The Association between Spermidine/Spermine N1-Acetyltransferase (SSAT) and Human Malignancies
Abstract
:1. Introduction
2. Involvement of SSAT in Cellular Mechanisms
2.1. Cell Cycle and DNA Damage
2.2. Cell Proliferation, Invasion, and Migration
2.3. Oncogenic Pathway
3. SSAT Alterations in Human Malignancies
3.1. Skin Cancer
3.2. Leukemia
3.3. Breast Cancer
3.4. Brain Tumor
3.5. Prostate Cancer
4. Therapeutic Potentials of SSAT
4.1. Cancer Biomarker
4.2. Non-Steroidal Anti-Inflammatory Drug Target
4.3. Polyamine Analogue
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coleman, C.S.; Pegg, A.E.; Megosh, L.C.; Guo, Y.; Sawicki, J.A.; O’Brien, T.G. Targeted expression of spermidine/spermine N1-acetyltransferase increases susceptibility to chemically induced skin carcinogenesis. Carcinogenesis 2002, 23, 359–364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegg, A.E. Spermidine/spermine-N(1)-acetyltransferase: A key metabolic regulator. Am. J. Physiol. Endocrinol. Metab. 2008, 294, E995–E1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsui, I.; Wiegand, L.; Pegg, A.E. Properties of spermidine N-acetyltransferase from livers of rats treated with carbon tetrachloride and its role in the conversion of spermidine into putrescine. J. Biol. Chem. 1981, 256, 2454–2459. [Google Scholar] [CrossRef]
- Hegde, S.S.; Chandler, J.; Vetting, M.W.; Yu, M.; Blanchard, J.S. Mechanistic and structural analysis of human spermidine/spermine N1-acetyltransferase. Biochemistry 2007, 46, 7187–7195. [Google Scholar] [CrossRef] [Green Version]
- Maksymiuk, A.W.; Sitar, D.S.; Ahmed, R.; Cheng, B.; Bach, H.; Bagchi, R.A.; Aroutiounova, N.; Tappia, P.S.; Ramjiawan, B. Spermidine/spermine N1-acetyltransferase-1 as a diagnostic biomarker in human cancer. Future Sci. OA 2018, 4, FSO345. [Google Scholar] [CrossRef] [Green Version]
- Tappia, P.S.; Maksymiuk, A.W.; Sitar, D.S.; Akhtar, P.S.; Khatun, N.; Parveen, R.; Ahmed, R.; Ahmed, R.B.; Cheng, B.; Huang, G.; et al. Predictive value and clinical significance of increased SSAT-1 activity in healthy adults. Future Sci. OA 2019, 5, FSO400. [Google Scholar] [CrossRef] [Green Version]
- Gamble, L.D.; Hogarty, M.D.; Liu, X.; Ziegler, D.S.; Marshall, G.; Norris, M.D.; Haber, M. Polyamine pathway inhibition as a novel therapeutic approach to treating neuroblastoma. Front. Oncol. 2012, 2, 162. [Google Scholar] [CrossRef] [Green Version]
- Casero, R.A., Jr.; Murray Stewart, T.; Pegg, A.E. Polyamine metabolism and cancer: Treatments, challenges and opportunities. Nat. Rev. Cancer 2018, 18, 681–695. [Google Scholar] [CrossRef]
- Murray Stewart, T.; Dunston, T.T.; Woster, P.M.; Casero, R.A., Jr. Polyamine catabolism and oxidative damage. J. Biol. Chem. 2018, 293, 18736–18745. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Vujcic, S.; Liang, P.; Diegelman, P.; Kramer, D.L.; Porter, C.W. Genomic identification and biochemical characterization of a second spermidine/spermine N1-acetyltransferase. Biochem. J. 2003, 373, 661–667. [Google Scholar] [CrossRef]
- Wang, Y.; Devereux, W.; Stewart, T.M.; Casero, R.A., Jr. Cloning and characterization of human polyamine-modulated factor-1, a transcriptional cofactor that regulates the transcription of the spermidine/spermine N(1)-acetyltransferase gene. J. Biol. Chem. 1999, 274, 22095–22101. [Google Scholar] [CrossRef] [Green Version]
- Smirnova, O.A.; Isaguliants, M.G.; Hyvonen, M.T.; Keinanen, T.A.; Tunitskaya, V.L.; Vepsalainen, J.; Alhonen, L.; Kochetkov, S.N.; Ivanov, A.V. Chemically induced oxidative stress increases polyamine levels by activating the transcription of ornithine decarboxylase and spermidine/spermine-N1-acetyltransferase in human hepatoma HUH7 cells. Biochimie 2012, 94, 1876–1883. [Google Scholar] [CrossRef]
- Sequeira, A.; Gwadry, F.G.; Ffrench-Mullen, J.M.; Canetti, L.; Gingras, Y.; Casero, R.A., Jr.; Rouleau, G.; Benkelfat, C.; Turecki, G. Implication of SSAT by gene expression and genetic variation in suicide and major depression. Arch. Gen. Psychiatry 2006, 63, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Gimelli, G.; Giglio, S.; Zuffardi, O.; Alhonen, L.; Suppola, S.; Cusano, R.; Lo Nigro, C.; Gatti, R.; Ravazzolo, R.; Seri, M. Gene dosage of the spermidine/spermine N(1)-acetyltransferase (SSAT) gene with putrescine accumulation in a patient with a Xp21.1p22.12 duplication and keratosis follicularis spinulosa decalvans (KFSD). Hum. Genet. 2002, 111, 235–241. [Google Scholar] [CrossRef]
- Tse, R.T.; Wong, C.Y.; Chiu, P.K.; Ng, C.F. The Potential Role of Spermine and Its Acetylated Derivative in Human Malignancies. Int. J. Mol. Sci. 2022, 23, 1258. [Google Scholar] [CrossRef]
- Peng, Q.; Wong, C.Y.; Cheuk, I.W.; Teoh, J.Y.; Chiu, P.K.; Ng, C.F. The Emerging Clinical Role of Spermine in Prostate Cancer. Int. J. Mol. Sci. 2021, 22, 4382. [Google Scholar] [CrossRef]
- Chiu, P.K.; Fung, Y.H.; Teoh, J.Y.; Chan, C.H.; Lo, K.L.; Li, K.M.; Tse, R.T.; Leung, C.H.; Wong, Y.P.; Roobol, M.J.; et al. Urine spermine and multivariable Spermine Risk Score predict high-grade prostate cancer. Prostate Cancer Prostatic Dis. 2021, 24, 542–548. [Google Scholar] [CrossRef]
- Park, M.H.; Igarashi, K. Polyamines and their metabolites as diagnostic markers of human diseases. Biomol. Ther. 2013, 21, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bettuzzi, S.; Davalli, P.; Astancolle, S.; Carani, C.; Madeo, B.; Tampieri, A.; Corti, A. Tumor progression is accompanied by significant changes in the levels of expression of polyamine metabolism regulatory genes and clusterin (sulfated glycoprotein 2) in human prostate cancer specimens. Cancer Res. 2000, 60, 28–34. [Google Scholar]
- Thakur, V.S.; Aguila, B.; Brett-Morris, A.; Creighton, C.J.; Welford, S.M. Spermidine/spermine N1-acetyltransferase 1 is a gene-specific transcriptional regulator that drives brain tumor aggressiveness. Oncogene 2019, 38, 6794–6800. [Google Scholar] [CrossRef]
- Brett-Morris, A.; Wright, B.M.; Seo, Y.; Pasupuleti, V.; Zhang, J.; Lu, J.; Spina, R.; Bar, E.E.; Gujrati, M.; Schur, R.; et al. The polyamine catabolic enzyme SAT1 modulates tumorigenesis and radiation response in GBM. Cancer Res. 2014, 74, 6925–6934. [Google Scholar] [CrossRef] [Green Version]
- Zahedi, K.; Bissler, J.J.; Wang, Z.; Josyula, A.; Lu, L.; Diegelman, P.; Kisiel, N.; Porter, C.W.; Soleimani, M. Spermidine/spermine N1-acetyltransferase overexpression in kidney epithelial cells disrupts polyamine homeostasis, leads to DNA damage, and causes G2 arrest. Am. J. Physiol. Cell Physiol. 2007, 292, C1204–C1215. [Google Scholar] [CrossRef]
- Mehraein-Ghomi, F.; Basu, H.S.; Church, D.R.; Hoffmann, F.M.; Wilding, G. Androgen receptor requires JunD as a coactivator to switch on an oxidative stress generation pathway in prostate cancer cells. Cancer Res. 2010, 70, 4560–4568. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Ruan, P.; Zhao, Y.; Li, X.; Wang, J.; Wu, X.; Liu, T.; Wang, S.; Hou, J.; Li, W.; et al. Spermidine/spermine N1-acetyltransferase regulates cell growth and metastasis via AKT/beta-catenin signaling pathways in hepatocellular and colorectal carcinoma cells. Oncotarget 2017, 8, 1092–1109. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Liu, B.; Wang, W.; Jiang, G.S.; Li, W.; Yang, Y.P.; Xu, C.X.; Yan, Y.F.; Liu, X.X. Adenovirus-mediated expression of spermidine/spermine N1-acetyltransferase gene induces S-phase arrest in human colorectal cancer cells. Oncol. Rep. 2008, 20, 1229–1235. [Google Scholar]
- Ou, Y.; Wang, S.J.; Li, D.; Chu, B.; Gu, W. Activation of SAT1 engages polyamine metabolism with p53-mediated ferroptotic responses. Proc. Natl. Acad. Sci. USA 2016, 113, E6806–E6812. [Google Scholar] [CrossRef] [Green Version]
- Soussi, T. The p53 tumor suppressor gene: From molecular biology to clinical investigation. Ann. N. Y. Acad. Sci. 2000, 910, 121–137; discussion 129–137. [Google Scholar] [CrossRef]
- Yu, S.; Jia, J.; Zheng, J.; Zhou, Y.; Jia, D.; Wang, J. Recent Progress of Ferroptosis in Lung Diseases. Front. Cell Dev. Biol. 2021, 9, 789517. [Google Scholar] [CrossRef] [PubMed]
- Battaglia, V.; DeStefano Shields, C.; Murray-Stewart, T.; Casero, R.A., Jr. Polyamine catabolism in carcinogenesis: Potential targets for chemotherapy and chemoprevention. Amino Acids 2014, 46, 511–519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nowotarski, S.L.; Feith, D.J.; Shantz, L.M. Skin Carcinogenesis Studies Using Mouse Models with Altered Polyamines. Cancer Growth Metastasis 2015, 8, 17–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pirnes-Karhu, S.; Jantunen, E.; Mantymaa, P.; Mustjoki, S.; Alhonen, L.; Uimari, A. Spermidine/spermine N(1)-acetyltransferase activity associates with white blood cell count in myeloid leukemias. Exp. Hematol. 2014, 42, 574–580. [Google Scholar] [CrossRef]
- Cervelli, M.; Bellavia, G.; Fratini, E.; Amendola, R.; Polticelli, F.; Barba, M.; Federico, R.; Signore, F.; Gucciardo, G.; Grillo, R.; et al. Spermine oxidase (SMO) activity in breast tumor tissues and biochemical analysis of the anticancer spermine analogues BENSpm and CPENSpm. BMC Cancer 2010, 10, 555. [Google Scholar] [CrossRef]
- Wallace, H.M.; Duthie, J.; Evans, D.M.; Lamond, S.; Nicoll, K.M.; Heys, S.D. Alterations in polyamine catabolic enzymes in human breast cancer tissue. Clin. Cancer Res. 2000, 6, 3657–3661. [Google Scholar]
- Huang, W.; Eickhoff, J.C.; Mehraein-Ghomi, F.; Church, D.R.; Wilding, G.; Basu, H.S. Expression of spermidine/spermine N(1) -acetyl transferase (SSAT) in human prostate tissues is related to prostate cancer progression and metastasis. Prostate 2015, 75, 1150–1159. [Google Scholar] [CrossRef] [Green Version]
- Maksymiuk, A.W.; Tappia, P.S.; Sitar, D.S.; Akhtar, P.S.; Khatun, N.; Parveen, R.; Ahmed, R.; Ahmed, R.B.; Cheng, B.; Huang, G.; et al. Use of amantadine as substrate for SSAT-1 activity as a reliable clinical diagnostic assay for breast and lung cancer. Future Sci. OA 2019, 5, FSO365. [Google Scholar] [CrossRef] [Green Version]
- Babbar, N.; Ignatenko, N.A.; Casero, R.A., Jr.; Gerner, E.W. Cyclooxygenase-independent induction of apoptosis by sulindac sulfone is mediated by polyamines in colon cancer. J. Biol. Chem. 2003, 278, 47762–47775. [Google Scholar] [CrossRef] [Green Version]
- Meyskens, F.L., Jr.; McLaren, C.E.; Pelot, D.; Fujikawa-Brooks, S.; Carpenter, P.M.; Hawk, E.; Kelloff, G.; Lawson, M.J.; Kidao, J.; McCracken, J.; et al. Difluoromethylornithine plus sulindac for the prevention of sporadic colorectal adenomas: A randomized placebo-controlled, double-blind trial. Cancer Prev. Res. 2008, 1, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Contreras, F.; Munoz-Uribe, M.; Perez-Laines, J.; Ascencio-Leal, L.; Rivera-Dictter, A.; Martin-Martin, A.; Burgos, R.A.; Alarcon, P.; Lopez-Munoz, R. Searching for Drug Synergy against Cancer Through Polyamine Metabolism Impairment: Insight Into the Metabolic Effect of Indomethacin on Lung Cancer Cells. Front. Pharm. 2019, 10, 1670. [Google Scholar] [CrossRef]
- Gerner, E.W.; Bruckheimer, E.; Cohen, A. Cancer pharmacoprevention: Targeting polyamine metabolism to manage risk factors for colon cancer. J. Biol. Chem. 2018, 293, 18770–18778. [Google Scholar] [CrossRef] [Green Version]
- Gabrielson, E.; Tully, E.; Hacker, A.; Pegg, A.E.; Davidson, N.E.; Casero, R.A., Jr. Induction of spermidine/spermine N1-acetyltransferase in breast cancer tissues treated with the polyamine analogue N1, N11-diethylnorspermine. Cancer Chemother. Pharm. 2004, 54, 122–126. [Google Scholar] [CrossRef]
- Tian, Y.; Wang, S.; Wang, B.; Zhang, J.; Jiang, R.; Zhang, W. Overexpression of SSAT by DENSPM treatment induces cell detachment and apoptosis in glioblastoma. Oncol. Rep. 2012, 27, 1227–1232. [Google Scholar] [CrossRef] [PubMed]
- Goyal, L.; Supko, J.G.; Berlin, J.; Blaszkowsky, L.S.; Carpenter, A.; Heuman, D.M.; Hilderbrand, S.L.; Stuart, K.E.; Cotler, S.; Senzer, N.N.; et al. Phase 1 study of N(1),N(11)diethylnorspermine (DENSPM) in patients with advanced hepatocellular carcinoma. Cancer Chemother. Pharm. 2013, 72, 1305–1314. [Google Scholar] [CrossRef] [PubMed]
- Hahm, H.A.; Ettinger, D.S.; Bowling, K.; Hoker, B.; Chen, T.L.; Zabelina, Y.; Casero, R.A., Jr. Phase I study of N(1),N(11)-diethylnorspermine in patients with non-small cell lung cancer. Clin. Cancer Res. 2002, 8, 684–690. [Google Scholar] [PubMed]
- Murray Stewart, T.; Desai, A.A.; Fitzgerald, M.L.; Marton, L.J.; Casero, R.A., Jr. A phase I dose-escalation study of the polyamine analog PG-11047 in patients with advanced solid tumors. Cancer Chemother. Pharm. 2020, 85, 1089–1096. [Google Scholar] [CrossRef]
- Choi, W.; Gerner, E.W.; Ramdas, L.; Dupart, J.; Carew, J.; Proctor, L.; Huang, P.; Zhang, W.; Hamilton, S.R. Combination of 5-fluorouracil and N1,N11-diethylnorspermine markedly activates spermidine/spermine N1-acetyltransferase expression, depletes polyamines, and synergistically induces apoptosis in colon carcinoma cells. J. Biol. Chem. 2005, 280, 3295–3304. [Google Scholar] [CrossRef] [Green Version]
- Allen, W.L.; McLean, E.G.; Boyer, J.; McCulla, A.; Wilson, P.M.; Coyle, V.; Longley, D.B.; Casero, R.A., Jr.; Johnston, P.G. The role of spermidine/spermine N1-acetyltransferase in determining response to chemotherapeutic agents in colorectal cancer cells. Mol. Cancer Ther. 2007, 6, 128–137. [Google Scholar] [CrossRef] [Green Version]
- Meyskens, F.L., Jr.; Gerner, E.W. Development of difluoromethylornithine (DFMO) as a chemoprevention agent. Clin. Cancer Res. 1999, 5, 945–951. [Google Scholar]
- Hector, S.; Porter, C.W.; Kramer, D.L.; Clark, K.; Prey, J.; Kisiel, N.; Diegelman, P.; Chen, Y.; Pendyala, L. Polyamine catabolism in platinum drug action: Interactions between oxaliplatin and the polyamine analogue N1,N11-diethylnorspermine at the level of spermidine/spermine N1-acetyltransferase. Mol. Cancer Ther. 2004, 3, 813–822. [Google Scholar]
- Tummala, R.; Diegelman, P.; Hector, S.; Kramer, D.L.; Clark, K.; Zagst, P.; Fetterly, G.; Porter, C.W.; Pendyala, L. Combination effects of platinum drugs and N1, N11 diethylnorspermine on spermidine/spermine N1-acetyltransferase, polyamines and growth inhibition in A2780 human ovarian carcinoma cells and their oxaliplatin and cisplatin-resistant variants. Cancer Chemother. Pharm. 2011, 67, 401–414. [Google Scholar] [CrossRef] [Green Version]
- Murray Stewart, T.; Von Hoff, D.; Fitzgerald, M.; Marton, L.J.; Becerra, C.H.R.; Boyd, T.E.; Conkling, P.R.; Garbo, L.E.; Jotte, R.M.; Richards, D.A.; et al. A Phase Ib multicenter, dose-escalation study of the polyamine analogue PG-11047 in combination with gemcitabine, docetaxel, bevacizumab, erlotinib, cisplatin, 5-fluorouracil, or sunitinib in patients with advanced solid tumors or lymphoma. Cancer Chemother. Pharm. 2021, 87, 135–144. [Google Scholar] [CrossRef]
SSAT Level | Cell Lines | Organ Origin | Impact | References |
---|---|---|---|---|
Overexpression | HEK-293 | Kidney (Healthy) | Induced cell cycle arrest, increased cell death, increased DNA damage, activated DNA repair | [22] |
LNCaP | Prostate (PCa) | Increased H2O2 production, increased ROS production | [23] | |
HepG2, SMMC7721 | Liver (HCC) | Inhibited colony formation, inhibited cell migration, inhibited cell invasion | [24] | |
HCT116 | Colon (CRC) | Inhibited colony formation, inhibited cell migration, inhibited cell invasion | [24] | |
HT-29, LoVo | Colon (CRC) | Inhibited cell growth, induced cell cycle arrest | [25] | |
Induction | H1299 | Lung (NSCLC) | Upregulated p53 expression, increased ROS production, induced ferroptosis | [26] |
Knockdown | U87MG | Brain (Glioblastoma) | Overexpression of genes involved in cell cycle, mitosis, DNA metabolism, DNA repair | [20] |
U87MG, D54MG | Brain (Glioblastoma) | Histone H3 acetylation, homologous recombination, increased DNA damage | [21] | |
Bel7402 | Liver (HCC) | Increased cell proliferation, increased cell migration, increased cell invasion | [24] | |
HT-29 | Colon (CRC) | Increased cell proliferation, increased cell migration, increased cell invasion | [24] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tse, R.T.-H.; Ding, X.; Wong, C.Y.-P.; Cheng, C.K.-L.; Chiu, P.K.-F.; Ng, C.-F. The Association between Spermidine/Spermine N1-Acetyltransferase (SSAT) and Human Malignancies. Int. J. Mol. Sci. 2022, 23, 5926. https://doi.org/10.3390/ijms23115926
Tse RT-H, Ding X, Wong CY-P, Cheng CK-L, Chiu PK-F, Ng C-F. The Association between Spermidine/Spermine N1-Acetyltransferase (SSAT) and Human Malignancies. International Journal of Molecular Sciences. 2022; 23(11):5926. https://doi.org/10.3390/ijms23115926
Chicago/Turabian StyleTse, Ryan Tsz-Hei, Xiaofan Ding, Christine Yim-Ping Wong, Carol Ka-Lo Cheng, Peter Ka-Fung Chiu, and Chi-Fai Ng. 2022. "The Association between Spermidine/Spermine N1-Acetyltransferase (SSAT) and Human Malignancies" International Journal of Molecular Sciences 23, no. 11: 5926. https://doi.org/10.3390/ijms23115926
APA StyleTse, R. T. -H., Ding, X., Wong, C. Y. -P., Cheng, C. K. -L., Chiu, P. K. -F., & Ng, C. -F. (2022). The Association between Spermidine/Spermine N1-Acetyltransferase (SSAT) and Human Malignancies. International Journal of Molecular Sciences, 23(11), 5926. https://doi.org/10.3390/ijms23115926