Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications
Abstract
:1. Background
1.1. The Plasminogen Activation System and Its Regulation
1.2. The Complexity and the Diversity of Platelets
1.3. Platelets as Balance between Thrombus Formation and Fibrinolysis: An Emerging Concept
2. Molecular Connections between Platelets and Components of Plasminogen Activation System
2.1. Plasminogen as Zymogen Form
2.2. Plasmin
2.3. Tissue-Type Plasminogen Activator
2.4. Urokinase Plasminogen Activator
2.5. High-Affinity uPA Receptor (uPAR)
2.6. Plasminogen Activator Inhibitors (PAI-1 and PAI-2)
2.7. Alpha 2-Antiplasmin
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- LaPelusa, A.; Dave, H.D. Physiology, Hemostasis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Chapin, J.C.; Hajjar, K.A. Fibrinolysis and the control of blood coagulation. Blood Rev. 2015, 29, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponting, C.P.; Marshall, J.M.; Cederholm-Williams, S.A. Plasminogen: A structural review. Blood Coagul. Fibrinolysis 1992, 3, 605–614. [Google Scholar] [CrossRef] [PubMed]
- Law, R.H.; Abu-Ssaydeh, D.; Whisstock, J.C. New insights into the structure and function of the plasminogen/plasmin system. Curr. Opin. Struct. Biol. 2013, 23, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Castellino, F.J.; Ploplis, V.A. Structure and function of the plasminogen/plasmin system. Thromb. Haemost. 2005, 93, 647–654. [Google Scholar]
- Andreasen, P.A.; Egelund, R.; Petersen, H.H. The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol. Life Sci. 2000, 57, 25–40. [Google Scholar] [CrossRef]
- Aĭsina, R.B.; Mukhametova, L.I. Structure and functions of plasminogen/plasmin system. Bioorg. Khim. 2014, 40, 642–657. [Google Scholar] [CrossRef]
- Mahmood, N.; Mihalcioiu, C.; Rabbani, S.A. Multifaceted Role of the Urokinase-Type Plasminogen Activator (uPA) and Its Receptor (uPAR): Diagnostic, Prognostic, and Therapeutic Applications. Front. Oncol. 2018, 12, 24. [Google Scholar] [CrossRef] [Green Version]
- Lin, H.; Xu, L.; Yu, S.; Hong, W.; Huang, M.; Xu, P. Therapeutics targeting the fibrinolytic system. Exp. Mol. Med. 2020, 52, 367–379. [Google Scholar] [CrossRef] [Green Version]
- Schaller, J.; Gerber, S.S. The plasmin–antiplasmin system: Structural and functional aspects. Cell Mol. Life Sci. 2010, 68, 785–801. [Google Scholar] [CrossRef] [Green Version]
- Petersen, L.C.; Lund, L.R.; Nielsen, L.S.; Danø, K.; Skriver, L. One-chain urokinase-type plasminogen activator from human sarcoma cells is a proenzyme with little or no intrinsic activity. J. Biol. Chem. 1988, 263, 11189–11195. [Google Scholar] [CrossRef]
- Li Santi, A.; Napolitano, F.; Montuori, N.; Ragno, P. The Urokinase Receptor: A Multifunctional Receptor in Cancer Cell Biology. Therapeutic Implications. Int. J. Mol. Sci. 2021, 22, 4111. [Google Scholar] [CrossRef] [PubMed]
- Napolitano, F.; Di Spigna, G.; Vargas, M.; Iacovazzo, C.; Pinchera, B.; Spalletti Cernia, D.; Ricciardone, M.; Covelli, B.; Servillo, G.; Gentile, I.; et al. Soluble Urokinase Receptor as a Promising Marker for Early Prediction of Outcome in COVID-19 Hospitalized Patients. J. Clin. Med. 2021, 10, 4914. [Google Scholar] [CrossRef] [PubMed]
- Medcalf, R.L. What drives “fibrinolysis”? Hamostaseologie 2015, 35, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Thorsen, S.; Philips, M.; Selmer, J.; Lecander, I.; Astedt, B. Kinetics of inhibition of tissue-type and urokinase-type plasminogen activator by plasminogen-activator inhibitor type 1 and type 2. Eur. J. Biochem. 1988, 175, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Sillen, M.; Declerck, P.J. Thrombin Activatable Fibrinolysis Inhibitor (TAFI): An Updated Narrative Review. Int. J. Mol. Sci. 2021, 22, 3670. [Google Scholar] [CrossRef]
- Li, W.Y.; Chong, S.S.; Huang, E.Y.; Tuan, T.L. Plasminogen activator/plasmin system: A major player in wound healing? Wound Repair Regen 2003, 11, 239–247. [Google Scholar] [CrossRef]
- Baker, S.K.; Strickland, S. A critical role for plasminogen in inflammation. J. Exp. Med. 2020, 217, e20191865. [Google Scholar] [CrossRef]
- Danø, K.; Behrendt, N.; Høyer-Hansen, G.; Johnsen, M.; Lund, L.R.; Ploug, M.; Rømer, J. Plasminogen activation and cancer. Thromb. Haemost. 2005, 93, 676–681. [Google Scholar]
- Rossi, F.W.; Prevete, N.; Rivellese, F.; Napolitano, F.; Montuori, N.; Postiglione, L.; Selleri, C.; de Paulis, A. The Urokinase/Urokinase Receptor System in Mast Cells: Effects of its Functional Interaction with fMLF Receptors. Transl. Med. UniSa 2016, 15, 34–41. [Google Scholar]
- Napolitano, F.; Montuori, N. The Role of the Plasminogen Activation System in Angioedema: Novel Insights on the Pathogenesis. J. Clin. Med. 2021, 10, 518. [Google Scholar] [CrossRef]
- Holinstat, M. Normal platelet function. Cancer Metastasis Rev. 2017, 36, 195–198. [Google Scholar] [CrossRef]
- Maynard, D.M.; Heijnen, H.F.G.; Horne, M.K.; White, J.G.; Gahl, W.A. Proteomic analysis of platelet alpha-granules using mass spectrometry. J. Thromb. Haemost. 2007, 5, 1945–1955. [Google Scholar] [CrossRef] [PubMed]
- Koseoglu, S.; Flaumenhaft, R. Advances in platelet granule biology. Curr. Opin. Hematol. 2013, 20, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Blair, P.; Flaumenhaft, R. Platelet alpha-granules: Basic biology and clinical correlates. Blood Rev. 2009, 23, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rendu, F.; Brohard-Bohn, B. The platelet release reaction: Granules’ constituents, secretion and functions. Platelets 2001, 12, 261–273. [Google Scholar] [CrossRef] [PubMed]
- Golebiewska, E.M.; Poole, A.W. Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev. 2015, 29, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Swieringa, F.; Spronk, H.M.H.; Heemskerk, J.W.M.; van der Meijden, P.E.J. Integrating platelet and coagulation activation in fibrin clot formation. Res. Pr. Thromb. Haemost. 2018, 2, 450–460. [Google Scholar] [CrossRef]
- Eisinger, F.; Patzelt, J.; Langer, H.F. The Platelet Response to Tissue Injury. Front. Med. 2018, 5, 317. [Google Scholar] [CrossRef] [Green Version]
- Fong, K.P.; Barry, C.; Tran, A.N.; Traxler, E.A.; Wannemacher, K.M.; Tang, H.Y.; Speicher, K.D.; Blair, I.A.; Speicher, D.W.; Grosser, T.; et al. Deciphering the human platelet sheddome. Blood 2011, 117, e15–e26. [Google Scholar] [CrossRef] [Green Version]
- Stalker, T.J.; Welsh, J.D.; Brass, L.F. Shaping the platelet response to vascular injury. Curr. Opin. Hematol. 2014, 21, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Munnix, I.C.A.; Cosemans, J.M.E.M.; Auger, J.M.; Heemskerk, J.W.M. Platelet response heterogeneity in thrombus formation. Thromb. Haemost. 2009, 102, 1149–1156. [Google Scholar] [PubMed] [Green Version]
- Kunitada, S.; FitzGerald, G.A.; Fitzgerald, D.J. Inhibition of clot lysis and decreased binding of tissue-type plasminogen activator as a consequence of clot retraction. Blood 1992, 79, 1420–1427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aoki, N.; Sumi, Y.; Miura, O.; Hirosawa, S. Human alpha 2-plasmin inhibitor. Methods Enzym. 1993, 223, 185–197. [Google Scholar]
- Whyte, C.S.; Mitchell, J.L.; Mutch, N.J. Platelet-Mediated Modulation of Fibrinolysis. Semin. Thromb. Hemost. 2017, 43, 115–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, Y.; Sano, H.; Mochizuki, L.; Honkura, N.; Urano, T. Activated platelet-based inhibition of fibrinolysis via thrombin-activatable fibrinolysis inhibitor activation system. Blood Adv. 2020, 4, 5501–5511. [Google Scholar] [CrossRef]
- Colucci, M.; Semeraro, N.; Semeraro, F. Platelets and Fibrinolysis. In Platelets in Thrombotic and Non-Thrombotic Disorders; Gresele, P., Kleiman, N., Lopez, J., Page, C., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Coppinger, J.A.; Cagney, G.; Toomey, S.; Kislinger, T.; Belton, O.; McRedmond, J.P.; Cahill, D.J.; Emili, A.; Fitzgerald, D.J.; Maguire, P.B. Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004, 103, 2096–2104. [Google Scholar] [CrossRef] [Green Version]
- Veljkovic, D.K.; Rivard, G.E.; Diamandis, M.; Blavignac, J.; Cramer-Bordé, E.M.; Hayward, C.P. Increased expression of urokinase plasminogen activator in Quebec platelet disorder is linked to megakaryocyte differentiation. Blood 2009, 113, 1535–1542. [Google Scholar] [CrossRef] [Green Version]
- Miles, L.A.; Plow, E.F. Binding and activation of plasminogen on the platelet surface. J. Biol. Chem. 1985, 260, 4303–4311. [Google Scholar] [CrossRef]
- Miles, L.A.; Dahlberg, C.M.; Plow, E.F. The cell-binding domains of plasminogen and their function in plasma. J. Biol. Chem. 1988, 263, 11928–11934. [Google Scholar] [CrossRef]
- Adelman, B.; Rizk, A.; Hanners, E. Plasminogen interactions with platelets in plasma. Blood 1988, 5, 1530–1535. [Google Scholar] [CrossRef] [Green Version]
- Loscalzo, J.; Pasche, B.; Ouimet, H.; Freedman, J.E. Platelets and plasminogen activation. Thromb Haemost 1995, 74, 291–293. [Google Scholar] [CrossRef] [PubMed]
- Baeten, K.M.; Richard, M.C.; Kanse, S.M.; Mutch, N.J.; Degen, J.L.; Booth, N.A. Activation of single-chain urokinase-type plasminogen activator by platelet-associated plasminogen: A mechanism for stimulation of fibrinolysis by platelets. J. Thromb. Haemost. 2010, 8, 1313–1322. [Google Scholar] [CrossRef] [PubMed]
- Dejouvencel, T.; Doeuvre, L.; Lacroix, R.; Plawinski, L.; Dignat-George, F.; Lijnen, H.R.; Anglés-Cano, E. Fibrinolytic cross-talk: A new mechanism for plasmin formation. Blood 2010, 115, 2048–2056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whyte, C.S.; Swieringa, F.; Mastenbroek, T.G.; Lionikiene, A.S.; Lancé, M.D.; van der Meijden, P.E.J.; Heemskerk, J.W.M.; Mutch, N.J. Plasminogen associates with phosphatidylserine-exposing platelets and contributes to thrombus lysis under flow. Blood 2015, 125, 2568–2578. [Google Scholar] [CrossRef] [Green Version]
- Whyte, C.S.; Morrow, G.B.; Baik, N.; Booth, N.A.; Jalal, M.M.; Parmer, R.J.; Miles, L.A.; Mutch, N.J. Exposure of plasminogen and a novel plasminogen receptor, Plg-RKT, on activated human and murine platelets. Blood 2021, 137, 248–257. [Google Scholar] [CrossRef]
- Van der Vorm, L.N.; Remijn, J.A.; de Laat, B.; Huskens, D. Effects of Plasmin on von Willebrand Factor and Platelets: A Narrative Review. TH Open 2018, 2, e218–e228. [Google Scholar] [CrossRef] [Green Version]
- Niewiarowski, S.; Senyi, A.F.; Gillies, P. Plasmin-induced platelet aggregation and platelet release reaction. Effects on hemostasis. J. Clin. Investig. 1973, 52, 1647–1659. [Google Scholar] [CrossRef] [Green Version]
- Ishii-Watabe, A.; Uchida, E.; Mizuguchi, H.; Hayakawa, T. On the mechanism of plasmin-induced platelet aggregation. Implications of the dual role of granule ADP. Biochem. Pharm. 2000, 59, 1345–1355. [Google Scholar] [CrossRef]
- Quinton, T.M.; Kim, S.; Derian, C.K.; Jin, J.; Kunapuli, S.P. Plasmin-mediated activation of platelets occurs by cleavage of protease-activated receptor 4. J. Biol. Chem. 2004, 279, 18434–18439. [Google Scholar] [CrossRef] [Green Version]
- Shigeta, O.; Kojima, H.; Jikuya, T.; Terada, Y.; Atsumi, N.; Sakakibara, Y.; Nagasawa, T.; Mitsui, T. Aprotinin inhibits plasmin-induced platelet activation during cardiopulmonary bypass. Circulation 1997, 96, 569–574. [Google Scholar] [CrossRef]
- Pielsticker, C.; Brodde, M.F.; Raum, L.; Jurk, K.; Kehrel, B.E. Plasmin-Induced Activation of Human Platelets Is Modulated by Thrombospondin-1, Bona Fide Misfolded Proteins and Thiol Isomerases. Int J. Mol. Sci. 2020, 21, 8851. [Google Scholar] [CrossRef] [PubMed]
- Blockmans, D.; Deckmyn, H.; Hove, L.V.; Vermylen, J. The effect of plasmin on platelet function. Platelets 1996, 7, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Schafer, A.I.; Adelman, B. Plasmin inhibition of platelet function and of arachidonic acid metabolism. J. Clin. Invest. 1985, 75, 456–461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gouin, I.; Lecompte, T.; Morel, M.C.; Lebrazi, J.; Modderman, P.W.; Kaplan, C.; Samama, M.M. In vitro effect of plasmin on human platelet function in plasma. Inhibition of aggregation caused by fibrinogenolysis. Circulation 1992, 85, 935–941. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, D.E.; Mendelsohn, M.E.; Declerck, P.J.; Van Houtte, E.; Collen, D.; Loscalzo, J. Characterization of the binding of human tissue-type plasminogen activator to platelets. J. Biol. Chem. 1989, 264, 15869–15874. [Google Scholar] [CrossRef]
- Brisson-Jeanneau, C.; Nelles, L.; Rouer, E.; Sultan, Y.; Benarous, R. Tissue-plasminogen activator RNA detected in megakaryocytes by in situ hybridization and biotinylated probe. Histochemistry 1990, 95, 23–26. [Google Scholar] [CrossRef]
- Wang, D.L.; Pan, Y.T.; Wang, J.J.; Cheng, C.H.; Liu, C.Y. Demonstration of a functionally active tPA-like plasminogen activator in human platelets. Thromb. Haemost. 1994, 71, 493–498. [Google Scholar] [CrossRef]
- Stamler, J.S.; Simon, D.I.; Jaraki, O.; Osborne, J.A.; Francis, S.; Mullins, M.; Singel, D.; Loscalzo, J. S-nitrosylation of tissue-type plasminogen activator confers vasodilatory and antiplatelet properties on the enzyme. Proc. Natl. Acad. Sci. USA 1992, 89, 8087–8091. [Google Scholar] [CrossRef] [Green Version]
- Collet, J.P.; Montalescot, G.; Lesty, C.; Weisel, J.W. A structural and dynamic investigation of the facilitating effect of glycoprotein IIb/IIIa inhibitors in dissolving platelet-rich clots. Circ. Res. 2002, 90, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Moore, H.B.; Moore, E.E.; Gonzalez, E.; Hansen, K.C.; Dzieciatkowska, M.; Chapman, M.P.; Sauaia, A.; West, B.; Banerjee, A.; Silliman, C.C. Hemolysis exacerbates hyperfibrinolysis, whereas platelolysis shuts down fibrinolysis: Evolving concepts of the spectrum of fibrinolysis in response to severe injury. Shock 2015, 43, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Diamandis, M.; Veljkovic, D.K.; Maurer-Spurej, E.; Rivard, G.E.; Hayward, C.P. Quebec platelet disorder: Features, pathogenesis and treatment. Blood Coagul. Fibrinolysis 2008, 19, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Gurewich, V.; Johnstone, M.; Loza, J.P.; Pannell, R. Pro-urokinase and prekallikrein are both associated with platelets. Implications for the intrinsic pathway of fibrinolysis and for therapeutic thrombolysis. FEBS Lett. 1993, 318, 317–321. [Google Scholar] [CrossRef] [Green Version]
- Loza, J.P.; Gurewich, V.; Johnstone, M.; Pannell, R. Platelet-bound prekallikrein promotes pro-urokinase-induced clot lysis: A mechanism for targeting the factor XII dependent intrinsic pathway of fibrinolysis. Thromb. Haemost. 1994, 71, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.N.; Gurewich, V. Fragment E-2 from fibrin substantially enhances pro-urokinase-induced Glu-plasminogen activation. A kinetic study using the plasmin-resistant mutant pro-urokinase Ala-158-rpro-UK. Biochemistry 1992, 31, 6311–6317. [Google Scholar] [CrossRef]
- Fleury, V.; Lijnen, H.R.; Anglés-Cano, E. Mechanism of the enhanced intrinsic activity of single-chain urokinase-type plasminogen activator during ongoing fibrinolysis. J. Biol. Chem. 1993, 268, 18554–18559. [Google Scholar] [CrossRef]
- Pannell, R.; Gurewich, V. Pro-urokinase: A study of its stability in plasma and of a mechanism for its selective fibrinolytic effect. Blood 1986, 67, 1215–1223. [Google Scholar] [CrossRef] [Green Version]
- Kahr, W.H.; Zheng, S.; Sheth, P.M.; Pai, M.; Cowie, A.; Bouchard, M.; Podor, T.J.; Rivard, G.E.; Hayward, C.P. Platelets from patients with the Quebec platelet disorder contain and secrete abnormal amounts of urokinase-type plasminogen activator. Blood 2001, 98, 257–265. [Google Scholar] [CrossRef]
- Hayward, C.P.M.; Liang, M.; Tasneem, S.; Soomro, A.; Waye, J.S.; Paterson, A.D.; Rivard, G.E.; Wilson, M.D. The duplication mutation of Quebec platelet disorder dysregulates PLAU, but not C10orf55, selectively increasing production of normal PLAU transcripts by megakaryocytes but not granulocytes. PLoS ONE 2017, 12, e0173991. [Google Scholar] [CrossRef] [Green Version]
- Camoin-Jau, L.; Pannell, R.; Anfosso, F.; Bardin, N.; Sabatier, F.; Sampol, J.; Gurewich, V.; Dignat-George, F. Platelet associated u-PA up-regulates u-PA synthesis by endothelial cells. Thromb. Haemost. 2002, 88, 517–523. [Google Scholar] [CrossRef]
- Jurasz, P.; Santos-Martinez, M.J.; Radomska, A.; Radomski, M.W. Generation of platelet angiostatin mediated by urokinase plasminogen activator: Effects on angiogenesis. J. Thromb. Haemost. 2006, 4, 1095–1106. [Google Scholar] [CrossRef]
- Piguet, P.F.; Vesin, C.; Donati, Y.; Tacchini-Cottier, F.; Belin, D.; Barazzone, C. Urokinase receptor (uPAR, CD87) is a platelet receptor important for kinetics and TNF-induced endothelial adhesion in mice. Circulation 1999, 99, 3315–3321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sloand, E.M.; Pfannes, L.; Scheinberg, P.; More, K.; Wu, C.O.; Horne, M.; Young, N.S. Increased soluble urokinase plasminogen activator receptor (suPAR) is associated with thrombosis and inhibition of plasmin generation in paroxysmal nocturnal hemoglobinuria (PNH) patients. Exp. Hematol. 2008, 36, 1616–1624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossi, F.W.; Napolitano, F.; Pesapane, A.; Mascolo, M.; Staibano, S.; Matucci-Cerinic, M.; Guiducci, S.; Ragno, P.; di Spigna, G.; Postiglione, L.; et al. Upregulation of the N-formyl Peptide receptors in scleroderma fibroblasts fosters the switch to myofibroblasts. J. Immunol 2015, 194, 5161–5173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Napolitano, F.; Rossi, F.W.; Pesapane, A.; Varricchio, S.; Ilardi, G.; Mascolo, M.; Staibano, S.; Lavecchia, A.; Ragno, P.; Selleri, C.; et al. N-Formyl Peptide Receptors Induce Radical Oxygen Production in Fibroblasts Derived From Systemic Sclerosis by Interacting With a Cleaved Form of Urokinase Receptor. Front. Immunol. 2018, 9, 574. [Google Scholar] [CrossRef] [Green Version]
- Czapiga, M.; Gao, J.L.; Kirk, A.; Lekstrom-Himes, J. Human platelets exhibit chemotaxis using functional N-formyl peptide receptors. Exp. Hematol. 2005, 33, 73–84. [Google Scholar] [CrossRef]
- Salamah, M.F.; Ravishankar, D.; Kodji, X.; Moraes, L.A.; Williams, H.F.; Vallance, T.M.; Albadawi, D.A.; Vaiyapuri, R.; Watson, K.; Gibbins, J.M.; et al. The endogenous antimicrobial cathelicidin LL37 induces platelet activation and augments thrombus formation. Blood Adv. 2018, 2, 2973–2985. [Google Scholar] [CrossRef]
- Brogren, H.; Karlsson, L.; Andersson, M.; Wang, L.; Erlinge, D.; Jern, S. Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 2004, 104, 3943–3948. [Google Scholar] [CrossRef]
- Birdane, A.; Haznedaroglu, I.C.; Bavbek, N.; Kosar, A.; Buyukasik, Y.; Ozcebe, O.; Dündar, S.V.; Kirazli, S. The plasma levels of prostanoids and plasminogen activator inhibitor-1 in primary and secondary thrombocytosis. Clin. Appl. Thromb. Hemost. 2005, 11, 197–201. [Google Scholar] [CrossRef] [Green Version]
- Brogren, H.; Wallmark, K.; Deinum, J.; Karlsson, L.; Jern, S. Platelets retain high levels of active plasminogen activator inhibitor 1. PLoS ONE 2011, 6, e26762. [Google Scholar] [CrossRef]
- Brogren, H.; Sihlbom, C.; Wallmark, K.; Lönn, M.; Deinum, J.; Karlsson, L.; Jern, S. Heterogeneous glycosylation patterns of human PAI-1 may reveal its cellular origin. Thromb. Res. 2008, 122, 271–281. [Google Scholar] [CrossRef]
- Braaten, J.V.; Handt, S.; Jerome, W.G.; Kirkpatrick, J.; Lewis, J.C.; Hantgan, R.R. Regulation of fibrinolysis by platelet-released plasminogen activator inhibitor 1: Light scattering and ultrastructural examination of lysis of a model platelet-fibrin thrombus. Blood 1993, 81, 1290–1299. [Google Scholar] [CrossRef] [PubMed]
- Serizawa, K.; Urano, T.; Kozima, Y.; Takada, Y.; Takada, A. The potential role of platelet PAl-1 in t-PA mediated clot lysis of platelet rich plasma. Thromb. Res. 1993, 71, 289–300. [Google Scholar] [CrossRef] [Green Version]
- Wiman, B. Plasminogen activator inhibitor 1 (PAI-1) in plasma: Its role in thrombotic disease. Thromb. Haemost. 1995, 74, 71–76. [Google Scholar] [CrossRef] [PubMed]
- Podor, T.J.; Singh, D.; Chindemi, P.; Foulon, D.M.; McKelvie, R.; Weitz, J.I.; Austin, R.; Boudreau, G.; Davies, R. Vimentin exposed on activated platelets and platelet microparticles localizes vitronectin and plasminogen activator inhibitor complexes on their surface. J. Biol. Chem. 2002, 277, 7529–7539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, Y.; Carmeliet, P.; Fay, W.P. Plasminogen activator inhibitor-1 is a major determinant of arterial thrombolysis resistance. Circulation 1999, 99, 3050–3055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robbie, L.A.; Bennett, B.; Croll, A.M.; Brown, P.A.; Booth, N.A. Proteins of the fibrinolytic system in human thrombi. Thromb. Haemost. 1996, 75, 127–133. [Google Scholar] [CrossRef]
- Huebner, B.R.; Moore, E.E.; Moore, H.B.; Stettler, G.R.; Nunns, G.R.; Lawson, P.; Sauaia, A.; Kelher, M.; Banerjee, A.; Silliman, C.C. Thrombin Provokes Degranulation of Platelet α-Granules Leading to the Release of Active Plasminogen Activator Inhibitor-1 (PAI-1). Shock 2018, 50, 671–676. [Google Scholar] [CrossRef]
- Chaurasia, S.N.; Kushwaha, G.; Kulkarni, P.P.; Mallick, R.L.; Latheef, N.A.; Mishra, J.K.; Dash, D. Platelet HIF-2α promotes thrombogenicity through PAI-1 synthesis and extracellular vesicle release. Haematologica 2019, 104, 2482–2492. [Google Scholar] [CrossRef]
- Alfano, D.; Gorrasi, A.; Li Santi, A.; Ricci, P.; Montuori, N.; Selleri, C.; Ragno, P. Urokinase receptor and CXCR4 are regulated by common microRNAs in leukaemia cells. J. Cell Mol. Med. 2015, 19, 2262–2272. [Google Scholar] [CrossRef] [Green Version]
- Jokl, R.; Klein, R.L.; Lopes-Virella, M.F.; Colwell, J.A. Release of platelet plasminogen activator inhibitor 1 in whole blood is increased in patients with type II diabetes. Diabetes Care 1995, 18, 1150–1155. [Google Scholar] [CrossRef]
- Luo, M.; Li, R.; Ren, M.; Chen, N.; Deng, X.; Tan, X.; Li, Y.; Zeng, M.; Yang, Y.; Wan, Q.; et al. Hyperglycaemia-induced reciprocal changes in miR-30c and PAI-1 expression in platelets. Sci Rep. 2016, 6, 36687. [Google Scholar] [CrossRef] [PubMed]
- Bazzan, M.; Tamponi, G.; Gallo, E.; Stella, S.; Schinco, P.C.; Pannocchia, A.; Pileri, A. Fibrinolytic imbalance in essential thrombocythemia: Role of platelets. Haemostasis 1993, 23, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Schroder, W.A.; Le, T.T.; Gardner, J.; Andrews, R.K.; Gardiner, E.E.; Callaway, L.; Suhrbier, A. SerpinB2 deficiency in mice reduces bleeding times via dysregulated platelet activation. Platelets 2019, 30, 658–663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plow, E.F.; Miles, L.A.; Collen, D. Platelet alpha 2-antiplasmin. Methods Enzymol. 1989, 169, 296–300. [Google Scholar]
- Mitchell, J.L.; Lionikiene, A.S.; Fraser, S.R.; Whyte, C.S.; Booth, N.A.; Mutch, N.J. Functional factor XIII-A is exposed on the stimulated platelet surface. Blood 2014, 124, 3982–3990. [Google Scholar] [CrossRef] [Green Version]
- Takei, M.; Matsuno, H.; Okada, K.; Ueshima, S.; Matsuo, O.; Kozawa, O. Lack of alpha 2-antiplasmin enhances ADP induced platelet micro-aggregation through the presence of excess active plasmin in mice. J. Thromb. Thrombolysis 2002, 14, 205–211. [Google Scholar] [CrossRef]
- Brzoska, T.; Tanaka-Murakami, A.; Suzuki, Y.; Sano, H.; Kanayama, N.; Urano, T. Endogenously generated plasmin at the vascular wall injury site amplifies lysine binding site-dependent plasminogen accumulation in microthrombi. PLoS ONE 2015, 10, e0122196. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Napolitano, F.; Montuori, N. Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications. Int. J. Mol. Sci. 2022, 23, 6065. https://doi.org/10.3390/ijms23116065
Napolitano F, Montuori N. Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications. International Journal of Molecular Sciences. 2022; 23(11):6065. https://doi.org/10.3390/ijms23116065
Chicago/Turabian StyleNapolitano, Filomena, and Nunzia Montuori. 2022. "Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications" International Journal of Molecular Sciences 23, no. 11: 6065. https://doi.org/10.3390/ijms23116065
APA StyleNapolitano, F., & Montuori, N. (2022). Role of Plasminogen Activation System in Platelet Pathophysiology: Emerging Concepts for Translational Applications. International Journal of Molecular Sciences, 23(11), 6065. https://doi.org/10.3390/ijms23116065