The Rationale for “Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin” Approach for Cancer Treatment
Abstract
:1. Introduction
2. Mechanisms of Cytotoxicity of Cisplatin
3. Photoactivity and Thermoactivity of Cisplatin
3.1. Photochemical and Photophysical Properties of Metal Complexes
- Spin selection rule: ∆S = 0. Transitions with a spin multiplicity change are not allowed, where S = spin quantum number. Transitions between states of the same spin multiplicity (e.g., singlet, triplet) are allowed, and between states of different spin multiplicity (singlet—triplet) are prohibited.
- Laporte selection rule: ∆ℓ = ± 1 (ℓ = angular momentum quantum number); only transitions between subsequent sublevels are allowed (for example s → p, p → d, d → f …, or p → s, d → p, f → d, …)
3.2. Photodynamic Therapy (PDT)
PDT Mechanism
- Type-I reaction: involves electron or hydrogen atom transfer, between the photosensitizer in T1 state and the biological substrate molecules, producing reactive oxygen species (ROS), which tend to react with ground state 3O2, resulting in oxidated products;
- Type-II reaction: refers to the interaction between photosensitizer-excited T1 molecules and oxygen in the triplet ground state (3O2) by energy transfer, resulting in its transition into a highly reactive species, singlet oxygen (1O2).
3.3. Photoactivated Chemotherapy (PACT)
3.4. Photothermal Therapy (PTT)
Photothermal Interactions
3.5. Photobiomodulation
4. Laser-Induced Thermal Therapy (LITT)
4.1. Physics of Laser Radiation
4.2. Biological Effects Resulting from the Interaction between Laser Radiation and Tissue
4.3. Equipment Used for LITT
5. Laser Photochemotherapy (LPC)
6. Initial Testing of Laser-Induced Thermal Therapy and Chemotherapy as an Alternative Treatment for Head and Neck Cancer
7. The Development of the Combination of Cisplatin and Laser Treatment for Cancer
8. Intratumor Injections of Cisplatin and Laser-Induced Thermal Therapy (CDDP–LITT): A Change in Paradigm for Advanced Head and Neck Cancer
9. Initial Studies on Microvascular Collapse (MVC) Enhancement by CDDP–LITT
10. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghosh, S. Cisplatin: The first metal based anticancer drug. Bioorg. Chem. 2019, 88, 102925. [Google Scholar] [CrossRef] [PubMed]
- Galanski, M.; Jakupec, M.A.; Keppler, B.K. Update of the preclinical situation of anticancer platinum complexes: Novel design strategies and innovative analytical approaches. Curr. Med. Chem. 2005, 12, 2075–2094. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Krishnamurthy, S. Cellular responses to cisplatin-induced DNA damage. J. Nucleic Acids 2010, 2010, 201367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dasari, S.; Bernard Tchounwou, P. Cisplatin in cancer therapy: Molecular mechanisms of action. Eur. J. Pharmacol. 2014, 740, 364–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyrone, M. Ueber die Einwirkung des Ammoniaks auf Platinchlorür. Justus Liebigs Ann. Chem. 1844, 51, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Kauffman, G.B.; Pentimalli, R.; Doldi, S.; Hall, M.D. Michele Peyrone (1813–1883), discoverer of Cisplatin. Platin. Met. Rev. 2010, 54, 250–256. [Google Scholar] [CrossRef]
- Werner, A. Beitrag zur Konstitution anorganischer Verbindungen. Z. Anorg. Chem. 1893, 3, 267–330. [Google Scholar] [CrossRef] [Green Version]
- Rancoule, C.; Guy, J.B.; Vallard, A.; Ben Mrad, M.; Rehailia, A.; Magné, N. Les 50 ans du cisplatine. Bull. Cancer 2017, 104, 167–176. [Google Scholar] [CrossRef]
- Rosenberg, B.; Van Camp, L.; Krigas, T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965, 205, 698–699. [Google Scholar] [CrossRef]
- Rosenberg, B.; VanCamp, L.; Trosko, J.E.; Mansour, V.H. Platinum compounds: A new class of potent antitumour agents. Nature 1969, 222, 385–386. [Google Scholar] [CrossRef]
- Wiltshaw, E. Cisplatin in the treatment of cancer. Platin. Met. Rev. 1979, 23, 90–98. [Google Scholar]
- Mantri, Y.; Baik, M.-H. Computational Studies: Cisplatin. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons: Chichester, UK, 2011; pp. 1–16. [Google Scholar]
- Astolfi, L.; Ghiselli, S.; Guaran, V.; Chicca, M.; Simoni, E.; Olivetto, E.; Lelli, G.; Martini, A. Correlation of adverse effects of cisplatin administration in patients affected by solid tumours: A retrospective evaluation. Oncol. Rep. 2013, 29, 1285–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: A review for chemists. Dalt. Trans. 2018, 47, 6645–6653. [Google Scholar] [CrossRef] [PubMed]
- Makovec, T. Cisplatin and beyond: Molecular mechanisms of action and drug resistance development in cancer chemotherapy. Radiol. Oncol. 2019, 53, 148–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, H.; Sadler, P.J. How promising is phototherapy for cancer? Br. J. Cancer 2020, 123, 871–873. [Google Scholar] [CrossRef] [PubMed]
- Paiva, M.B.; Joo, J.; Abrahao, M.; Ribeiro, J.C.; Cervantes, O.; Sercarz, J.A. Update on laser photochemotherapy: An alternative for cancer treatment. Anticancer Agents Med. Chem. 2011, 11, 772–779. [Google Scholar] [CrossRef]
- Ivanov, A.I.; Christodoulou, J.; Parkinson, J.A.; Barnham, K.J.; Tucker, A.; Woodrow, J.; Sadler, P.J. Cisplatin binding sites on human albumin. J. Biol. Chem. 1998, 273, 14721–14730. [Google Scholar] [CrossRef] [Green Version]
- Ferraro, G.; Massai, L.; Messori, L.; Merlino, A. Cisplatin binding to human serum albumin: A structural study. Chem. Commun. 2015, 51, 9436–9439. [Google Scholar] [CrossRef]
- Dabrowiak, J.C. Metals in Medicine, 2nd ed.; John Wiley & Sons: Chichester, UK, 2012; Volume 3, pp. 73–107. [Google Scholar]
- Hu, W.; Luo, Q.; Wu, K.; Li, X.; Wang, F.; Chen, Y.; Ma, X.; Wang, J.; Liu, J.; Xiong, S.; et al. The anticancer drug cisplatin can cross-link the interdomain zinc site on human albumin. Chem. Commun. 2011, 47, 6006–6008. [Google Scholar] [CrossRef]
- Gale, G.R.; Morris, C.R.; Atkins, L.M.; Smith, A.B. Binding of an Antitumor Platinum Compound to Cells as Influenced by Physical Factors and Pharmacologically Active Agents. Cancer Res. 1973, 33, 813–818. [Google Scholar]
- Hromas, R.A.; North, J.A.; Burns, C.P. Decreased cisplatin uptake by resistant L1210 leukemia cells. Cancer Lett. 1987, 36, 197–201. [Google Scholar] [CrossRef]
- Mann, S.C.; Andrews, P.A.; Howell, S.B. Short-term cis-diamminedichloroplatinum(II) accumulation in sensitive and resistant human ovarian carcinoma cells. Cancer Chemother. Pharmacol. 1990, 25, 236–240. [Google Scholar] [CrossRef] [PubMed]
- Andrews, P.A.; Mann, S.C.; Velury, S.; Howell, S.B. Cisplatin Uptake Mediated Cisplatin-Resistance in Human Ovarian Carcinoma Cells. Platin. Other Met. Coord. Compd. Cancer Chemother. 1988, 54, 248–254. [Google Scholar] [CrossRef]
- Riddell, I.A.; Lippard, S.J. Cisplatin and oxaliplatin: Our current understanding of their actions. In Metallo-Drugs: Development and Action of Anticancer Agents; Walter de Gruyter: Berlin, Germany, 2018; Volume 18, pp. 1–42. [Google Scholar]
- Eljack, N.D.; Ma, H.Y.M.; Drucker, J.; Shen, C.; Hambley, T.W.; New, E.J.; Friedrich, T.; Clarke, R.J. Mechanisms of cell uptake and toxicity of the anticancer drug cisplatin. Metallomics 2014, 6, 2126–2133. [Google Scholar] [CrossRef] [Green Version]
- Ishida, S.; Lee, J.; Thiele, D.J.; Herskowitz, I. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proc. Natl. Acad. Sci. USA 2002, 99, 14298–14302. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Okuda, T.; Holzer, A.; Howell, S.B. The copper transporter CTR1 regulates cisplatin uptake in Saccharomyces cerevisiae. Mol. Pharmacol. 2002, 62, 1154–1159. [Google Scholar] [CrossRef] [Green Version]
- Song, I.S.; Savaraj, N.; Siddik, Z.H.; Liu, P.; Wei, Y.; Wu, C.J.; Kuo, M.T. Role of human copper transporter Ctr1 in the transport of platinum-based antitumor agents in cisplatin-sensitive and cisplatin-resistant cells. Mol. Cancer Ther. 2004, 3, 1543–1549. [Google Scholar]
- Zisowsky, J.; Koegel, S.; Leyers, S.; Devarakonda, K.; Kassack, M.U.; Osmak, M.; Jaehde, U. Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. Biochem. Pharmacol. 2007, 73, 298–307. [Google Scholar] [CrossRef]
- Pabla, N.; Murphy, R.F.; Liu, K.; Dong, Z. The copper transporter Ctr1 contributes to cisplatin uptake by renal tubular cells during cisplatin nephrotoxicity. Am. J. Physiol. Ren. Physiol. 2009, 296, 505–511. [Google Scholar] [CrossRef]
- Larson, C.A.; Adams, P.L.; Jandial, D.D.; Blair, B.G.; Safaei, R.; Howell, S.B. The role of the N-terminus of mammalian copper transporter 1 in the cellular accumulation of cisplatin. Biochem. Pharmacol. 2010, 80, 448–454. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.H.W.; Yan, J.J.; Chen, W.C.; Kuo, M.T.; Lai, Y.H.; Lai, W.W.; Liu, H.S.; Su, W.C. Predictive and prognostic value of human copper transporter 1 (hCtr1) in patients with stage III non-small-cell lung cancer receiving first-line platinum-based doublet chemotherapy. Lung Cancer 2012, 75, 228–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalayda, G.V.; Wagner, C.H.; Jaehde, U. Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells. J. Inorg. Biochem. 2012, 116, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Holzer, A.K.; Howell, S.B. The internalization and degradation of human copper transporter 1 following cisplatin exposure. Cancer Res. 2006, 66, 10944–10952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ivy, K.D.; Kaplan, J.H. A re-evaluation of the role of hctr1, the human high-affinity copper transporter, in platinum-drug entry into human cells. Mol. Pharmacol. 2013, 83, 1237–1246. [Google Scholar] [CrossRef] [Green Version]
- Arnesano, F.; Scintilla, S.; Natile, G. Interaction between platinum complexes and a methionine motif found in copper transport proteins. Angew. Chem. Int. Ed. 2007, 46, 9062–9064. [Google Scholar] [CrossRef]
- Lasorsa, A.; Natile, G.; Rosato, A.; Tadini-Buoninsegni, F.; Arnesano, F. Monitoring Interactions Inside Cells by Advanced Spectroscopies: Overview of Copper Transporters and Cisplatin. Curr. Med. Chem. 2018, 25, 462–477. [Google Scholar] [CrossRef]
- Blair, B.G.; Larson, C.; Safaei, R.; Howell, S.B. Copper transporter 2 regulates the cellular accumulation and cytotoxicity of cisplatin and carboplatin. Clin. Cancer Res. 2009, 15, 4312–4321. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.P.; Fofana, M.; Chan, J.; Chang, C.J.; Howell, S.B. Copper transporter 2 regulates intracellular copper and sensitivity to cisplatin. Metallomics 2014, 6, 654–661. [Google Scholar] [CrossRef] [Green Version]
- Bompiani, K.M.; Tsai, C.Y.; Achatz, F.P.; Liebig, J.K.; Howell, S.B. Copper transporters and chaperones CTR1, CTR2, ATOX1, and CCS as determinants of cisplatin sensitivity. Metallomics 2016, 8, 951–962. [Google Scholar] [CrossRef] [Green Version]
- Yonezawa, A.; Masuda, S.; Yokoo, S.; Katsura, T.; Inui, K.I. Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family). J. Pharmacol. Exp. Ther. 2006, 319, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Nieskens, T.T.G.; Peters, J.G.P.; Dabaghie, D.; Korte, D.; Jansen, K.; Van Asbeck, A.H.; Tavraz, N.N.; Friedrich, T.; Russel, F.G.M.; Masereeuw, R.; et al. Expression of Organic Anion Transporter 1 or 3 in Human Kidney Proximal Tubule Cells Reduces Cisplatin Sensitivity. Drug Metab. Dispos. 2018, 46, 592–599. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calandrini, V.; Arnesano, F.; Galliani, A.; Nguyen, T.H.; Ippoliti, E.; Carloni, P.; Natile, G. Platination of the copper transporter ATP7A involved in anticancer drug resistance. Dalt. Trans. 2014, 43, 12085–12094. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.H.; Chang, J.Y. New insights into mechanisms of cisplatin resistance: From tumor cell to microenvironment. Int. J. Mol. Sci. 2019, 20, 4136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelland, L. The resurgence of platinum-based cancer chemotherapy. Nat. Rev. Cancer 2007, 7, 573–584. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Song, L.; Lippard, S.J. Visualizing inhibition of nucleosome mobility and transcription by cisplatin-DNA interstrand crosslinks in live mammalian cells. Cancer Res. 2013, 73, 4451–4460. [Google Scholar] [CrossRef] [Green Version]
- Sherman, S.E.; Gibson, D.; Wang, A.H.J.; Lippard, S.J. X-ray structure of the major adduct of the anticancer drug cisplatin with DNA: Cis-[Pt(NH3)2{d(pGpG)}]. Science 1985, 230, 412–417. [Google Scholar] [CrossRef]
- Fichtinger-Schepman, A.M.J.; Lohman, P.H.M.; van der Veer, J.L.; den Hartog, J.H.J.; Reedijk, J. Adducts of the Antitumor Drug cis-Diamminedichloroplatinum(II) with DNA: Formation, Identification, and Quantitation. Biochemistry 1985, 24, 707–713. [Google Scholar] [CrossRef]
- Szaciłowski, K.; Macyk, W.; Drzewiecka-Matuszek, A.; Brindell, M.; Stochel, G. Bioinorganic photochemistry: Frontiers and mechanisms. Chem. Rev. 2005, 105, 2647–2694. [Google Scholar] [CrossRef]
- Vo-Dinh, T. Biomedical Photonics Handbook; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Boudox, C. Fundamentals of Biomedical Optics, 1st ed.; Pollux: San Francisco, CA, USA, 2016. [Google Scholar]
- Jesionek, A.; Von Tappeiner, H. Zur Behandlung der Hautcarcinome mit fluoreszierenden Stoffen. Dtsch. Arch. Klin. Medizin. 1905, 82, 223–226. [Google Scholar]
- Ciamician, G. MODERN civilization is the daughter of coal, for this offers to mankind the solar. Science 1912, XXXVI, 926. [Google Scholar]
- Wasgestian, F.V. Balzani und V. Carassiti: Photochemistry of Coordination Compounds. Academic Press, London, New York 1970. 432 Seiten. Preis: 150 s. Berichte der Bunsengesellschaft für Phys. Chemie 1971, 75, 179. [Google Scholar] [CrossRef]
- Williams, J.A.G. Photochemistry and photophysics of coordination compounds: Platinum. Top. Curr. Chem. 2007, 281, 205–268. [Google Scholar] [CrossRef]
- Ostrowski, A.D.; Ford, P.C. Metal complexes as photochemical nitric oxide precursors: Potential applications in the treatment of tumors. Dalt. Trans. 2009, 10660–10669. [Google Scholar] [CrossRef]
- Shaili, E. Platinum anticancer drugs and photochemotherapeutic agents: Recent advances and future developments. Sci. Prog. 2014, 97, 20–40. [Google Scholar] [CrossRef] [PubMed]
- Farrer, N.J.; Salassa, L.; Sadler, P.J. Photoactivated Chemotherapy (PACT): The potential of excited-state d-block metals in medicine. Dalt. Trans. 2009, 10690–10701. [Google Scholar] [CrossRef] [PubMed]
- Thomson, A.J.; Williams, R.J.P.; Reslova, S. The chemistry of complexes related to cis-Pt(NH3)2Cl2. An anti-tumour drug. In Structure and Bonding; Springer: Berlin, Germany, 2005; Volume 11. [Google Scholar]
- Macka, M.; Borák, J.; Seménková, L.; Kiss, F. Decomposition of cisplatin in aqueous solutions containing chlorides by ultrasonic energy and light. J. Pharm. Sci. 1994, 83, 815–818. [Google Scholar] [CrossRef] [PubMed]
- Corde, S.; Balosso, J.; Elleaume, H.; Renier, M.; Joubert, A.; Biston, M.C.; Adam, J.F.; Charvet, A.M.; Brochard, T.; Le Bas, J.F.; et al. Synchrotron photoactivation of cisplatin elicits an extra number of DNA breaks that stimulate RAD51-mediated repair pathways. Cancer Res. 2003, 63, 3221–3227. [Google Scholar]
- Biston, M.C.; Joubert, A.; Adam, J.F.; Elleaume, H.; Bohic, S.; Charvet, A.M.; Estève, F.; Foray, N.; Balosso, J. Cure of Fisher Rats Bearing Radioresistant F98 Glioma Treated with cis-Platinum and Irradiated with Monochromatic Synchrotron X-Rays. Cancer Res. 2004, 64, 2317–2323. [Google Scholar] [CrossRef] [Green Version]
- Biston, M.C.; Joubert, A.; Charvet, A.M.; Balosso, J.; Foray, N. In vitro and in vivo optimization of an anti-glioma modality based on synchrotron x-ray photoactivation of platinated drugs. Radiat. Res. 2009, 172, 348–358. [Google Scholar] [CrossRef]
- Bednarski, P.; Mackay, F.; Sadler, P. Photoactivatable Platinum Complexes. Anticancer Agents Med. Chem. 2008, 7, 75–93. [Google Scholar] [CrossRef]
- Korbelik, M. Induction of tumor immunity by photodynamic therapy. J. Clin. Laser Med. Surg. 1996, 14, 329–334. [Google Scholar] [CrossRef] [PubMed]
- Harris, A.L. Hypoxia-A key regulatory factor in tumour growth. Nat. Rev. Cancer 2002, 2, 38–47. [Google Scholar] [CrossRef] [PubMed]
- Nahabedian, M.Y.; Cohen, R.A.; Contino, M.F.; Terem, T.M.; Wright, W.H.; Berns, M.W.; Wile, A.G. Combination cytotoxic chemotherapy with cisplatin or doxorubicin and photodynamic therapy in murine tumors. J. Natl. Cancer Inst. 1988, 80, 739–743. [Google Scholar] [CrossRef] [PubMed]
- Crescenzi, E.; Chiaviello, A.; Canti, G.; Reddi, E.; Veneziani, B.M.; Palumbo, G. Low doses of cisplatin or gemcitabine plus Photofrin/photodynamic therapy: Disjointed cell cycle phase-related activity accounts for synergistic outcome in metastatic non-small cell lung cancer cells (H1299). Mol. Cancer Ther. 2006, 5, 776–785. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.-Q.; Ma, H.-Q.; Liu, A.-H.; Zhang, Y.-Z. Synergistic anticancer activity of 5-aminolevulinic acid photodynamic therapy in combination with low-dose cisplatin on Hela cells. Asian Pac. J. Cancer Prev. 2013, 14, 3023–3028. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.-H.; Yu, C.-C. Photodynamic therapy with 5-aminolevulinic acid (ALA) impairs tumor initiating and chemo-resistance property in head and neck cancer-derived cancer stem cells. PLoS ONE 2014, 9, e87129. [Google Scholar] [CrossRef]
- Ahn, J.-C.; Biswas, R.; Mondal, A.; Lee, Y.-K.; Chung, P.-S. Cisplatin enhances the efficacy of 5-aminolevulinic acid mediated photodynamic therapy in human head and neck squamous cell carcinoma. Gen. Physiol. Biophys. 2014, 33, 53–62. [Google Scholar] [CrossRef]
- De Freitas, L.M.; Soares, C.P.; Fontana, C.R. Synergistic effect of photodynamic therapy and cisplatin: A novel approach for cervical cancer. J. Photochem. Photobiol. B Biol. 2014, 140, 365–373. [Google Scholar] [CrossRef]
- De Freitas, L.M.; Serafim, R.B.; de Sousa, J.F.; Moreira, T.F.; dos Santos, C.T.; Baviera, A.M.; Valente, V.; Soares, C.P.; Fontana, C.R. Photodynamic therapy combined to cisplatin potentiates cell death responses of cervical cancer cells. BMC Cancer 2017, 17, 123. [Google Scholar] [CrossRef] [Green Version]
- Pass, H.I.; Temeck, B.K.; Kranda, K.; Thomas, G.; Russo, A.; Smith, P.; Friauf, W.; Steinberg, S.M. Phase III randomized trial of surgery with or without intraoperative photodynamic therapy and postoperative immunochemotherapy for malignant pleural mesothelioma. Ann. Surg. Oncol. 1997, 4, 628–633. [Google Scholar] [CrossRef]
- Akopov, A.; Rusanov, A.; Gerasin, A.; Kazakov, N.; Urtenova, M.; Chistyakov, I. Preoperative endobronchial photodynamic therapy improves resectability in initially irresectable (inoperable) locally advanced non small cell lung cancer. Photodiagn. Photodyn. Ther. 2014, 11, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Ayub, M.; Butler, I.S.; Rehman, Z. Photoactivated platinum-based anticancer drugs. Coord. Chem. Reviews. 2018, 376, 405–442. [Google Scholar] [CrossRef]
- Pass, H.I. Photodynamic therapy in oncology: Mechanisms and clinical use. J. Natl. Cancer Inst. 1993, 85, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Castano, A.P.; Mroz, P.; Hamblin, M.R. Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 2006, 6, 535. [Google Scholar] [CrossRef] [Green Version]
- Dolmans, D.E.J.G.J.; Fukumura, D.; Jain, R.K. Photodynamic Therapy for Cancer. Nat. Rev. Cancer 2003, 3, 380. [Google Scholar] [CrossRef]
- Shi, H.; Imberti, C.; Sadler, P.J. Diazido platinum(IV) complexes for photoactIVated anticancer chemotherapy. Inorg. Chem. Front. 2019, 6, 1623–1638. [Google Scholar] [CrossRef] [Green Version]
- Mi, Q.; Shu, S.; Yang, C.; Gao, C.; Zhang, X.; Luo, X.; Bao, C.; Zhang, X.; Niu, J. Current Status for Oral Platinum (IV) Anticancer Drug Development. Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 2018, 7, 231–247. [Google Scholar] [CrossRef] [Green Version]
- Hahn, G.M. Hyperthermia and Cancer; Springer: Berlin, Germany, 1984. [Google Scholar]
- Meyn, R.E.; Corry, P.M.; Fletcher, S.E.; Demetriades, M. Thermal enhancement of dna damage in mammalian cells treated with cis-diamminedichloroplatinum(ll). Cancer Res. 1980, 40, 1136–1139. [Google Scholar]
- Arancia, G.; Trovalusci, P.C.; Mariutti, G.; Mondovì, B. Ultrastructural changes induced by hyperthermia in chinese hamster v79 fibroblasts. Int. J. Hyperth. 1989, 5, 341–350. [Google Scholar] [CrossRef]
- Hahn, G.M.; Shiu, E.C. Effect of pH and Elevated Temperatures on the Cytotoxicity of Some Chemotherapeutic Agents on Chinese Hamster Cells In Vitro. Cancer Res. 1983, 43, 5789–5791. [Google Scholar]
- Noel, G.; Mazeron, J.J.; Favaudon, V. Chemoradiotherapy of solid tumours in the adult: Current views and perspectives. Bull. Cancer 2003, 90, 85–92. [Google Scholar] [PubMed]
- Storm, F.K. Clinical hyperthermia and chemotherapy. Radiol. Clin. N. Am. 1989, 27, 621–627. [Google Scholar] [PubMed]
- Hettinga, J.V.E.; Lemstra, W.; Meijer, C.; Los, G.; De Vries, E.G.E.; Konings, A.W.T.; Kampinga, H.H. Heat-shock protein expression in cisplatin-sensitive and -resistant human tumor cells. Int. J. Cancer 1996, 67, 800–807. [Google Scholar] [CrossRef]
- Los, G.; Van Vugt, M.J.H.; Den Engelse, L.; Pinedo, H.M. Effects of temperature on the interaction of cisplatin and carboplatin with cellular DNA. Biochem. Pharmacol. 1993, 46, 1229–1237. [Google Scholar] [CrossRef]
- Los, G.; van Vugt, M.J.H.; Pinedo, H.M. Response of peritoneal solid tumours after intraperitoneal chemohyperthermia treatment with cisplatin or carboplatin. Br. J. Cancer 1994, 69, 235–241. [Google Scholar] [CrossRef] [Green Version]
- Wallner, K.E.; Degregorio, M.W.; Li, G.C.; Oncologi, R.; Francisco, S. Chinese Hamster Ovary Cells Resistant to the Drug1. Cancer Res. 1986, 46, 6242–6245. [Google Scholar]
- Herman, T.S.; Teicher, B.A.; Cathcart, K.N.S.; Kaufmann, M.E.; Lee, J.B.; Lee, M.H. Effect of Hyperthermia on Cis-Diamminedi Chloroplatinum(II) (Rhodamine 123)2[Tetrachloroplatinum(II)] in a Human Squamous Cell Carcinoma Line and a M-Diammine-Dichloroplatinum(II)-Resistant Subline. Cancer Res. 1988, 48, 5101–5105. [Google Scholar]
- Herman, T.S.; Teicher, B.A.; Chan, V.; Collins, L.S.; Kaufmann, M.E.; Loh, C. Effect of hyperthermia on the action of cis-diamminedichloroplatinum(ii), rhodamine 1232 [tetrachloroplatinum(ii)], rhodamine 123, and potassium tetrachloroplatinate in vitro and in vivo. Cancer Res. 1988, 48, 2335–2341. [Google Scholar]
- Herman, T.S.; Teicher, B.A.; Chan, V.; Collins, L.S.; Abrams, M.J. Effect of heat on the cytotoxicity and interaction with DNA of a series of platinum complexes. Int. J. Radiat. Oncol. Biol. Phys. 1989, 16, 443–449. [Google Scholar] [CrossRef]
- Calabro, A.; Eva Singletary, S.; Tucker, S.; Boddie, A.; Spitzer, G.; Cavaliere, R. in vitro thermo-chemosensitivity screening of spontaneous human tumors: Significant potentiation for cisplatin but not adriamycin. Int. J. Cancer 1989, 43, 385–390. [Google Scholar] [CrossRef]
- Cohen, J.D.; Robins, H.I.; Schmitt, C.L. Tumoricidal interactions of hyperthermia with carboplatin, cisplatin and etoposide. Cancer Lett. 1989, 44, 205–210. [Google Scholar] [CrossRef]
- Zaffaroni, N.; Villa, R.; Daidone, M.G.; Vaglini, M.; Santinami, M.; Silvestrini, R. Antitumor activity of hyperthermia alone or in combination with cisplatin and melphalan in primary cultures of human malignant melanoma. Int. J. Cell Cloning 1989, 7, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Los, G.; Sminia, P.; Wondergem, J.; Mutsaers, P.H.A.; Havemen, J.; ten Bokkel Huinink, D.; Smals, O.; Gonzalez-Gonzalez, D.; Gordon McVie, J. Optimisation of intraperitoneal cisplatin therapy with regional hyperthermia in rats. Eur. J. Cancer Clin. Oncol. 1991, 27, 472–477. [Google Scholar] [CrossRef]
- Majima, H.; Kashiwado, K.; Egawa, S.; Suzuki, N.; Urano, M. Interaction between the kinetics of thermotolerance and effect of cis-diamminedichloroplatinum(II) or bleomycin given at 37 or 43 °C. Int. J. Hyperth. 1992, 8, 431–442. [Google Scholar] [CrossRef] [PubMed]
- Yano, T.; Nakatani, K.; Watanabe, A.; Nakano, H.; Ohnishi, T. Effects of pre-heating on cis-diamminedichloroplatinum(II)-hyperthermia-induced tumour growth depression of transplantable human oesophageal cancer to nude mice. Int. J. Hyperth. 1993, 9, 699–708. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, I.; Maehara, Y.; Kusumoto, H.; Kohnoe, S.; Sugimachi, K. Heat enhances the cytotoxicity of cis-diamminedichloro- platinum (II) and its analogues cis-l, l-cyclobutane-dicarboxylato(2R)-2-methyl-1,4-butanediammineplatinum (II) and cis-diammine (glycolato) platinum in vitro. Cancer Chemother. Pharmacol. 1993, 33, 31–35. [Google Scholar] [CrossRef]
- Kubota, N.; Kakehi, M.; Inada, T. Hyperthermic enhancement of cell killing by five platinum complexes in human malignant melanoma cells grown as monolayer cultures and multicellular spheroids. Int. J. Radiat. Oncol. Biol. Phys. 1993, 25, 491–497. [Google Scholar] [CrossRef]
- Ohno, S.; Siddik, Z.H.; Kido, Y.; Zwelling, L.A.; Bull, J.M.C. Thermal enhancement of drug uptake and DNA adducts as a possible mechanism for the effect of sequencing hyperthermia on cisplatin-induced cytotoxicity in L1210 cells. Cancer Chemother. Pharmacol. 1994, 34, 302–306. [Google Scholar] [CrossRef]
- Kusumoto, T.; Holden, S.A.; Ara, G.; Teicher, B.A. Hyperthermia and platinum complexes: Time between treatments and synergy in vitro and in vivo. Int. J. Hyperth. 1995, 11, 575–586. [Google Scholar] [CrossRef]
- Ohtsubo, T.; Saito, H.; Tanaka, N.; Noda, I.; Saito, T.; Kano, E. Effect of heat-drug sequences on thermoenhancement and uptake of cis-DDP in human pharyngeal carcinoma. Anticancer Res. 1996, 16, 297–300. [Google Scholar]
- Ohtsubo, T.; Saito, H.; Tanaka, N.; Matsumoto, H.; Sugimoto, C.; Saito, T.; Hayashi, S.; Kano, E. Enhancement of cisplatin sensitivity and platinum uptake by 40 degrees C hyperthermia in resistant cells. Cancer Lett. 1997, 119, 47–52. [Google Scholar] [CrossRef]
- Ohtsubo, T.; Saito, H.; Tanaka, N.; Tsuzuki, H.; Saito, T.; Kano, E. In vitro effect of hyperthermia on chemoenhancement and uptake of cisplatin in human pharyngeal carcinoma KB cells. Chemotherapy 1997, 43, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Hettinga, J.V.; Konings, A.W.; Kampinga, H.H. Reduction of cellular cisplatin resistance by hyperthermia--a review. Int. J. Hyperth. 1997, 13, 439–457. [Google Scholar] [CrossRef] [PubMed]
- Saldivar, J.S.; Lu, K.H.; Liang, D.; Gu, J.; Huang, M.; Vlastos, A.T.; Follen, M.; Wu, X. Moving toward individualized therapy based on NER polymorphisms that predict platinum sensitivity in ovarian cancer patients. Gynecol. Oncol. 2007, 107, S223–S229. [Google Scholar] [CrossRef] [PubMed]
- Paiva, M.B. Laser Photo Chemotherapy: An Alternative Treatment for Cancer. In Current Cancer Treatment-Novel beyond Conventional Approaches; Oner, O., Ed.; IntechOpen: London, UK, 2011. [Google Scholar]
- Graeber, I.P.; Eshraghi, A.A.; Paiva, M.B.; Paek, W.H.; Castro, D.J.; Jovanovic, S.; Scherer, H.; Soudant, J.; Saxton, R.E. Combined intratumor cisplatinum injection and Nd:YAG laser therapy. Laryngoscope 1999, 109, 447–454. [Google Scholar] [CrossRef]
- Saxton, R. Lasers and chemotherapy combined treatment of human cancer. BIOS 1996, 97, 158–165. [Google Scholar]
- Palumbo, M.N.; Cervantes, O.; Eugênio, C.; Hortense, F.T.P.; Ribeiro, J.C.; Paolini, A.A.P.; Tedesco, A.C.; Sercarz, J.A.; Paiva, M.B. Intratumor cisplatin nephrotoxicity in combined laser-induced thermal therapy for cancer treatment. Lasers Surg. Med. 2017, 49, 756–762. [Google Scholar] [CrossRef]
- Paiva, M.B.; Saxton, R.E.; Blackwell, K.E.; Buechler, P.; Cohen, A.; Liu, C.D.; Calcaterra, T.C.; Ward, P.H.; Castro, D.J. Combined cisplatinum and laser thermal therapy for palliation of recurrent head and neck tumors. Diagn. Ther. Endosc. 2000, 6, 133–140. [Google Scholar] [CrossRef]
- Stafford, R.J.; Fuentes, D.; Elliott, A.A.; Weinberg, J.S.; Ahrar, K. Laser-induced thermal therapy for tumor ablation. Crit. Rev. Biomed. Eng. 2010, 38, 79–100. [Google Scholar] [CrossRef]
- Zadik, Y.; Arany, P.R.; Fregnani, E.R.; Bossi, P.; Antunes, H.S.; Bensadoun, R.J.; Gueiros, L.A.; Majorana, A.; Nair, R.G.; Ranna, V.; et al. Systematic review of photobiomodulation for the management of oral mucositis in cancer patients and clinical practice guidelines. Support. Care Cancer 2019, 27, 3969–3983. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Zhang, B.; Shen, N.; Wu, N.; Sun, J. A systematic review and meta-analysis of the effect of low-level laser therapy (LLLT) on chemotherapy-induced oral mucositis in pediatric and young patients. Eur. J. Pediatr. 2017, 177, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Robijns, J.; Lodewijckx, J.; Mebis, J. Photobiomodulation therapy for acute radiodermatitis. Curr. Opin. Oncol. 2019, 31, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Sercarz, J.A.; Bublik, M.; Joo, J.; Paiva, P.B.; Areco, K.N.; Brandalise, M.H.; Loh, C.; Masterman-Smith, M.; Paiva, M.B. Outcomes of laser thermal therapy for recurrent head and neck cancer. Otolaryngol. Head Neck Surg. 2010, 142, 344–350. [Google Scholar] [CrossRef]
- Marqa, M.F.; Colin, P.; Nevoux, P.; Mordon, S.R.; Betrouni, N. Focal Laser Ablation of Prostate Cancer: Numerical Simulation of Temperature and Damage Distribution. Biomed. Eng. Online 2011, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Kiro, N.E.; Hamblin, M.R.; Abrahamse, H. Photobiomodulation of breast and cervical cancer stem cells using low-intensity laser irradiation. Tumor Biol. 2017, 39, 1010428317706913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alsenz, J.; Kansy, M. High throughput solubility measurement in drug discovery and development. Adv. Drug Deliv. Rev. 2007, 59, 546–567. [Google Scholar] [CrossRef] [PubMed]
- Kalyanaraman, B. Teaching the basics of cancer metabolism: Developing antitumor strategies by exploiting the differences between normal and cancer cell metabolism. Redox Biol. 2017, 12, 833–842. [Google Scholar] [CrossRef]
- Ferraresi, C.; Kaippert, B.; Avci, P.; Huang, Y.Y.; De Sousa, M.V.P.; Bagnato, V.S.; Parizotto, N.A.; Hamblin, M.R. Low-level laser (light) therapy increases mitochondrial membrane potential and ATP synthesis in C2C12 myotubes with a peak response at 3-6 h. Photochem. Photobiol. 2014, 91, 411–416. [Google Scholar] [CrossRef]
- Chen, A.C.H.; Arany, P.R.; Huang, Y.Y.; Tomkinson, E.M.; Sharma, S.K.; Kharkwal, G.B.; Saleem, T.; Mooney, D.; Yull, F.E.; Blackwell, T.S.; et al. Low-Level laser therapy activates NF-kB via generation of reactive oxygen species in mouse embryonic fibroblasts. PLoS ONE 2011, 6, e22453. [Google Scholar] [CrossRef] [Green Version]
- Pastore, D.; Greco, M.; Passarella, S. Specific helium-neon laser sensitivity of the purified cytochrome c oxidase. Int. J. Radiat. Biol. 2000, 76, 863–870. [Google Scholar] [CrossRef]
- Eguchi, Y.; Shimizu, S.; Tsujimoto, Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res. 1997, 57, 1835–1840. [Google Scholar] [PubMed]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Storz, P.; Döppler, H.; Toker, A. Protein Kinase Cδ Selectively Regulates Protein Kinase D-Dependent Activation of NF-κB in Oxidative Stress Signaling. Mol. Cell. Biol. 2004, 24, 2614–2626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Storz, P.; Toker, A. Protein kinase D mediates a stress-induced NF-κB activation and survival pathway. EMBO J. 2003, 22, 109–120. [Google Scholar] [CrossRef] [PubMed]
- Storz, P.; Döppler, H.; Toker, A. Activation loop phosphorylation controls protein kinase D-dependent activation of nuclear factor κB. Mol. Pharmacol. 2004, 66, 870–879. [Google Scholar] [CrossRef]
- Storz, P. Reactive oxygen species in tumor progression. Front. Biosci. 2005, 10, 1881–1896. [Google Scholar] [CrossRef] [Green Version]
- Szatrowski, T.P.; Nathan, C.F. Production of Large Amounts of Hydrogen Peroxide by Human Tumor Cells. Cancer Res. 1991, 51, 794–798. [Google Scholar]
- Gupta, A.; Rosenberger, S.F.; Bowden, G.T. Increased ROS levels contribute to elevated transcription factor and MAP kinase activities in malignantly progressed mouse keratinocyte cell lines. Carcinogenesis 1999, 20, 2063–2073. [Google Scholar] [CrossRef] [Green Version]
- Ostrakhovitch, E.A.; Cherian, M.G. Inhibition of extracellular signal regulated kinase (ERK) leads to apoptosis inducing factor (AIF) mediated apoptosis in epithelial breast cancer cells: The lack of effect of ERK in p53 mediated copper induced apoptosis. J. Cell. Biochem. 2005, 95, 1120–1134. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, Y.; Lang, J.Y.; Lu, J.J.; Ding, J. Salvicine inactivates β1 integrin and inhibits adhesion of MDA-MB-435 cells to fibronectin via reactive oxygen species signaling. Mol. Cancer Res. 2008, 6, 194–204. [Google Scholar] [CrossRef] [Green Version]
- Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [Google Scholar] [CrossRef] [PubMed]
- Köberle, B.; Tomicic, M.T.; Usanova, S.; Kaina, B. Cisplatin resistance: Preclinical findings and clinical implications. Biochim. Biophys. Acta Rev. Cancer 2010, 1806, 172–182. [Google Scholar] [CrossRef] [PubMed]
- Faria, C.M.G.; Ciol, H.; Bagnato, V.S. Effects of photobiomodulation on the redox state of healthy and cancer cells. Biomed. Opt. Express 2021, 12, 3902–3916. [Google Scholar] [CrossRef] [PubMed]
- Bellon, S.F.; Coleman, J.H.; Lippard, S.J. DNA Unwinding Produced by Site-Specific Intrastrand Cross-Links of the Antitumor Drug cis-Diamminedichloroplatinum(II). Biochemistry 1991, 30, 8026–8035. [Google Scholar] [CrossRef]
- Chaney, S.G.; Sancar, A. DNA repair: Enzymatic mechanisms and relevance to drug response. J. Natl. Cancer Inst. 1996, 88, 1346–1360. [Google Scholar] [CrossRef] [Green Version]
- Farivar, S.; Malekshahabi, T.; Shiari, R. Biological effects of low level laser therapy. J. Lasers Med. Sci. 2014, 5, 58–62. [Google Scholar]
- Hamblin, M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199–212. [Google Scholar] [CrossRef] [Green Version]
- Diniz, I.M.A.; Souto, G.R.; Freitas, I.D.P.; de Arruda, J.A.A.; da Silva, J.M.; Silva, T.A.; Mesquita, R.A. Photobiomodulation Enhances Cisplatin Cytotoxicity in a Culture Model with Oral Cell Lineages. Photochem. Photobiol. 2020, 96, 182–190. [Google Scholar] [CrossRef]
- Takahashi, I.; Maehara, Y.; Kusomoto, H.; Baba, H.; Kohnoe, S.; Sugimachi, K. Interaction of c/s-Diamminedichloro- platinum (ll) and Its Analogues c/s-1, 1-c/s-Diammine (glycolato) platinum with Hyperthermia in vivo. Oncology. 1996, 812, 68–72. [Google Scholar] [CrossRef]
- Furuta, T.; Ueda, T.; Aune, G.; Sarasin, A.; Kraemer, K.H.; Pommier, Y. Transcription-coupled nucleotide excision repair as a determinant of cisplatin sensitivity of human cells. Cancer Res. 2002, 62, 4899–4902. [Google Scholar]
- Kunkel, T.A.; Erie, D.A. DNA mismatch repair. Annu. Rev. Biochem. 2005, 74, 681–710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, R.K. Barriers to drug delivery in solid tumors. Sci. Am. 1994, 271, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Burris, H.A.; Vogel, C.L.; Castro, D.; Mishra, L.; Schwarz, M.; Spencer, S.; Oakes, D.D.; Korey, A.; Orenberg, E.K. Intratumoral cisplatin/epinephrine-injectable gel as a palliative treatment for accessible solid tumors: A multicenter pilot study. Otolaryngol. Head Neck Surg. 1998, 118, 496–503. [Google Scholar] [CrossRef]
- Paiva, M.B.; Saxton, R.E.; VanderWerf, Q.M.; Bell, T.; Eshraghi, A.A.; Graeber, I.P.; Feyh, J.; Castro, D.J. Cisplatinum and interstitial laser therapy for advanced head and neck cancer: A preclinical study. Lasers Surg. Med. 1997, 21, 423–431. [Google Scholar] [CrossRef]
- Philipp, C.M.; Berlien, H.P. Laser-induced thermo therapy (LITT), Basics. In Applied Laser Medicine; Berlien, H.P., Müller, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 235–248. [Google Scholar]
- Mensel, B.; Weigel, C.; Hosten, N. Laser-induced thermotherapy. Recent Results Cancer Res. 2006, 167, 69–75. [Google Scholar] [PubMed]
- Missios, S.; Bekelis, K.; Barnett, G.H. Renaissance of laser interstitial thermal ablation. Neurosurg. Focus 2015, 38, E15. [Google Scholar] [CrossRef] [PubMed]
- Andreoni, A.; Colasanti, A.; Malatesta, V.; Riccio, P.; Roberti, G. Enhancement of antitumor drug cytotoxicity via laser photoactivation. Photochem. Photobiol. 1991, 53, 797–805. [Google Scholar] [CrossRef]
- Paiva, M.B.; Saxton, R.E.; Letts, G.S.A.; Chung, P.S.; Soudant, J.; Vanderwerf, Q.; Castro, D.J. Laser photochemotherapy with anthracyclines on cultured human squamous carcinoma cells. Laryngoscope 1996, 106, 257–262. [Google Scholar] [CrossRef]
- Li, A.S.W.; Chignell, C.F. Spectroscopic studies of cutaneous photosensitizing agents—IX. A spin trapping study of the photolysis of amiodarone and desethylamiodarone. Photochem. Photobiol. 1987, 45, 191–197. [Google Scholar] [CrossRef]
- Saxton, R.E.; Paiva, M.B.; Lufkin, R.B.; Castro, D.J. Laser photochemotherapy: A less invasive approach for treatment of cancer. Semin. Surg. Oncol. 1995, 11, 283–289. [Google Scholar] [CrossRef]
- Peavy, G.M.; Rettenmaier, M.A.; Berns, M.W. Carbon dioxide laser ablation combined with doxorubicin hydrochloride treatment for vaginal fibrosarcoma in a dog. J. Am. Vet. Med. Assoc. 1992, 201, 109–110. [Google Scholar] [PubMed]
- Jacque, S.; Castro, D.J.; Saxton, R.E. The use of photodynamic therapy and photochemotherapy with lasers for palliative treatment of head and neck carcinomas: An initial human case report. J. Clin. Laser Med. Surg. 1992, 10, 367–371. [Google Scholar]
- Paiva, M.B.; Saxton, R.E.; Letts, G.S.A.; Chung, P.S.; Soudant, J.; Vanderwerf, Q.; Castro, D.J. Interstitial laser photochemotherapy with new anthrapyrazole drugs for the treatment of xenograft tumors. J. Clin. Laser Med. Surg. 1995, 13, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Minton, J.P.; Ketcham, A.S. Utilization of cyclophosphamide to potentiate tumor destruction by laser energy. Surg. Forum 1965, 16, 113. [Google Scholar]
- Carmichael, A.J.; Mossoba, M.M.; Riesz, P. Photogeneration of superoxide by adriamycin and daunomycin. An electron spin resonance and spin trapping study. FEBS Lett. 1983, 164, 401–405. [Google Scholar] [CrossRef] [Green Version]
- Lueder, G.T.; Goyal, R. Visual function after laser hyperthermia and chemotherapy for macular retinoblastoma. Am. J. Ophthalmol. 1996, 121, 582–584. [Google Scholar] [CrossRef]
- Murphree, A.L.; Villablanca, J.G.; Deegan, W.F.; Sato, J.K.; Malogolowkin, M.; Fisher, A.; Parker, R.; Reed, E.; Gomer, C.J. Chemotherapy plus local treatment in the management of intraocular retinoblastoma. Arch. Ophthalmol. 1996, 114, 1348–1356. [Google Scholar] [CrossRef]
- Myers, C. Anthracyclines. In Pharmacologic Principles of Cancer Treatment; W.B.Saunders Company: Philadelphia, PA, USA, 1982; pp. 1416–1434. [Google Scholar]
- Saxton, R.E.; Huang, M.Z.; Plante, D.; Fetterman, H.F.; Lufkin, R.B.; Soudant, J.; Castro, D.J. Laser and Daunomycin Chemophototherapy of Human Carcinoma Cells. J. Clin. Laser Med. Surg. 1992, 10, 331–336. [Google Scholar] [CrossRef]
- Andreoni, A.; Colasanti, A.; Kisslinger, A.; Mastrocinque, M.; Portella, G.; Riccio, P.; Roberti, G. Enhanced response to daunomycin of normal, tumor and metastatic cell lines via drug photo activation. Photochem. Photobiol. 1993, 57, 851–855. [Google Scholar] [CrossRef]
- Paiva, M.B.; Graeber, I.P.; Castro, D.J.; Suh, M.J.; Paek, W.H.; Eshraghi, A.A.; Saxton, R.E. Laser and cisplatinum for treatment of human squamous cell carcinoma. Laryngoscope 1998, 108, 1269–1276. [Google Scholar] [CrossRef]
- Diwu, Z.; William Lown, J. Phototherapeutic potential of alternative photosensitizers to porphyrins. Pharmacol. Ther. 1994, 63, 1–35. [Google Scholar] [CrossRef]
- Reszka, K.; Lown, J.W.; Chignell, C.F. Photosensitization by anticancer agents—10. ortho-semiquinone and superoxide radicals produced during anthrapyrazole-sensitized oxidation of catechols. Photochem. Photobiol. 1992, 55, 359–366. [Google Scholar] [CrossRef]
- Paiva, M.B.; Saxton, R.E.; Graeber, I.P.; Jongewaard, N.; Eshraghi, A.A.; Suh, M.J.; Paek, W.H.; Castro, D.J. Improved photochemotherapy of malignant cells with daunomycin and the KTP laser. Lasers Surg. Med. 1998, 23, 33–39. [Google Scholar] [CrossRef]
- Graeber, I.P.; Paiva, M.B.; Eshraghi, A.A.; Suh, M.J.; Castro, D.J.; Saxton, R.E. Anthrapyrazoles and interstitial laser phototherapy for experimental treatment of squamous cell carcinoma. Laryngoscope 1998, 108, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Paiva, M.B.; Bublik, M.; Castro, D.J.; Udewitz, M.; Wang, M.B.; Kowalski, L.P.; Sercarz, J. Intratumor injections of cisplatin and laser thermal therapy for palliative treatment of recurrent cancer. Photomed. Laser Surg. 2005, 23, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Chung, P.S.; Kim, H.G.; Rhee, C.K.; Saxton, R.E. Anticancer effect of combined intratumor cisplatin injection and interstitial KTP laser therapy on xenografted squamous cell carcinoma. J. Clin. Laser Med. Surg. 2003, 21, 23–27. [Google Scholar] [CrossRef]
- Van Veen, R.; Robinson, D.; Sterenborg, H.; Aans, J.; Tan, I.; Vrieze, O.H.; Hoebers, F.; Witjes, M.; Levendag, P. Treatment planning for Interstitial Photodynamic Therapy for head and neck cancer. Head Neck Oncol. 2010, 2, O45. [Google Scholar] [CrossRef] [Green Version]
- Mackay, F.S.; Woods, J.A.; Heringova, P.; Kašpárková, J.; Pizarro, A.M.; Moggach, S.A.; Parsons, S.; Brabec, V.; Sadler, P.J. A potent cytotoxic photoactivated platinum complex. Proc. Natl. Acad. Sci. USA 2007, 104, 20743–20748. [Google Scholar] [CrossRef] [Green Version]
- Crescenzi, E.; Varriale, L.; Iovino, M.; Chiaviello, A.; Veneziani, B.M.; Palumbo, G. Photodynamic therapy with indocyanine green complements and enhances low-dose cisplatin cytotoxicity in MCF-7 breast cancer cells. Mol. Cancer Ther. 2004, 3, 537–544. [Google Scholar]
- Eshraghi, A.A.; Castro, D.J.; Paiva, M.B.; Grabber, I.P.; Jongewaard, N.; Arshadnia, S.; Lamas, G.; Soudant, J.; Saxton, R.E. Laser chemotherapy of human carcinoma cells with three new anticancer drugs. J. Clin. Laser Med. Surg. 1997, 15, 15–21. [Google Scholar] [CrossRef]
- Brito, R.V.; Palumbo, M.N.; Ribeiro, J.C.; Paiva, M.B.; Recent, M. Development of Laser Photo-Chemotherapy (LPC) for Bone Tumors. Orthop. Rheumatol. Open Access J. 2018, 10, e555776. [Google Scholar] [CrossRef]
- Peterson, E.C.; Elhammady, M.S.; Quintero-Wolfe, S.; Murray, T.G.; Aziz-Sultan, M.A. Selective ophthalmic artery infusion of chemotherapy for advanced intraocular retinoblastoma: Initial experience with 17 tumors: Clinical article. J. Neurosurg. 2011, 114, 1603–1608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lumbroso-Le Rouic, L.; Aerts, I.; Hajage, D.; Lévy-Gabriel, C.; Savignoni, A.; Algret, N.; Cassoux, N.; Bertozzi, A.I.; Esteve, M.; Doz, F.; et al. Conservative treatment of retinoblastoma: A prospective phase II randomized trial of neoadjuvant chemotherapy followed by local treatments and chemothermotherapy. Eye 2015, 30, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Künkele, A.; Jurklies, C.; Wieland, R.; Lohmann, D.; Bornfeld, N.; Eggert, A.; Schulte, J.H. Chemoreduction improves eye retention in patients with retinoblastoma: A report from the German Retinoblastoma Reference Centre. Br. J. Ophthalmol. 2013, 97, 1277–1283. [Google Scholar] [CrossRef]
- Houston, S.K.; Wykoff, C.C.; Berrocal, A.M.; Hess, D.J.; Murray, T.G. Lasers for the treatment of intraocular tumors. Lasers Med. Sci. 2012, 28, 1025–1034. [Google Scholar] [CrossRef]
- Timon, C.; Reilly, K. Head and neck mucosal squamous cell carcinoma: Results of palliative management. J. Laryngol. Otol. 2006, 120, 389–392. [Google Scholar] [CrossRef]
- Eugenio, C. Palliative Care for Patients with head and neck cancer: A review of the main signs and symptoms and treatment under the conception of Pallative Care. In Proceedings of the 21st Multinational Association of Supportive Care in Cancer (MASCC), New York, NY, USA, 27 June 2012. [Google Scholar]
- Mehanna, H.; Kong, A.; Ahmed, S.K. Recurrent head and neck cancer: United Kingdom National Multidisciplinary Guidelines. J. Laryngol. Otol. 2016, 130, S181–S190. [Google Scholar] [CrossRef]
- Ritter, M.; Teudt, I.U.; Meyer, J.E.; Schröder, U.; Kovács, G.; Wollenberg, B. Second-line treatment of recurrent HNSCC: Tumor debulking in combination with high-dose-rate brachytherapy and a simultaneous cetuximab-paclitaxel protocol. Radiat. Oncol. 2016, 11, 6. [Google Scholar] [CrossRef] [Green Version]
- D’Cruz, A.K.; Robinson, M.H.; Biel, M.A. mTHPC-mediated photodynamic therapy in patients with advanced, incurable head and neck cancer: A multicenter study of 128 patients. Head Neck 2004, 26, 232–240. [Google Scholar] [CrossRef]
- Paiva, M.B. Survival and quality of life after palliative laser thermal therapy for recurrent oral squamous cell carcinoma. Oral Oncol. 2005, 10, 120–126. [Google Scholar]
- Argiris, A.; Heron, D.E.; Smith, R.P.; Kim, S.; Gibson, M.K.; Lai, S.Y.; Branstetter, B.F.; Posluszny, D.M.; Wang, L.; Seethala, R.R.; et al. Induction docetaxel, cisplatin, and cetuximab followed by concurrent radiotherapy, cisplatin, and cetuximab and maintenance cetuximab in patients with locally advanced head and neck cancer. J. Clin. Oncol. 2010, 28, 5294–5300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulcher, C.D.; Haigentz, M.; Ow, T.J. AHNS Series: Do you know your guidelines? Principles of treatment for locally advanced or unresectable head and neck squamous cell carcinoma. Head Neck 2017, 40, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Mayland, C.R.; Ingarfield, K.; Rogers, S.N.; Dey, P.; Thomas, S.; Waylen, A.; Leary, S.D.; Pring, M.; Hurley, K.; Waterboer, T.; et al. Disease trajectories, place and mode of death in people with head and neck cancer: Findings from the ‘Head and Neck 5000’ population-based prospective clinical cohort study. Palliat. Med. 2020, 34, 639–650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, D.J.; Saxton, R.E.; Soudant, J.; Calcaterra, T.; Lufkin, R.; Nyerges, A.; Aldinger, J.; Paiva, M.; Anzai, Y.; Chung, P.S.; et al. Minimally Invasive Palliative Tumor Therapy Guided by Imaging Techniques: The UCLA Experience. J. Clin. Laser Med. Surg. 1994, 12, 65–73. [Google Scholar] [CrossRef]
- Paiva, M.B.; Blackwell, K.E.; Saxton, R.E.; Calcaterra, T.C.; Ward, P.H.; Soudant, J.; Castro, D.J. Palliative laser therapy for recurrent head and neck cancer: A phase II clinical study. Laryngoscope 1998, 108, 1277–1283. [Google Scholar] [CrossRef]
- Eugenio, C.; Paiva, M.B. An overview of twenty years of laser termal therapy for recurent head and neck cancers. In Proceedings of the 21st Multinational Association of Supportive Care in Cancer (MASCC), New York, NY, USA, 27 June 2012. [Google Scholar]
- Upile, T.; Jerjes, W.K.; Sterenborg, H.J.; Wong, B.J.; El-Naggar, A.K.; Ilgner, J.F.; Sandison, A.; Witjes, M.J.; Biel, M.A.; Van Veen, R.; et al. At the frontiers of surgery: Review. Head Neck Oncol. 2011, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Marchesini, R.; Andreola, S.; Emanuelli, H.; Melloni, E.; Schiroli, A.; Spinelli, P.; Fava, G. Temperature rise in biological tissue during Nd:YAG laser irradiation. Lasers Surg. Med. 1985, 5, 75–82. [Google Scholar] [CrossRef]
- Schulze, P.C.; Adams, V.; Busert, C.; Bettag, M.; Kahn, T.; Schober, R. Effects of laser-induced thermotherapy (LITT) on proliferation and apoptosis of glioma cells in rat brain transplantation tumors. Lasers Surg. Med. 2002, 30, 227–232. [Google Scholar] [CrossRef]
- Vogl, T.J.; Mack, M.G.; Straub, R.; Roggan, A.; Felix, R. Magnetic resonance imaging-Guided abdominal interventional radiology: Laser-induced thermotherapy of liver metastases. Endoscopy 1997, 29, 577–583. [Google Scholar] [CrossRef]
- Vogl, T.J.; Mack, M.G.; Straub, R.; Eichler, K.; Zangos, S.; Engelmann, K.; Hochmuth, K.; Ballenberger, S.; Jacobi, V.; Diebold, T. MR-guided laser-induced thermotherapy with a cooled power laser system: A case report of a patient with a recurrent carcinoid metastasis in the breast. Eur. Radiol. 2002, 12, S101–S104. [Google Scholar] [CrossRef]
- Semler, P.; Koch, K.; Schumacher, W. Eine neue Möglichkeit zur Behandlung stenosierender Tumoren im oberen Gastrointestinaltrakt. DMW-Dtsch. Med. Wochenschr. 1985, 110, 1731–1732. [Google Scholar] [CrossRef] [PubMed]
- Mache, H.N.; Koch, K.; Stadler, M.; Krumhaar, D.; Schumacher, W. The therapeutic possibilities of the combination of laser resection and the afterloading technique as seen by the endoscopist. Tumordiagn. Ther. 1986, 7, 5–9. [Google Scholar]
- Mason, R. Palliation of malignant dysphagia: An alternative to surgery. Ann. R. Coll. Surg. Engl. 1996, 78, 457–462. [Google Scholar] [PubMed]
- Firusian, N. Chemo- und lasertherapie der fortgeschrittenen tumoren des oberen gastrointestinaltraktes. Oncol. Res. Treat. 1988, 11, 23–33. [Google Scholar] [CrossRef]
- Vogl, T.J.; Naguib, N.N.N.; Nour-Eldin, N.E.A.; Rao, P.; Emami, A.H.; Zangos, S.; Nabil, M.; Abdelkader, A. Review on transarterial chemoembolization in hepatocellular carcinoma: Palliative, combined, neoadjuvant, bridging, and symptomatic indications. Eur. J. Radiol. 2009, 72, 505–516. [Google Scholar] [CrossRef]
- Paiva, M.B.; Bublik, M.; Masterman-Smith, M.; Polykov, M.; Sercarz, J.A. Combined Laser and Cisplatin Therapy for Recurrent Head and Neck Cancer. In Proceedings of the 109th Annual Meeting of the American Academy of Otolaryngology-Head and Neck Surgery, Los Angeles, CA, USA, 24–28 September, 2005; American Academy of Otolaryngology-Head and Neck Surgery: Alexandria, VA, USA, 2005; p. 46. [Google Scholar]
- Joo, J.; Sercarz, J.A.; Paolini, A.A.; Castro, D.J.; Paiva, M.B. Laser-induced thermal therapy and cisplatin for recurrent head and neck cancer: A case characterized by an unusually long disease-free survival. Ear Nose Throat J. 2009, 88, E13–E16. [Google Scholar]
- Begg, A.C.; Deurloo, M.J.M.; Kop, W.; Bartelink, H. Improvement of combined modality therapy with cisplatin and radiation using intratumoral drug administration in murine tumors. Radiother. Oncol. 1994, 31, 129–137. [Google Scholar] [CrossRef]
- Kitamura, K.; Kuwano, H.; Matsuda, H.; Toh, Y.; Masuda, H.; Sugimachi, K. Synergistic effects of intratumor administration of cis-diamminedichloroplatinum(II) combined with local hyperthermia in melanoma bearing mice. J. Surg. Oncol. 1992, 51, 188–194. [Google Scholar] [CrossRef]
- Théon, A.P.; Madewell, B.R.; Ryu, J.; Castro, J. Concurrent irradiation and intratumoral chemotherapy with cisplatin: A pilot study in dogs with spontaneous tumors. Int. J. Radiat. Oncol. Biol. Phys. 1994, 29, 1027–1034. [Google Scholar] [CrossRef]
- Deurloo, M.J.M.; Kop, W.; van Tellingen, O.; Bartelink, H.; Begg, A.C. Intratumoural administration of cisplatin in slow-release devices: II. pharmacokinetics and intratumoural distribution. Cancer Chemother. Pharmacol. 1991, 27, 347–353. [Google Scholar] [CrossRef]
- Krag, D.N.; Théon, A.P.; Schneider, P.D.; Goodnight, J.E. Intralesional cis-diamminedichloroplatinum and purified collagen treatment of human metastatic malignancies: A feasibility study. J. Surg. Oncol. 1990, 43, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Kanekal, S.; Joo, J.; Bublik, M.; Bababeygy, A.; Loh, C.; Castro, D.J.; Sercarz, J.A.; Paiva, M.B. Retention of intratumor injections of cisplatinum in murine tumors and the impact on laser thermal therapy for cancer treatment. Eur. Arch. Oto-Rhino-Laryngol. 2008, 266, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Palumbo, M.N. Technological Innovation for Thermoablation of Head and Neck Tumors with Laser Induction Thermal Therapy Associated with Cisplatin CDDP-LITT. Ph.D. Thesis, Federal University of São Paulo, São Paulo, Brazil, March 2020. [Google Scholar]
- Amar, A.; Ortelado, D.K.; Franzi, A.S.; Curioni, O.A.; Rapoport, A. Survival after unsalvageable recurrence of head and neck cancer. Rev. Col. Bras. Cir. 2005, 5, 267–269. [Google Scholar] [CrossRef]
- Goss, P.E.; Lee, B.L.; Badovinac-Crnjevic, T.; Strasser-Weippl, K.; Chavarri-Guerra, Y.; St Louis, J.; Cynthia, V.-G.; Karla, U.-S.; Mayra, F.; Márcio, D.; et al. Planning cancer control in Latin America and the Caribbean. Lancet Oncol. 2013, 5, 391–436. [Google Scholar] [CrossRef]
- Felippu, A.W.D.; Freire, E.C.; Silva, R.A.; Guimarães, A.V.; Dedivitis, R.A. Impact of delay in the diagnosis and treatment of head and neck cancer. Braz. J. Otorhinolaryngol. 2016, 2, 140–143. [Google Scholar] [CrossRef] [Green Version]
- Eugenio, C. Clinical and Epidemiological Characteristics of Patients in the Head and Neck Surgery Department of a University Hospital. Master’s Thesis, Federal University of São Paulo, São Paulo, Brazil, March 1996. [Google Scholar]
- Silver, H.J.; de Campos Graf Guimaraes, C.; Pedruzzi, P.; Badia, M.; Spuldaro de Carvalho, A.; Oliveira, B.V.; Romas, G.H.A.; Dietrich, M.S.; Pietrobon, R. Predictors of functional decline in locally advanced head and neck cancer patients from south Brazil. Head Neck 2010, 32, 1217–1225. [Google Scholar] [CrossRef]
- Doniec, K.; Dall’Alba, R.; King, L. Brazil’s health catastrophe in the making. Lancet 2018, 392, 731–732. [Google Scholar] [CrossRef] [Green Version]
- Jain, R.K. Delivery of molecular and cellular medicine to solid tumors. Adv. Drug Deliv. Rev. 2012, 46, 149–168. [Google Scholar] [CrossRef]
- Gutmann, R.; Paiva, M.B.; Vanderwerf, Q.M.; Nguyen, R.D.; Saxton, R.E.; Castro, D.J. Poster 26 Intratumor Chemotherapy and Interstitial Hypertension: The Role of Collagenase. Otolaryngol. Neck Surg. 1995, 113, P82. [Google Scholar] [CrossRef]
- Leunig, M.; Yuan, F.; Menger, M.D.; Boucher, Y.; Goetz, A.E.; Messmer, K.; Jain, R.K. Angiogenesis, Microvascular Architecture, Microhemodynamics, and Interstitial Fluid Pressure during Early Growth of Human Adenocarcinoma LS174T in SCID Mice. Cancer Res. 1992, 52, 6553–6560. [Google Scholar]
- Arany, I.; Safirstein, R.L. Cisplatin nephrotoxicity. Semin. Nephrol. 2003, 23, 460–464. [Google Scholar] [CrossRef]
- Pavão dos Santos, O.F.; Boim, M.A.; Barros, E.J.G.; Pirotzky, E.; Braquet, P.; Schor, N. Effect of platelet-activating factor antagonist BN 52063 on the nephrotoxicity of cisplatin. Lipids 1991, 26, 1324–1328. [Google Scholar] [CrossRef] [PubMed]
- Miller, R.P.; Tadagavadi, R.K.; Ramesh, G.; Reeves, W.B. Mechanisms of cisplatin nephrotoxicity. Toxins 2010, 2, 2490–2518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paken, J.; Govender, C.G.; Pillay, M.; Sewram, V. A Review of Cisplatin-Associated Ototoxicity. Semin. Hear. 2019, 40, 108–121. [Google Scholar] [CrossRef]
- Hahn, G.M. Potential for therapy of drugs and hyperthermia. Cancer Res. 1979, 39, 2264–2268. [Google Scholar]
- Mizuuchi, H.; Yoshiga, K.; Sakurai, K.; Tsumura, M.; Takada, K. Antitumor effect of carboplatin combined with hyperthermia on ehrlich-ascites tumor in vivo. Anticancer Res. 1996, 16, 381–387. [Google Scholar]
- Goldberg, S.N.; Kamel, I.R.; Kruskal, J.B.; Reynolds, K.; Monsky, W.L.; Stuart, K.E.; Ahmed, M.; Raptopoulos, V. Radiofrequency ablation of hepatic tumors: Increased tumor destruction with adjuvant liposomal doxorubicin therapy. Am. J. Roentgenol. 2002, 179, 93–101. [Google Scholar] [CrossRef]
- Ahmed, M.; Liu, Z.; Lukyanov, A.N.; Signoretti, S.; Horkan, C.; Monsky, W.L.; Torchilin, V.P.; Goldberg, S.N. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: Effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology 2005, 235, 469–477. [Google Scholar] [CrossRef]
- Monsky, W.L.; Kruskal, J.B.; Lukyanov, A.N.; Girnun, G.D.; Ahmed, M.; Gazelle, G.S.; Huertas, J.C.; Stuart, K.E.; Torchilin, V.P.; Goldberg, S.N. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model. Radiology 2002, 224, 823–829. [Google Scholar] [CrossRef]
- Ahmed, M.; Moussa, M.; Goldberg, S.N. Synergy in cancer treatment between liposomal chemotherapeutics and thermal ablation. Chem. Phys. Lipids 2012, 165, 424–437. [Google Scholar] [CrossRef] [Green Version]
- Moussa, M.; Goldberg, S.N.; Tasawwar, B.; Sawant, R.R.; Levchenko, T.; Kumar, G.; Torchilin, V.P.; Ahmed, M. Adjuvant liposomal doxorubicin markedly affects radiofrequency ablation-induced effects on periablational microvasculature. J. Vasc. Interv. Radiol. 2013, 24, 1021–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, M.B.; Blackwell, K.E.; Saxton, R.E.; Bublik, M.; Liu, C.D.; Paiva Paolini, A.A.P.; Calcaterra, T.C.; Castro, D.J. Nd:YAG laser therapy for palliation of recurrent squamous cell carcinomas in the oral cavity. Lasers Surg. Med. 2002, 31, 64–69. [Google Scholar] [CrossRef] [PubMed]
- You, J.; Zhang, R.; Zhang, G.; Zhong, M.; Liu, Y.; Van Pelt, C.S.; Liang, D.; Wei, W.; Sood, A.K.; Li, C. Photothermal-chemotherapy with doxorubicin-loaded hollow gold nanospheres: A platform for near-infrared light-trigged drug release. J. Control. Release 2012, 158, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heymann, P.G.B.; Ziebart, T.; Kämmerer, P.W.; Mandic, R.; Saydali, A.; Braun, A.; Neff, A.; Draenert, G.F. The enhancing effect of a laser photochemotherapy with cisplatin or zolendronic acid in primary human osteoblasts and osteosarcoma cells in vitro. J. Oral Pathol. Med. 2016, 45, 803–809. [Google Scholar] [CrossRef]
- Clayman, G.L.; Dreiling, L.K. Injectable modalities as local and regional strategies for head and neck cancer. Hematol. Oncol. Clin. N. Am. 1999, 13, 787–810. [Google Scholar] [CrossRef]
- Yu, N.Y.; Patawaran, M.B.; Chen, J.Y.; Orenberg, E.K.; Brown, D.M.; Luck, E.E. Influence of treatment sequence on efficacy of fluorouracil and cisplatin intratumoral drug delivery in vivo. Cancer J. Sci. Am. 1995, 1, 215–221. [Google Scholar]
- Ang, K.K.; Harris, J.; Garden, A.S.; Trotti, A.; Jones, C.U.; Carrascosa, L.; Cheng, J.D.; Spencer, S.S.; Forastiere, A.; Weber, R.S. Concomitant boost radiation plus concurrent cisplatin for advanced head and neck carcinomas: Radiation Therapy Oncology Group Phase II Trial 99–14. J. Clin. Oncol. 2005, 23, 3008–3015. [Google Scholar] [CrossRef]
- Herman, T.S.; Teicher, B.A. Summary of studies adding systemic chemotherapy to local hyperthermia and radiation. Int. J. Hyperth. 1994, 10, 443–449. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, C.; Jia, J.; Huang, T. Endoscopic Nd:YAG laser therapy combined with local chemotherapy of superficial carcinomas of the oesophagus and gastric cardia. Lasers Med. Sci. 2001, 16, 299–303. [Google Scholar] [CrossRef]
- Ribeiro, J.C.; Palumbo, M.N.; Brodskyn, F.; Ahumanda, N.G.; Sercarz, J.A.; Paiva, M.B. The concept of microvascular collapse in photochemotherapy for cancer. In Proceedings of the Oral Communication at the 2012 Annual Meeting of the American Society of Lasers in Medicine and Surgery, Phoenix, AZ, USA, 18–22 April 2012. [Google Scholar]
- Celikoglu, S.I.; Celikoglu, F.; Goldberg, E.P. Endobronchial intratumoral chemotherapy (EITC) followed by surgery in early non-small cell lung cancer with polypoid growth causing erroneous impression of advanced disease. Lung Cancer 2006, 54, 339–346. [Google Scholar] [CrossRef]
Process | Representation |
---|---|
Absorption | |
From ground state | S + hν → S * |
From an excited state | S * + hν → S ** |
Radiative processes (energy dissipation by photo-re-emission) | |
Fluorescence | S * + hν′ → S |
Fosforescence | T * + hν″ → S |
Non-radiative processes (energy dissipation without photo-re-emission) | |
Photochemical effects | |
Photoassociation | A * + B → AB * |
Photodecomposition | A * → B + C |
Photoisomerization | A * → A′ |
Electron transfer | A * + B → A+ + B−, A− + B+ |
Energy transfer | A * + B → A + B * |
Photothermal effects | |
Intersystem crossing (ISC) | S * → T * |
Internal conversion (IC)—vibrational relaxation | S * → S |
Collision induced relaxion | S * + M → S + M |
Photoablative effects | |
Excitation | (AB) → (AB) * |
Dissociation | (AB) * → A + B + Ekin |
Photoplasmic effects | |
Ionization | A * → A+ + e− |
Photodisruptive | |
Photodisruption | A + shockwave → B + C |
Author | Cell Lineage | Findings |
---|---|---|
Wallner, K. (1986) [93] | Chinese hamster ovary cells (CHO) (in vitro) | Dose enhancement ratios increased from 1.4 to 6.5 over the temperature range of 39–43 °C. Cellular accumulation of platinum at 37 °C in the sensitive cells was 2.3- to 3.3-fold greater than that in the drug-resistant cells. Cellular accumulation of DDP was increased by factors of 1.5 and 2.2 at elevated temperature. |
Herman, T. (1988) [94] | Squamous cell carcinoma CDDP-sensitive (SCC-25) (in vitro) | The dose-dependent cytotoxicity of 1-h exposures to CDDP was markedly increased at 42 °C and 43 °C in comparison to 37 °C, and this effect was of the same magnitude in both cell lines (enhancements of approximately 1.5 logs at 42 °C and 2.5 logs at 43 °C). |
Squamous cell carcinoma CDPP-resistance (SCC-25/CP) (in vitro) | ||
Herman, T. (1988) [95] | EMT6 cells (in vitro) | In EMT6 cells, the cell killing enhanced 2 decades by 10 µM CDDP at 42 °C compared to the cell killing at 37 °C. In Lewis lung carcinoma growing in the legs of C57 mice, there was an increase of about 2.5-fold in the tumor growth delay produced by CDDP with the addition of heat. |
Lewis lung carcinoma (in vivo) | ||
Herman, T. (1989) [96] | EMT6 cells (in vitro) | There were approximately 2 decades enhancement in cell killing by 10 pM CDDP at 42 °C compared to 37 °C. At 42 °C, CDDP was able to gradually alter the gel electrophoretic mobility of the plasmid DNA to near that of the linear form. This change also occurred at 37 °C but at a much slower rate. |
Calabro, A. (1989) [97] | 18 biopsy specimens (in vitro) | Experimental conditions were adopted to simulate “therapeutic” trials: (a) temperature of 37.0 °C, 40.5 °C or 42.5 °C; (b) hyperthermic duration of 30, 60, or I20 min. - A significant decrease (p < 0.0001) in the IC90 value was observed in 39 (42%) of the 92 heat-CDDP combinations tested in 16 tumors. - The 40.5 °C hyperthermia significantly decreased (p < 0.02) the IC90, in 33% (15 of 46) of heat-CDDP combinations; significantly decreased (p < 0.0007) the CDDP IC90 in 52% of cases (24 of 46) at 42.5 °C. - The 60- and 120-min exposures to hyperthermia plus CDDP were more effective than the normothermic CDDP treatment in 41% (13 of 32) (p < 0.04) and 56% (18 of 32) (p < 0.003) of cases, respectively. If the corrected IC90 was still significantly lower or higher than the IC, observed at 37.0 °C, the interaction was defined as synergistic or antagonistic, respectively. - Heat-CDDP combinations were significantly more synergistic (p < 0.001), decreasing the IC90 in 37% (34 of 92) of combinations. |
Sarcoma human cell line (7 specimens) | ||
Colon carcinoma human cell line (3 specimens) | ||
Ovarian carcinoma human cell line (2 specimens) | ||
Lung carcinoma human cell line (1 specimen) | ||
Carcinoid human cell line (1 specimen) | ||
Breast carcinoma human cell line (2 specimens) | ||
Melanoma human cell line (2 specimens) | ||
Cohen, J. (1989) [98] | JM, a human acute lymphoblastic leukemia T-cell (in vitro) | TER: the slope of the survival curve at an elevated temperature divided by the slope of the curve at 37.0 °C; The slope of the survival curve for cisplatin alone at 37.0 °C is arbitrarily taken to be −1.00. - Cisplatin killing: TER was 2.6 at 40.5 °C and 3.6 at 41.8 °C. - Survival of JM cells: TER was 2.6 at 41.8 °C. |
Zaffaroni, N. (1989) [99] | Human cutaneous or lymph nodal malignant melanoma cell (in vitro) | Synergy between heat and CDDP was observed in 7% of cases treated with the lowest drug dose and 38% of cases treated with the highest (40.5 °C), with only a slight increase in the frequency of synergy at 42 °C. |
Los, G. (1991) [100] | CC531 carcinoma inoculated intraperitoneally in WAG/Rij rat | In vivo, rats were treated intraperitoneally with cisplatin (5 mg/kg) in combination with regional hyperthermia of the abdomen (41.5 °C, 1 h). - Enhanced platinum concentrations were found in peritoneal turnouts (factor 4.1) and kidney, liver, spleen and lung (all around a factor 2.0) after combined cisplatin–hyperthermia treatment. - The thermal enhancement ratio (TER) using lethality as endpoint was 1.8. |
Majima, H. (1992) [101] | Chinese hamster ovary cells (CHO) (in vitro) | Pre-heating at 43 °C enhanced cDDP cytotoxicity given immediately after heating, decreasing this enhancement within 24 h to an additive level. |
Yano, T. (1993) [102] | Transplantable human esophageal cancer (ESO-2) in nude mice (in vivo) | - The combination of 4 mg/kg of CDDP and 43 °C heating for 30 min effectively depressed tumour growth in comparison with the individual treatment. - The mean relative tumour weight of the combination group at 3 weeks after the treatment was 15% of that of the control group without treatment. - Pre-heating at 42 °C for 30 min did not influence the inhibition of tumour growth by CDDP alone or the concentration of CDDP in tumour. When pre-heating at 42 °C for 30 min was performed at 6 or 12 h prior to the combined treatments of 2 mg/kg of CDDP and 43 °C hyperthermia for 30 min, however, tumour growth depression by CDDP-hyperthermia was diminished. |
Takahashi, I. (1993) [103] | EMT6/KU cells (mouse mammary tumor cells) (in vitro) | - The cytotoxicity of CDDP was enhanced at 43 °C, within 90% cytotoxic concentration (IC90) was reduced 2.9-fold. - When exposed to IC90 drug concentration at 43 °C for 2 h simultaneously, the intracellular platinum concentration increased 1.9-fold for CDDP |
Kubota, N. (1993) [104] | HMV-I human malignant melanoma cells (in vitro) | For cell survival, the thermal enhancement ratio was 3.38 for cDDP at 44 °C for 30 min. |
Ohno, S. (1994) [105] | Leukemia L1210 cells (in vitro) | - Simultaneous treatment with heat (41.5 °C, 60 min) and cisplatin produced maximal cell killing with a 4-fold decrease in the 50% growth-inhibitory concentration (IC50) of the platinum complex. Super-additive cell killing was also shown when cells were exposed to heat before cisplatin treatment, whereas no thermal enhancement in cisplatin-mediated cytotoxicity was observed in cells given heat after exposure to cisplatin. - 2- to 3-fold increase in ISC formation was observed in cells given heat before or during cisplatin exposure, whereas heat after cisplatin treatment did not alter either the formation or the reversal of ISC compared with cisplatin alone. |
Kusomoto, T. (1995) [106] | FSaII murine fibrosarcoma cells (in vitro and in vivo) | - Greater than additive killing of FSaII cells with CDDP and hyperthermia occurred only if the drug and heat exposures were overlapping or simultaneous. - Platinum levels in the cells were determined after 1-h exposure of the cells to a concentration of the platinum complexes required to kill 90% (1 log) of the cells at 37 °C. There was a 4-fold increase in platinum in the cells when CDDP (5 µM) and heat exposure was simultaneous; this corresponded to a 2.5-1og increase in cell killing. |
Ohtsubo, T. (1996) [107] | Human pharyngeal carcinoma (in vitro) | Simultaneous or post-hyperthermic CDDP treatment for high-hyperthermia (above 42.5 °C) and simultaneous CDDP treatment for low-hyperthermia (below 42.5 °C) were the most effective means of CDDP thermochemotherapy with hyperthermia. |
Ohtsubo, T. (1997) [108] | Human maxillary carcinoma (in vitro) - CDDP-sensitive (IMC-3) - CDDP-resistance (IMC-3-DDP) | Heating at 40 °C potentiated CDDP cytotoxicity in both cells, with thermal enhancement ratios (TER) of 1.48 (IMC-3) and 1.94 (IMC-3-DDP), and enhanced the platinum accumulation by factors of 1.4 (IMC-3) and 1.8 (IMC-3-DDP). |
Ohtsubo, T. (1997) [109] | Human pharyngeal carcinoma KB cells | There was a significant increase in CDDP uptake after hyperthermia at 44 °C. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Brito, R.V.; Mancini, M.W.; Palumbo, M.d.N.; Moraes, L.H.O.d.; Rodrigues, G.J.; Cervantes, O.; Sercarz, J.A.; Paiva, M.B. The Rationale for “Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin” Approach for Cancer Treatment. Int. J. Mol. Sci. 2022, 23, 5934. https://doi.org/10.3390/ijms23115934
de Brito RV, Mancini MW, Palumbo MdN, Moraes LHOd, Rodrigues GJ, Cervantes O, Sercarz JA, Paiva MB. The Rationale for “Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin” Approach for Cancer Treatment. International Journal of Molecular Sciences. 2022; 23(11):5934. https://doi.org/10.3390/ijms23115934
Chicago/Turabian Stylede Brito, Renan Vieira, Marília Wellichan Mancini, Marcel das Neves Palumbo, Luis Henrique Oliveira de Moraes, Gerson Jhonatan Rodrigues, Onivaldo Cervantes, Joel Avram Sercarz, and Marcos Bandiera Paiva. 2022. "The Rationale for “Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin” Approach for Cancer Treatment" International Journal of Molecular Sciences 23, no. 11: 5934. https://doi.org/10.3390/ijms23115934
APA Stylede Brito, R. V., Mancini, M. W., Palumbo, M. d. N., Moraes, L. H. O. d., Rodrigues, G. J., Cervantes, O., Sercarz, J. A., & Paiva, M. B. (2022). The Rationale for “Laser-Induced Thermal Therapy (LITT) and Intratumoral Cisplatin” Approach for Cancer Treatment. International Journal of Molecular Sciences, 23(11), 5934. https://doi.org/10.3390/ijms23115934