Mitochondrial Dysfunction in Spinocerebellar Ataxia Type 3 Is Linked to VDAC1 Deubiquitination
Abstract
:1. Introduction
2. Results
2.1. Mitochondrial Morphology Is Altered in SCA3 Cell Models
2.2. PolyQ-Expanded Ataxin-3 Affects Proper Mitochondrial Function
2.3. Parkin Is Not Recruited to Depolarized Mitochondria in SCA3 Patient-Derived Fibroblasts
2.4. Ataxin-3 Deubiquitinates VDAC1 In Vitro
2.5. Mitochondrial Dysfunction Is Linked to Dysregulated Mitophagy in SCA3 Cells
3. Discussion
4. Materials and Methods
4.1. Ethics Use of Animals
4.2. Ethics Use of Human Tissue
4.3. Generation of Mouse Embryonic Fibroblast Lines
4.4. Immortalization of Human Fibroblasts (iHF)
4.5. Cell Culture Maintenance and Induction of Mitochondrial Stress and Autophagy
4.6. Cell Viability Assay
4.7. ATP Production Assay
4.8. Fluorescence-Activated Cell Sorting (FACS)
4.9. Mitochondrial Labeling and Fluorescence Microscopy
4.10. Electron Microscopy
4.11. Western Blot Analysis
4.12. In Vitro Deubiquitination Assay
4.13. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Moura, M.B.; dos Santos, L.S.; Van Houten, B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environ. Mol. Mutagen. 2010, 51, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.-C.; Yu, J.-T.; Tan, M.-S.; Jiang, T.; Zhu, X.-C.; Tan, L. Autophagy in aging and neurodegenerative diseases: Implications for pathogenesis and therapy. Neurobiol. Aging 2014, 35, 941–957. [Google Scholar] [CrossRef] [PubMed]
- Laço, M.N.; Oliveira, C.R.; Paulson, H.L.; Rego, A.C. Compromised mitochondrial complex II in models of Machado–Joseph disease. Biochim. Biophys. Acta (BBA) Mol. Basis Dis. 2012, 1822, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Yu, Y.-C.; Kuo, C.-L.; Cheng, W.-L.; Liu, C.-S.; Hsieh, M. Decreased antioxidant enzyme activity and increased mitochondrial DNA damage in cellular models of Machado-Joseph disease. J. Neurosci. Res. 2009, 87, 1884–1891. [Google Scholar] [CrossRef]
- Chou, A.-H.; Yeh, T.-H.; Kuo, Y.-L.; Kao, Y.-C.; Jou, M.-J.; Hsu, C.-Y.; Tsai, S.-R.; Kakizuka, A.; Wang, H.-L. Polyglutamine-expanded ataxin-3 activates mitochondrial apoptotic pathway by upregulating Bax and downregulating Bcl-xL. Neurobiol. Dis. 2006, 21, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Chou, A.-H.; Lin, A.-C.; Hong, K.-Y.; Hu, S.-H.; Chen, Y.-L.; Chen, J.-Y.; Wang, H.-L. p53 activation mediates polyglutamine-expanded ataxin-3 upregulation of Bax expression in cerebellar and pontine nuclei neurons. Neurochem. Int. 2011, 58, 145–152. [Google Scholar] [CrossRef]
- Harmuth, T.; Prell-Schicker, C.; Weber, J.J.; Gellerich, F.; Funke, C.; Drießen, S.; Magg, J.C.D.; Krebiehl, G.; Wolburg, H.; Hayer, S.N.; et al. Mitochondrial Morphology, Function and Homeostasis Are Impaired by Expression of an N-terminal Calpain Cleavage Fragment of Ataxin-3. Front. Mol. Neurosci. 2018, 11, 368. [Google Scholar] [CrossRef]
- Winborn, B.J.; Travis, S.M.; Todi, S.V.; Scaglione, K.M.; Xu, P.; Williams, A.J.; Cohen, R.E.; Peng, J.; Paulson, H.L. The Deubiquitinating Enzyme Ataxin-3, a Polyglutamine Disease Protein, Edits Lys63 Linkages in Mixed Linkage Ubiquitin Chains. J. Biol. Chem. 2008, 283, 26436–26443. [Google Scholar] [CrossRef] [Green Version]
- Durcan, T.M.; Kontogiannea, M.; Bedard, N.; Wing, S.S.; Fon, E.A. Ataxin-3 Deubiquitination Is Coupled to Parkin Ubiquitination via E2 Ubiquitin-conjugating Enzyme. J. Biol. Chem. 2012, 287, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Durcan, T.M.; Kontogiannea, M.; Thorarinsdottir, T.; Fallon, L.; Williams, A.; Djarmati, A.; Fantaneanu, T.; Paulson, H.L.; Fon, E.A. The Machado–Joseph disease-associated mutant form of ataxin-3 regulates parkin ubiquitination and stability. Hum. Mol. Genet. 2010, 20, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Durcan, T.M.; Fon, E.A. Mutant ataxin-3 promotes the autophagic degradation of parkin. Autophagy 2011, 7, 233–234. [Google Scholar] [CrossRef] [Green Version]
- Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 2011, 12, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Schöls, L.; Peters, S.; Szymanski, S.; Krüger, R.; Lange, S.; Hardt, C.; Riess, O.; Przuntek, H. Extrapyramidal motor signs in degenerative ataxias. Arch. Neurol. 2000, 57, 1495–1500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schöls, L.; Reimold, M.; Seidel, K.; Globas, C.; Brockmann, K.; Hauser, T.K.; Auburger, G.; Bürk, K.; Dunnen, W.D.; Reischl, G.; et al. No parkinsonism in SCA2 and SCA3 despite severe neurodegeneration of the dopaminergic substantia nigra. Brain 2015, 138, 3316–3326. [Google Scholar] [CrossRef] [Green Version]
- Bettencourt, C.; Santos, C.; Coutinho, P.; Rizzu, P.; Vasconcelos, J.; Kay, T.; Cymbron, T.; Raposo, M.; Heutink, P.; Lima, M. Parkinsonian phenotype in Machado-Joseph disease (MJD/SCA3): A two-case report. BMC Neurol. 2011, 11, 131. [Google Scholar] [CrossRef] [Green Version]
- Kazachkova, N.; Raposo, M.; Montiel, R.; Cymbron, T.; Bettencourt, C.; Silva-Fernandes, A.; Duarte-Silva, S.; Maciel, P.; Lima, M. Patterns of Mitochondrial DNA Damage in Blood and Brain Tissues of a Transgenic Mouse Model of Machado-Joseph Disease. Neurodegener. Dis. 2013, 11, 206–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raposo, M.; Ramos, A.; Santos, C.; Kazachkova, N.; Teixeira, B.; Bettencourt, C.; Lima, M. Accumulation of Mitochondrial DNA Common Deletion Since the Preataxic Stage of Machado-Joseph Disease. Mol. Neurobiol. 2018, 56, 119–124. [Google Scholar] [CrossRef] [Green Version]
- Ramos, A.; Kazachkova, N.; Silva, F.; Maciel, P.; Silva-Fernandes, A.; Duarte-Silva, S.; Santos, C.; Lima, M. Differential mtDNA Damage Patterns in a Transgenic Mouse Model of Machado–Joseph Disease (MJD/SCA3). J. Mol. Neurosci. 2014, 55, 449–453. [Google Scholar] [CrossRef] [Green Version]
- Pozzi, C.; Valtorta, M.; Tedeschi, G.; Galbusera, E.; Pastori, V.; Bigi, A.; Nonnis, S.; Grassi, E.; Fusi, P. Study of subcellular localization and proteolysis of ataxin-3. Neurobiol. Dis. 2008, 30, 190–200. [Google Scholar] [CrossRef]
- Kristensen, L.V.; Oppermann, F.S.; Rauen, M.J.; Fog, K.; Schmidt, T.; Schmidt, J.; Harmuth, T.; Hartmann-Petersen, R.; Thirstrup, K. Mass spectrometry analyses of normal and polyglutamine expanded ataxin-3 reveal novel interaction partners involved in mitochondrial function. Neurochem. Int. 2018, 112, 5–17. [Google Scholar] [CrossRef]
- Hsu, J.-Y.; Jhang, Y.-L.; Cheng, P.-H.; Chang, Y.-F.; Mao, S.-H.; Yang, H.-I.; Lin, C.-W.; Chen, C.-M.; Yang, S.-H. The Truncated C-terminal Fragment of Mutant ATXN3 Disrupts Mitochondria Dynamics in Spinocerebellar Ataxia Type 3 Models. Front. Mol. Neurosci. 2017, 10, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiatr, K.; Marczak, Ł.; Pérot, J.-B.; Brouillet, E.; Flament, J.; Figiel, M. Broad Influence of Mutant Ataxin-3 on the Proteome of the Adult Brain, Young Neurons, and Axons Reveals Central Molecular Processes and Biomarkers in SCA3/MJD Using Knock-In Mouse Model. Front. Mol. Neurosci. 2021, 14, 658339. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.; Lin, J.; Cui, Y.; Yao, J.; Yang, Y.; Li, Q. Protective role of vitamin B6 against mitochondria damage in Drosophila models of SCA3. Neurochem. Int. 2021, 144, 104979. [Google Scholar] [CrossRef] [PubMed]
- Boy, J.; Schmidt, T.; Schumann, U.; Grasshoff, U.; Unser, S.; Holzmann, C.; Schmitt, I.; Karl, T.; Laccone, F.; Wolburg, H.; et al. A transgenic mouse model of spinocerebellar ataxia type 3 resembling late disease onset and gender-specific instability of CAG repeats. Neurobiol. Dis. 2010, 37, 284–293. [Google Scholar] [CrossRef] [PubMed]
- Del Dotto, V.; Fogazza, M.; Carelli, V.; Rugolo, M.; Zanna, C. Eight human OPA1 isoforms, long and short: What are they for? Biochim. Biophys. Acta Bioenerg. 2018, 1859, 263–269. [Google Scholar] [CrossRef]
- Okatsu, K.; Uno, M.; Koyano, F.; Go, E.; Kimura, M.; Oka, T.; Tanaka, K.; Matsuda, N. A Dimeric PINK1-containing Complex on Depolarized Mitochondria Stimulates Parkin Recruitment. J. Biol. Chem. 2013, 288, 36372–36384. [Google Scholar] [CrossRef] [Green Version]
- Koyano, F.; Yamano, K.; Kosako, H.; Tanaka, K.; Matsuda, N. Parkin recruitment to impaired mitochondria for nonselective ubiquitylation is facilitated by MITOL. J. Biol. Chem. 2019, 294, 10300–10314. [Google Scholar] [CrossRef] [Green Version]
- Green, D.R.; Galluzzi, L.; Kroemer, G. Cell biology. Metabolic control of cell death. Science 2014, 345, 1250256. [Google Scholar] [CrossRef] [Green Version]
- Ham, S.J.; Lee, D.; Yoo, H.; Jun, K.; Shin, H.; Chung, J. Decision between mitophagy and apoptosis by Parkin via VDAC1 ubiquitination. Proc. Natl. Acad. Sci. USA 2020, 117, 4281–4291. [Google Scholar] [CrossRef]
- Geisler, S.; Holmström, K.; Skujat, D.; Fiesel, F.; Rothfuss, O.C.; Kahle, P.J.; Springer, W. PINK1/Parkin-mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat. Cell Biol. 2010, 12, 119–131. [Google Scholar] [CrossRef]
- Villa, E.; Marchetti, S.; Ricci, J.-E. No Parkin Zone: Mitophagy without Parkin. Trends Cell Biol. 2018, 28, 882–895. [Google Scholar] [CrossRef]
- Ding, W.-X.; Ni, H.-M.; Li, M.; Liao, Y.; Chen, X.; Stolz, D.B.; Dorn, G.W., 2nd; Yin, X.-M. Nix Is Critical to Two Distinct Phases of Mitophagy, Reactive Oxygen Species-mediated Autophagy Induction and Parkin-Ubiquitin-p62-mediated Mitochondrial Priming. J. Biol. Chem. 2010, 285, 27879–27890. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivankovic, D.; Chau, K.; Schapira, A.; Gegg, M.E. Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin-mediated mitophagy. J. Neurochem. 2016, 136, 388–402. [Google Scholar] [CrossRef] [PubMed]
- Sittler, A.; Muriel, M.-P.; Marinello, M.; Brice, A.; Dunnen, W.D.; Alves, S. Deregulation of autophagy in postmortem brains of Machado-Joseph disease patients. Neuropathology 2017, 38, 113–124. [Google Scholar] [CrossRef]
- Griffin, J.L.; Cemal, C.K.; Pook, M.A. Defining a metabolic phenotype in the brain of a transgenic mouse model of spinocerebellar ataxia 3. Physiol. Genom. 2004, 16, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Toonen, L.J.A.; Overzier, M.; Evers, M.M.; Leon, L.G.; Van Der Zeeuw, S.A.J.; Mei, H.; Kielbasa, S.M.; Goeman, J.J.; Hettne, K.M.; Magnusson, O.T.; et al. Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model. Mol. Neurodegener. 2018, 13, 31. [Google Scholar] [CrossRef]
- Meles, S.K.; Kok, J.G.; De Jong, B.M.; Renken, R.J.; de Vries, J.J.; Spikman, J.M.; Ziengs, A.L.; Willemsen, A.T.; van der Horn, H.J.; Leenders, K.L.; et al. The cerebral metabolic topography of spinocerebellar ataxia type 3. NeuroImage Clin. 2018, 19, 90–97. [Google Scholar] [CrossRef]
- Saute, J.A.M.; Da Silva, A.C.F.; Souza, G.N.; Russo, A.D.; Donis, K.C.; Vedolin, L.; Saraiva-Pereira, M.L.; Portela, L.V.C.; Jardim, L.B. Body mass index is inversely correlated with the expanded CAG repeat length in SCA3/MJD patients. Cerebellum 2012, 11, 771–774. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.-S.; Chen, P.-P.; Lin, M.-T.; Qian, M.-Z.; Lin, H.-X.; Chen, X.-P.; Shang, X.-J.; Wang, D.-N.; Chen, Y.-C.; Jiang, B.; et al. Association Between Body Mass Index and Disease Severity in Chinese Spinocerebellar Ataxia Type 3 Patients. Cerebellum 2018, 17, 494–498. [Google Scholar] [CrossRef]
- Wang, P.-S.; Liu, R.-S.; Yang, B.-H.; Soong, B.-W. Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6: A voxel-based FDG-positron emission tomography analysis. J. Neurol. 2007, 254, 838–845. [Google Scholar] [CrossRef] [PubMed]
- Camara, A.K.S.; Zhou, Y.; Wen, P.-C.; Tajkhorshid, E.; Kwok, W.-M. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front. Physiol. 2017, 8, 460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Li, X.; Ning, G.; Zhu, S.; Ma, X.; Liu, X.; Liu, C.; Huang, M.; Schmitt, I.; Wüllner, U.; et al. The Machado–Joseph Disease Deubiquitinase Ataxin-3 Regulates the Stability and Apoptotic Function of p53. PLoS Biol. 2016, 14, e2000733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hübener, J.; Vauti, F.; Funke, C.; Wolburg, H.; Ye, Y.; Schmidt, T.; Wolburg-Buchholz, K.; Schmitt, I.; Gardyan, A.; Drießen, S.; et al. N-terminal ataxin-3 causes neurological symptoms with inclusions, endoplasmic reticulum stress and ribosomal dislocation. Brain 2011, 134, 1925–1942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabeya, Y.; Mizushima, N.; Ueno, T.; Yamamoto, A.; Kirisako, T.; Noda, T.; Kominami, E.; Ohsumi, Y.; Yoshimori, T. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J. 2000, 19, 5720–5728. [Google Scholar] [CrossRef]
- Dagda, R.K.; Cherra, S.J.; Kulich, S.M.; Tandon, A.; Park, D.; Chu, C.T. Loss of PINK1 Function Promotes Mitophagy through Effects on Oxidative Stress and Mitochondrial Fission. J. Biol. Chem. 2009, 284, 13843–13855. [Google Scholar] [CrossRef] [Green Version]
- Weber, J.J.; Golla, M.; Guaitoli, G.; Wanichawan, P.; Hayer, S.N.; Hauser, S.; Krahl, A.-C.; Nagel, M.; Samer, S.; Aronica, E.; et al. A combinatorial approach to identify calpain cleavage sites in the Machado-Joseph disease protein ataxin-3. Brain 2017, 140, 1280–1299. [Google Scholar] [CrossRef]
- Sena, P.P.; Weber, J.J.; Watchon, M.; Robinson, K.J.; Wassouf, Z.; Hauser, S.; Helm, J.; Abeditashi, M.; Schmidt, J.; Hübener-Schmid, J.; et al. Pathophysiological interplay between O -GlcNAc transferase and the Machado–Joseph disease protein ataxin-3. Proc. Natl. Acad. Sci. USA 2021, 118. [Google Scholar] [CrossRef]
Target Protein | Product Number | Species | Manufacturer | Dilution |
---|---|---|---|---|
ACTB | clone AC-15, A5441 | mouse | Merck, Kenilworth, NJ, USA | 1:10,000/ 1:5000 |
ATXN3 ATXN3 | clone 13H9L9, 702788 clone 1H9, MAB5360 | rabbit mouse | Thermo Fisher Scientific, Waltham, MA, USA Merck, Kenilworth, NJ, USA | 1:1000 1:4000 |
CS FIS1 | ab96600 ab96764 | rabbit rabbit | Abcam, Cambridge, UK Abcam, Cambridge, UK | 1:1000 1:2000 |
GAPDH | ab125247 | mouse | Abcam, Cambridge, UK | 1:2000 |
K63-pUb | clone D7A11, #5621 | rabbit | Cell Signaling Technology, Danvers, MA, USA | 1:500 |
LC3 | 0231 | mouse | nanoTools, Freiburg, Germany | 1:100 |
MFN2 | ab104632 | rabbit | Abcam, Cambridge, UK | 1:2000 |
OPA1 | 612606 | mouse | BD Bioscience, Franklin Lakes, NJ, USA | 1:1000 |
OXPHOS | ab110413 | mouse | Abcam, Cambridge, UK | 1.1000 |
p53 | clone 6H5E7, CSB-MA0240771A0m | mouse | Cusabio, Houston, TX, USA | 1:500 |
p62 | 5114S | rabbit | Cell Signaling Technology, Danvers, MA, USA | 1:1000 |
parkin PINK1 TOM20 TUBA | ab15954 sc-517353 ab56783 CP06 | rabbit mouse mouse mouse | Abcam, Cambridge, UK Santa Cruz, Inc, Dallas, TX, USA Abcam, Cambridge, UK Merck, Kenilworth, NJ, USA | 1:200 1:500 1:5000 1:5000 |
VDAC1 | Ab10527 | rabbit | Merck, Kenilworth, NJ, USA | 1:10,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harmuth, T.; Weber, J.J.; Zimmer, A.J.; Sowa, A.S.; Schmidt, J.; Fitzgerald, J.C.; Schöls, L.; Riess, O.; Hübener-Schmid, J. Mitochondrial Dysfunction in Spinocerebellar Ataxia Type 3 Is Linked to VDAC1 Deubiquitination. Int. J. Mol. Sci. 2022, 23, 5933. https://doi.org/10.3390/ijms23115933
Harmuth T, Weber JJ, Zimmer AJ, Sowa AS, Schmidt J, Fitzgerald JC, Schöls L, Riess O, Hübener-Schmid J. Mitochondrial Dysfunction in Spinocerebellar Ataxia Type 3 Is Linked to VDAC1 Deubiquitination. International Journal of Molecular Sciences. 2022; 23(11):5933. https://doi.org/10.3390/ijms23115933
Chicago/Turabian StyleHarmuth, Tina, Jonasz J. Weber, Anna J. Zimmer, Anna S. Sowa, Jana Schmidt, Julia C. Fitzgerald, Ludger Schöls, Olaf Riess, and Jeannette Hübener-Schmid. 2022. "Mitochondrial Dysfunction in Spinocerebellar Ataxia Type 3 Is Linked to VDAC1 Deubiquitination" International Journal of Molecular Sciences 23, no. 11: 5933. https://doi.org/10.3390/ijms23115933
APA StyleHarmuth, T., Weber, J. J., Zimmer, A. J., Sowa, A. S., Schmidt, J., Fitzgerald, J. C., Schöls, L., Riess, O., & Hübener-Schmid, J. (2022). Mitochondrial Dysfunction in Spinocerebellar Ataxia Type 3 Is Linked to VDAC1 Deubiquitination. International Journal of Molecular Sciences, 23(11), 5933. https://doi.org/10.3390/ijms23115933