol. 2006, 59, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Kiripolsky, J.; Romano, R.A.; Kasperek, E.M.; Yu, G.; Kramer, J.M. Activation of Myd88-Dependent TLRs Mediates Local and Systemic Inflammation in a Mouse Model of Primary Sjögren’s Syndrome. Front. Immunol. 2019, 10, 2963. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarrand, J.; Baglione, L.; Parisis, D.; Soyfoo, M. The Involvement of Alarmins in the Pathogenesis of Sjögren’s Syndrome. Int. J. Mol. Sci. 2022, 23, 5671. https://doi.org/10.3390/ijms23105671
Sarrand J, Baglione L, Parisis D, Soyfoo M. The Involvement of Alarmins in the Pathogenesis of Sjögren’s Syndrome. International Journal of Molecular Sciences. 2022; 23(10):5671. https://doi.org/10.3390/ijms23105671
Chicago/Turabian StyleSarrand, Julie, Laurie Baglione, Dorian Parisis, and Muhammad Soyfoo. 2022. "The Involvement of Alarmins in the Pathogenesis of Sjögren’s Syndrome" International Journal of Molecular Sciences 23, no. 10: 5671. https://doi.org/10.3390/ijms23105671
APA StyleSarrand, J., Baglione, L., Parisis, D., & Soyfoo, M. (2022). The Involvement of Alarmins in the Pathogenesis of Sjögren’s Syndrome. International Journal of Molecular Sciences, 23(10), 5671. https://doi.org/10.3390/ijms23105671