Acrylamide and Potential Risk of Diabetes Mellitus: Effects on Human Population, Glucose Metabolism and Beta-Cell Toxicity
Abstract
:1. Introduction
2. Potential Association between Acrylamide Intake and Diabetes Mellitus in Human Population
3. Effect of Acrylamide Treatment on Islets of Langerhans Beta-Cell Function
4. Effect of Acrylamide Treatment on Oxidative Stress Parameters and CYP2E1 Expression in Pancreatic Beta Cells
5. Effect of Acrylamide Treatment on Glucose Metabolism and the Insulin Signaling Pathway
6. Effect of Acrylamide Treatment on Diabetics
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, B.; Qiu, W.; Yang, S.; Cao, L.; Zhu, C.; Ma, J.; Li, W.; Zhang, Z.; Xu, T.; Wang, X.; et al. Acrylamide Exposure and Oxidative DNA Damage, Lipid Peroxidation, and Fasting Plasma Glucose Alteration: Association and Mediation Analyses in Chinese Urban Adults. Diabetes Care 2020, 43, 1479–1486. [Google Scholar] [CrossRef]
- Xiong, B.; Loss, R.D.; Shields, D.; Pawlik, T.; Hochreiter, R.; Zydney, A.L.; Kumar, M. Polyacrylamide degradation and its implications in environmental systems. NPJ Clean Water 2018, 1, 17. [Google Scholar] [CrossRef]
- Ghamdi, A.; Alenezi, F.; Algoferi, M.; Alhawas, M.; Farga, A.; Afifi, M. A Review on the New Trends of Acrylamide Toxicity. Biomed. J. Sci. Tech. Res. 2020, 27, 20638–20644. [Google Scholar]
- Adani, G.; Filippini, T.; Wise, L.A.; Halldorsson, T.I.; Blaha, L.; Vinceti, M. Dietary Intake of Acrylamide and Risk of Breast, Endometrial, and Ovarian Cancers: A Systematic Review and Dose-Response Meta-analysis. Cancer Epidemiol. Biomark. Prev. 2020, 29, 1095–1106. [Google Scholar] [CrossRef] [Green Version]
- Rifai, L.; Saleh, F.A. A Review on Acrylamide in Food: Occurrence, Toxicity, and Mitigation Strategies. Int. J. Toxicol. 2020, 39, 93–102. [Google Scholar] [CrossRef]
- Kumar, J.; Das, S.; Teoh, S.L. Dietary Acrylamide and the Risks of Developing Cancer: Facts to Ponder. Front. Nutr. 2018, 28, 14. [Google Scholar] [CrossRef] [Green Version]
- Tareke, E.; Rydberg, P.; Karlsson, P.; Eriksson, S.; Törnqvist, M. Acrylamide: A cooking carcinogen? Chem. Res. Toxicol. 2000, 13, 517–522. [Google Scholar] [CrossRef]
- Mottram, D.S.; Wedzicha, B.L.; Dodson, A.T. Acrylamide is formed in the Maillard reaction. Nature 2002, 419, 448–449. [Google Scholar] [CrossRef]
- Pedersen, M.; Vryonidis, E.; Joensen, A.; Törnqvist, M. Hemoglobin adducts of acrylamide in human blood—What has been done and what is next? Food Chem. Toxicol. 2022, 161, 112799. [Google Scholar] [CrossRef]
- Pedreschi, F.; Mariotti, M.S.; Granby, K. Current issues in dietary acrylamide: Formation, mitigation and risk assessment. J. Sci. Food Agric. 2014, 94, 9–20. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, biochemistry, and safety of acrylamide. A review. J. Agric. Food Chem. 2003, 51, 4504–4526. [Google Scholar] [CrossRef] [PubMed]
- Doerge, D.R.; Young, J.F.; McDaniel, L.P.; Twaddle, N.C.; Churchwell, M.I. Toxicokinetics of acrylamide and glycidamide in Fischer 344 rats. Toxicol. Appl. Pharmacol. 2005, 208, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Doerge, D.R.; da Costa, G.G.; McDaniel, L.P.; Churchwell, M.I.; Twaddle, N.C.; Beland, F.A. DNA adducts derived from administration of acrylamide and glycidamide to mice and rats. Mutat. Res. Toxicol. Environ. Mutagen. 2005, 580, 131–141. [Google Scholar] [CrossRef] [PubMed]
- Fennell, T.R.; Sumner, S.C.; Snyder, R.W.; Burgess, J.; Spicer, R.; Bridson, W.E.; Friedman, M.A. Metabolism and hemoglobin adduct formation of acrylamide in humans. Toxicol. Sci. 2005, 85, 447–459. [Google Scholar] [CrossRef] [PubMed]
- Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Consumption. Available online: https://leap.unep.org/countries/eu/national-legislation/council-directive-9883ec-quality-water-intended-human-consumption (accessed on 2 April 2022).
- Hogervorst, J.G.; Schouten, L.J.; Konings, E.J.; Goldbohm, R.A.; van den Brandt, P.A. Dietary acrylamide intake and brain cancer risk. Cancer Epidemiol. Biomark. Prev. 2009, 18, 1663–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bušová, M.; Bencko, V.; Laktičová, K.V.; Holcátová, I.; Vargová, M. Risk of exposure to acrylamide. Cent. Eur. J. Public Health 2020, 28, S43–S46. [Google Scholar] [CrossRef]
- Bergmark, E.; Calleman, C.J.; He, F.; Costa, L.G. Determination of hemoglobin adducts in humans occupationally exposed to acrylamide. Toxicol. Appl. Pharmacol. 1993, 120, 45–54. [Google Scholar] [CrossRef]
- EFSA. Scientific opinion on acrylamide in food. EFSA J. 2015, 13, 4104. [Google Scholar]
- Goempel, K.; Tedsen, L.; Ruenz, M.; Bakuradze, T.; Schipp, D.; Galan, J.; Eisenbrand, G.; Richling, E. Biomarker monitoring of controlled dietary acrylamide exposure indicates consistent human endogenous background. Arch. Toxicol. 2017, 91, 3551–3560. [Google Scholar] [CrossRef]
- Timmermann, C.A.G.; Mølck, S.S.; Kadawathagedara, M.; Bjerregaard, A.A.; Törnqvist, M.; Brantsæter, A.L.; Pedersen, M. A Review of Dietary Intake of Acrylamide in Humans. Toxics 2021, 9, 155. [Google Scholar] [CrossRef]
- Hung, C.C.; Cheng, Y.W.; Chen, W.L.; Fang, W.H. Negative Association between Acrylamide Exposure and Metabolic Syndrome Markers in Adult Population. Int. J. Environ. Res. Public Health 2021, 18, 11949. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Liao, S.; Gong, D.; Qiu, H. Association of acrylamide and glycidamide haemoglobin adduct levels with diabetes mellitus in the general population. Environ. Pollut. 2021, 277, 116816. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, J.; Ishihara, J.; Matsui, Y.; Matsuda, T.; Kotemori, A.; Zheng, Y.; Nakajima, D.; Terui, M.; Shinohara, A.; Adachi, S.; et al. Acrylamide–Hemoglobin Adduct Levels in a Japanese Population and Comparison with Acrylamide Exposure Assessed by the Duplicated Method or a Food Frequency Questionnaire. Nutrients 2020, 12, 3863. [Google Scholar] [CrossRef] [PubMed]
- Exon, J.H. A review of the toxicology of acrylamide. J. Toxicol. Environ. Health B Crit. Rev. 2006, 9, 397–412. [Google Scholar] [CrossRef]
- Matoso, V.; Bargi-Souza, P.; Ivanski, F.; Romano, M.A.; Romano, R.M. Acrylamide: A review about its toxic effects in the light of Developmental Origin of Health and Disease (DOHaD) concept. Food Chem. 2019, 283, 422–430. [Google Scholar] [CrossRef]
- Hogervorst, J.G.; Schouten, L.J.; Konings, E.J.; Goldbohm, R.A.; van den Brandt, P.A. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol. Biomark. Prev. 2007, 16, 2304–2313. [Google Scholar] [CrossRef] [Green Version]
- Hogervorst, J.G.F.; van den Brandt, P.A.; Godschalk, R.W.L.; van Schooten, F.J.; Schouten, L.J. Interactions between dietary acrylamide intake and genes for ovarian cancer risk. Eur. J. Epidemiol. 2017, 32, 431–441. [Google Scholar] [CrossRef] [Green Version]
- Hogervorst, J.G.F.; Saenen, N.D.; Nawrot, T.S. Gestational acrylamide exposure and biomarkers of fetal growth: Probing the mechanism underlying the association between acrylamide and reduced fetal growth. Environ. Int. 2021, 155, 106668. [Google Scholar] [CrossRef]
- Hagmar, L.; Törnqvist, M.; Nordander, C.; Rosén, I.; Bruze, M.; Kautiainen, A.; Magnusson, A.L.; Malmberg, B.; Aprea, P.; Granath, F.; et al. Health effects of occupational exposure to acrylamide using hemoglobin adducts as biomarkers of internal dose. Scand. J. Work. Environ. Health 2001, 27, 219–226. [Google Scholar] [CrossRef] [Green Version]
- LoPachin, R.M. The changing view of acrylamide neurotoxicity. Neurotoxicology 2004, 25, 617–630. [Google Scholar] [CrossRef]
- IARC (International Agency for Research on Cancer). IARC Monographs on the Evaluation of Carcinogenic Risks to Human. Acrylamide. Some Ind. Chem. 1994, 60, 389–433. [Google Scholar]
- Fabricio, G.; Malta, A.; Chango, A.; De Freitas Mathias, P.C. Environmental Contaminants and Pancreatic Beta-Cells. J. Clin. Res. Pediatr. Endocrinol. 2016, 8, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.I.; El-Demerdash, F.M. Acrylamide-induced oxidative stress and biochemical perturbations in rats. Toxicology 2006, 219, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Shinomol, G.K.; Raghunath, N.; Bharath, M.M.; Muralidhara, M. Prophylaxis with Bacopa monnieri attenuates acrylamide induced neurotoxicity and oxidative damage via elevated antioxidant function. Cent. Nerv. Syst. Agents Med. Chem. 2013, 13, 3–12. [Google Scholar] [CrossRef]
- Quan, W.; Jiao, Y.; Li, Y.; Xue, C.; Liu, G.; Wang, Z.; Qin, F.; He, Z.; Zeng, M.; Chen, J. Metabolic changes from exposure to harmful Maillard reaction products and high-fat diet on Sprague-Dawley rats. Food Res. Int. 2021, 141, 110129. [Google Scholar] [CrossRef]
- Quan, W.; Li, M.; Jiao, Y.; Zeng, M.; He, Z.; Shen, Q.; Chen, J. Effect of dietary exposure to acrylamide on diabetes—Associated cognitive dysfunction from the perspective of oxidative damage, neuroinflammation, and metabolic disorders. J. Agric. Food Chem. 2022, 70, 4445–4456. [Google Scholar] [CrossRef]
- Tai, N.; Wong, F.S.; Wen, L. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity. Rev. Endocr. Metab. Disord. 2015, 16, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Khursheed, R.; Singh, S.K.; Wadhwa, S.; Kapoor, B.; Gulati, M.; Kumar, R.; Ramanunny, A.K.; Awasthi, A.; Dua, K. Treatment strategies against diabetes: Success so far and challenges ahead. Eur. J. Pharmacol. 2019, 862, 172625. [Google Scholar] [CrossRef]
- Everett, C.J.; Matheson, E.M. Biomarkers of pesticide exposure and diabetes in the 1999–2004 national health and nutrition examination survey. Environ. Int. 2010, 36, 398–401. [Google Scholar] [CrossRef]
- He, K.; Hu, Y.; Shi, J.C.; Zhu, Y.Q.; Mao, X.M. Prevalence, risk factors and microorganisms of urinary tract infections in patients with type 2 diabetes mellitus: A retrospective study in China. Ther. Clin. Risk Manag. 2018, 14, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Park, S.K.; Choi, Y.H. Environmental pyrethroid exposure and diabetes in U.S. adults. Environ. Res. 2019, 172, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Lu, C.; Wu, M.; Liang, J.; Ying, Y.; Liu, K.; Huang, X.; Zheng, S.; Du, X.; Liu, D.; et al. Association between triclocarban and triclosan exposures and the risks of type 2 diabetes mellitus and impaired glucose tolerance in the National Health and Nutrition Examination Survey (NHANES 2013–2014). Environ. Int. 2020, 136, 105445. [Google Scholar] [CrossRef] [PubMed]
- Naruszewicz, M.; Zapolska-Downar, D.; Kośmider, A.; Nowicka, G.; Kozłowska-Wojciechowska, M.; Vikström, A.S.; Törnqvist, M. Chronic intake of potato chips in humans increases the production of reactive oxygen radicals by leukocytes and increases plasma C-reactive protein: A pilot study. Am. J. Clin. Nutr. 2009, 89, 773–777, Erratum in Am. J. Clin. Nutr. 2009, 89, 1951. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, C.Y.; Lin, Y.C.; Kuo, H.K.; Hwang, J.J.; Lin, J.L.; Chen, P.C.; Lin, L.Y. Association among acrylamide, blood insulin, and insulin resistance in adults. Diabetes Care 2009, 32, 2206–2211. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.; Jiao, J.; Wang, J.; Xia, Z.; Zhang, Y. Characterization of acrylamide-induced oxidative stress and cardiovascular toxicity in zebrafish embryos. J. Hazard. Mater. 2018, 347, 451–460. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, M.; Zhuang, P.; Jiao, J.; Chen, X.; Wang, J.; Wu, Y. Exposure to acrylamide and the risk of cardiovascular diseases in the National Health and Nutrition Examination Survey 2003–2006. Environ. Int. 2018, 117, 154–163. [Google Scholar] [CrossRef]
- Chu, P.L.; Lin, L.Y.; Chen, P.C.; Su, T.C.; Lin, C.Y. Negative association between acrylamide exposure and body composition in adults: NHANES, 2003–2004. Nutr. Diabetes 2017, 7, e246. [Google Scholar] [CrossRef] [Green Version]
- Kadawathagedara, M.; Tong, A.C.H.; Heude, B.; Forhan, A.; Charles, M.A.; Sirot, V.; Botton, J. The Eden Mother-Child Cohort Study Group. Dietary acrylamide intake during pregnancy and anthropometry at birth in the French EDEN mother-child cohort study. Environ. Res. 2016, 149, 189–196. [Google Scholar] [CrossRef]
- Kadawathagedara, M.; Botton, J.; de Lauzon-Guillain, B.; Meltzer, H.M.; Alexander, J.; Brantsaeter, A.L.; Haugen, M.; Papadopoulou, E. Dietary acrylamide intake during pregnancy and postnatal growth and obesity: Results from the Norwegian Mother and Child Cohort Study (MoBa). Environ. Int. 2018, 113, 325–334. [Google Scholar] [CrossRef]
- Cao, C.; Shi, H.; Zhang, M.; Bo, L.; Hu, L.; Li, S.; Chen, S.; Jia, S.; Liu, Y.J.; Liu, Y.L.; et al. Metabonomic analysis of toxic action of long-term low-level exposure to acrylamide in rat serum. Hum. Exp. Toxicol. 2018, 37, 1282–1292. [Google Scholar] [CrossRef]
- Halton, T.L.; Willett, W.C.; Liu, S.; Manson, J.E.; Stampfer, M.J.; Hu, F.B. Potato and french fry consumption and risk of type 2 diabetes in women. Am. J. Clin. Nutr. 2006, 83, 284–290. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Serdula, M.; Janket, S.J.; Cook, N.R.; Sesso, H.D.; Willett, W.C.; Manson, J.E.; Buring, J.E. A prospective study of fruit and vegetable intake and the risk of type 2 diabetes in women. Diabetes Care 2004, 27, 2993–2996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srour, B.; Fezeu, L.K.; Kesse-Guyot, E.; Allès, B.; Debras, C.; Druesne-Pecollo, N.; Chazelas, E.; Deschasaux, M.; Hercberg, S.; Galan, P.; et al. Ultraprocessed Food Consumption and Risk of Type 2 Diabetes Among Participants of the NutriNet-Santé Prospective Cohort. JAMA Intern. Med. 2020, 180, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Luo, J.Z.; Luo, L. Bone Marrow Mesenchymal Stem Cells as a New Therapeutic Approach for Diabetes Mellitus. In A Roadmap to Non-Hematopoietic Stem Cell-Based Therapeutics; Chen, X.-D., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2019; pp. 251–273. [Google Scholar]
- Jiang, G.; Zhang, B.B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2003, 284, E671–E678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qaid, M.M.; Abdelrahman, M.M. Role of insulin and other related hormones in energy metabolism: A review. Cogent Food Agric. 2016, 2, 1267691. [Google Scholar] [CrossRef]
- Stošić, M.; Matavulj, M.; Marković, J. Subchronic exposure to acrylamide leads to pancreatic islet remodeling determined by alpha cell expansion and beta cell mass reduction in adult rats. Acta Histochem. 2018, 120, 228–235. [Google Scholar] [CrossRef]
- Stošić, M.; Matavulj, M.; Marković, J. Effects of subchronic acrylamide treatment on the endocrine pancreas of juvenile male Wistar rats. Biotech. Histochem. 2018, 93, 89–98. [Google Scholar] [CrossRef]
- Takeda, Y.; Fujita, Y.; Honjo, J.; Yanagimachi, T.; Sakagami, H.; Takiyama, Y.; Makino, Y.; Abiko, A.; Kieffer, T.J.; Haneda, M. Reduction of both beta cell death and alpha cell proliferation by dipeptidyl peptidase-4 inhibition in a streptozotocin-induced model of diabetes in mice. Diebetologia 2012, 55, 404–412. [Google Scholar] [CrossRef] [Green Version]
- Iki, K.; Pour, P.M. Distribution of pancreatic endocrine cells including IAPP-expressing cells in non-diabetic and type 2 diabetic cases. J. Histochem. Cytochem. 2007, 55, 111–118. [Google Scholar] [CrossRef] [Green Version]
- Cnop, M.; Welsh, N.; Jonas, J.C.; Jörns, A.; Lenzen, S.; Eizirik, D.L. Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: Many differences, few similarities. Diabetes 2005, 54, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Karimani, A.; Hosseinzadeh, H.; Mehri, S.; Jafarian, A.H.; Kamali, S.A.; Hooshang Mohammadpour, A.; Karimi, G. Histopathological and biochemical alterations in non-diabetic and diabetic rats following acrylamide treatment. Toxin Rev. 2021, 40, 277–284. [Google Scholar] [CrossRef]
- Alanazi, I.S.; Emam, M.; Elsabagh, M.; Alkahtani, S.; Abdel-Daim, M.M. The protective effects of 18β-glycyrrhetinic acid against acrylamide-induced cellular damage in diabetic rats. Environ. Sci. Pollut. Res. 2021, 28, 58322–58330. [Google Scholar] [CrossRef] [PubMed]
- Zhao, T.; Guo, Y.; Ji, H.; Mao, G.; Feng, W.; Chen, Y.; Yang, L. Short-term exposure to acrylamide exacerbated metabolic disorders and increased metabolic toxicity susceptibility on adult male mice with diabetes. Toxicol. Lett. 2021, 356, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Yue, Z.; Chen, Y.; Song, Y.; Zhang, J.; Yang, X.; Wang, J.; Sun, Z. Effect of acrylamide on glucose homeostasis in female rats and its mechanisms. Food Chem. Toxicol. 2020, 135, 110894. [Google Scholar] [CrossRef]
- Sánchez, J.; Cabrer, J.M.; Rosselló, C.A.; Palau, A.; Picó, C. Formation of hemoglobin adducts of acrylamide after its ingestion in rats is dependent on age and sex. J. Agric. Food Chem. 2008, 56, 5096–5101. [Google Scholar] [CrossRef]
- Rawi, S.M.; Marie, M.A.S.; Fahmy, S.R.; El-Abied, S.A. Hazardous effects of acrylamide on immature male and female rats. Afr. J. Pharm. Pharmacol. 2012, 6, 1367–1386. [Google Scholar]
- Fujimoto, K.; Polonsky, K. Pdx1 and other factors that regulate pancreatic β-cell survival. Diabetes. Obes. Metab. 2009, 11 (Suppl. 4), 30–37. [Google Scholar] [CrossRef] [Green Version]
- Uthra, C.; Reshi, M.S.; Jaswal, A.; Yadav, D.; Shrivastava, S.; Sinha, N.; Shukla, S. Protective efficacy of rutin against acrylamide-induced oxidative stress, biochemical alterations and histopathological lesions in rats. Toxicol. Res. 2022, 11, 215–225. [Google Scholar] [CrossRef]
- El-Shehawi, A.M.; Soliman, M.M.; Hassan, M.M.; Al-Otaibi, S.; Althobaiti, F.; Elseehy, M.M.; Sayed, S. Taify pomegranate juice (TPJ) abrogated the acrylamide-induced oxidative stress through the regulation of antioxidant activity, inflammation, and apoptosis-associated genes. Front. Vet. Sci. 2022, 9, 191. [Google Scholar] [CrossRef]
- Marković, J.; Stošić, M.; Kojić, D.; Matavulj, M. Effects of acrylamide on oxidant/antioxidant parameters and CYP2E1 expression in rat pancreatic endocrine cells. Acta Histochem. 2018, 120, 73–83. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Ahmed, M.M. Assessment the protective role of quercetin on acrylamide-induced oxidative stress in rats. J. Food Biochem. 2016, 40, 715–723. [Google Scholar] [CrossRef]
- Awad, M.E.; Abdel-Rahman, M.S.; Hassan, S.A. Acrylamide toxicity in isolated rat hepatocytes. Toxicol. Vitr. 1998, 12, 699–704. [Google Scholar] [CrossRef]
- Arnér, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxinreductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef]
- Suzuki, T.; Takagi, Y.; Osanai, H.; Li, M.; Takeuchi, M.; Katoh, Y.; Kobayashi, M.; Yamamoto, M. Pi class glutathione S-transferase genes are regulated by Nrf 2 through an evolutionary conserved regulatory element in zebrafish. Biochem. J. 2005, 388, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Sen, A.; Ozgun, O.; Arinç, E.; Arslan, S. Diverse action of acrylamide on cytochrome P450 and glutathione S-transferase isozyme activities, mRNA levels and protein levels in human hepatocarcinoma cells. Cell Biol. Toxicol. 2012, 28, 175–186. [Google Scholar] [CrossRef]
- Chen, W.; Su, H.; Xu, Y.; Jin, C. In vitro gastrointestinal digestion promotes the protective effect of blackberry extract against acrylamide-induced oxidative stress. Sci. Rep. 2017, 7, 40514. [Google Scholar] [CrossRef] [Green Version]
- Cerutti, P.; Larsson, R.; Krupitza, G.; Muehlematter, D.; Crawford, D.; Amstad, P. Pathophysiological mechanisms of oxidants. In Oxy-Radicals in Molecular Biology and Pathology, 1st ed.; Cerutti, P., Ed.; Alan R. Liss: New York, NY, USA, 1988; Volume 214, pp. 81–88. [Google Scholar]
- Omar, R.; Chyan, Y.J.; Andorn, A.C. Increased expression but reduced activity of antioxidant enzymes in Alzheimer’s disease. J. Alzheimer’s Dis. 1999, 1, 139–145. [Google Scholar] [CrossRef]
- Sigfrid, L.A.; Cunningham, J.M.; Beeharry, N.; Lortz, S.; Tiedge, M.; Lenzen, S.; Carlsson, C.; Green, I.C. Cytokinesis and nitric oxide inhibit the enzyme activity of catalase but not its protein or mRNA expression in insulin-producing cells. J. Mol. Endocrinol. 2003, 31, 509–518. [Google Scholar] [CrossRef] [Green Version]
- Robertson, R.P.; Harmon, J.S. Pancreatic islet β-cell and oxidative stress: The importance of glutathione peroxidase. FEBS Lett. 2007, 581, 3743–3748. [Google Scholar] [CrossRef] [Green Version]
- Leenders, F.; Groen, N.; De Graaf, N.; Engelse, M.A.; Rabelink, T.J.; de Koning, E.J.P.; Carlotti, F. Oxidative Stress Leads to β-Cell Dysfunction Through Loss of β-Cell Identity. Front. Immunol. 2021, 12, 2–11. [Google Scholar] [CrossRef]
- Keklikoglu, N. Inducible nitric oxide synthase immunoreactivity in healthy rat pancreas. Folia Histochem. Cytobiol. 2008, 46, 213–217. [Google Scholar] [CrossRef] [Green Version]
- Keklikoglu, N.; Akinci, S. The role of iNOS in beta cell destruction in diabetes. Oxid. Antioxid. Med. Sci. 2013, 2, 251–254. [Google Scholar] [CrossRef]
- Sandoo, A.; van Zanten, J.J.V.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J. 2010, 4, 302–312. [Google Scholar] [CrossRef]
- Sumner, S.C.; Fennell, T.R.; Moore, T.A.; Chanas, B.; Gonzalez, F.; Ghanayem, B.I. Role of cytochrome P450 2E1 in the metabolism of acrylamide and acrylonitrile in mice. Chem. Res. Toxicol. 1999, 12, 1110–1116. [Google Scholar] [CrossRef]
- Katen, A.L.; Roman, S.D. The genetic consequences of paternal acrylamide exposure and potential for amelioration. Mutat. Res. Fund. Mol. Mutagen. 2015, 777, 91–100. [Google Scholar] [CrossRef]
- Ulrich, A.B.; Standop, J.; Schmied, B.M.; Schneider, M.B.; Lawson, T.A.; Pour, P.M. Expression of drug-metabolizing enzymes in the pancreas of hamster, mouse, and rat, responding differently to the pancreatic carcinogenicity of BOP. Pancreatology 2002, 2, 519–527. [Google Scholar] [CrossRef]
- Murdock, D.J.L.; Clarke, J.; Flatt, P.R.; Barnett, Y.A.; Barnett, C.R. Role of CYP2E1 in ketone-stimulated insulin release in pancreatic B-cells. Biochem. Pharmacol. 2004, 67, 875–884. [Google Scholar] [CrossRef]
- Denucci, S.M.; Tong, M.; Longato, L. Rat strain differences in susceptibility to alcohol-induced chronic liver injury and hepatic insulin resistance. Gastroenterol. Res. Pract. 2010, 2010, 312790. [Google Scholar] [CrossRef] [Green Version]
- González-Jasso, E.; López, T.; Lucas, D. CYP2E1 regulation by benzene and other small organic chemicals in rat liver and peripheral lymphocytes. Toxicol. Lett. 2003, 144, 55–67. [Google Scholar] [CrossRef]
- Lin, Q.; Kang, X.; Li, X.; Wang, T.; Liu, F.; Jia, J.; Jin, Z.; Xue, Y. NF-κB-mediated regulation of rat CYP2E1 by two independent signaling pathways. PLoS ONE 2019, 14, e0225531. [Google Scholar] [CrossRef]
- Gong, P.; Cederbaum, A.I. Nrf2 is increased by CYP2E1 in rodent liver and HepG2 cells and protects against oxidative stress caused by CYP2E1. Hepatology 2006, 43, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Eguchi, N.; Vaziri, N.D.; Dafoe, D.C.; Ichii, H. The role of oxidative stress in pancreatic β cell dysfunction in diabetes. Int. J. Mol. Sci. 2004, 22, 1509. [Google Scholar] [CrossRef] [PubMed]
- Han, H.S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.H. Regulation of glucose metabolism from a liver-centric perspective. Exp. Mol. Med. 2006, 48, e218. [Google Scholar] [CrossRef] [Green Version]
- Pagliassotti, M.J.; Wei, Y.; Bizeau, M.E. Glucose-6-Phosphatase Activity Is Not Suppressed but the mRNA Level Is Increased by a Sucrose-Enriched Meal in Rats. J. Nutr. 2003, 133, 32–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanson, R.W.; Owen, O.E. Gluconeogenesis. In Encyclopedia of Biological Chemistry; Lennarz, W.J., Lane, M.D., Eds.; Elsevier: London, UK, 2004; pp. 197–203. [Google Scholar]
- Morrison, H. Pyruvate carboxylase. In Enzyme Active Sites and Their Reaction Mechanisms, 1st ed.; Morrison, H., Ed.; Academic Press: Cambridge, MA, USA; Elsevier: London, UK, 2021; pp. 179–186. [Google Scholar]
- Bols, M.; Ortega-Caballero, F. Introduction to Glycoscience; Synthesis of Carbohydrates. In Comprehensive Glycoscience Kamerling; Elsevier: Oxford, UK, 2007; Volume 1, pp. 203–947. [Google Scholar]
- Komoda, T.; Matsunaga, T. Metabolic Pathways in the Human Body. In Biochemistry for Medical Professionals, 1st ed.; Elsevier: Oxford, UK, 2015. [Google Scholar]
- Matschinsky, F.M.; Wilson, D.F. The Central Role of Glucokinase in Glucose Homeostasis: A Perspective 50 Years after Demonstrating the Presence of the Enzyme in Islets of Langerhans. Front. Physiol. 2019, 10, 148. [Google Scholar] [CrossRef] [Green Version]
- Sanchez Caballero, L.; Igoillo-Esteve, M. Pancreatic ß-Cell Biology in Health and Disease. In International Review of Cell and Molecular Biology, 1st ed.; Santin, I., Galluzzi, L., Eds.; Elsevier Inc.: Oxford, UK, 2021; Volume 359, pp. 2–402. [Google Scholar]
- Wegener, G.; Krause, U. Different modes of activating phosphofructokinase, a key regulatory enzyme of glycolysis, in working vertebrate muscle. Biochem. Soc. Trans. 2002, 30, 264–270. [Google Scholar] [CrossRef]
- Raben, N.; Exelbert, R.; Spiegel, R.; Sherman, J.B.; Nakajima, H.; Plotz, P.; Heinisch, J. Functional expression of human mutant phosphofructokinase in yeast: Genetic defects in French Canadian and Swiss patients with phosphofructokinase deficiency. Am. J. Hum. Genet. 1995, 56, 131. [Google Scholar]
- Ge, T.; Jhala, G.; Fynch, S.; Akazawa, S.; Litwak, S.; Pappas, E.G.; Catterall, T.; Vakil, I.; Long, A.J.; Olson, L.M.; et al. The JAK1 Selective Inhibitor ABT 317 Blocks Signaling Through Interferon-γ and Common γ Chain Cytokine Receptors to Reverse Autoimmune Diabetes in NOD Mice. Front. Immunol. 2020, 11, 588543. [Google Scholar] [CrossRef]
- Horecker, B.L. The pentose phosphate pathway. J. Biol. Chem. 2002, 277, 47965–47971. [Google Scholar] [CrossRef] [Green Version]
- Adeva-Andany, M.M.; Pérez-Felpete, N.; Fernández-Fernández, C.; Donapetry-García, C.; Pazos-García, C. Liver glucose metabolism in humans. Biosci. Rep. 2016, 36, e00416. [Google Scholar] [CrossRef] [Green Version]
- Song, D.; Xu, C.; Holck, A.L.; Liu, R. Acrylamide inhibits autophagy, induces apoptosis and alters cellular metabolic profiles. Ecotoxicol. Environ. Saf. 2021, 208, 111543. [Google Scholar] [CrossRef]
- Świderska, E.; Strycharz, J.; Wróblewski, A.; Szemraj, J.; Drzewoski, J.; Śliwińska, A. Role of PI3K/AKT Pathway in Insulin-Mediated Glucose Uptake. In Blood Glucose Levels; Szablewski, L., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Guo, S. Insulin signaling, resistance, and metabolic syndrome: Insights from mouse models into disease mechanisms. J. Endocrinol. 2014, 220, T1–T23. [Google Scholar] [CrossRef]
- Charlton, A.; Garzarella, J.; Jandeleit-Dahm, K.A.; Jha, J.C. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology 2020, 10, 18. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, H.Y.; Bae, S.; Lim, Y.H.; Hong, Y.C. Diethylhexyl phthalates is associated with insulin resistance via oxidative stress in the elderly: A panel study. PLoS ONE 2013, 8, e71392. [Google Scholar] [CrossRef]
- Deng, T.; Zhang, Y.; Wu, Y.; Ma, P.; Duan, J.; Qin, W.; Yang, X.; Chen, M. Dibutyl phthalate exposure aggravates type 2 diabetes by disrupting the insulin-mediated PI3K/AKT signaling pathway. Toxicol. Lett. 2018, 290, 1–9. [Google Scholar] [CrossRef]
- Turini, M.E.; DuBois, R.N. Cyclooxygenase-2: A therapeutic target. Annu. Rev. Med. 2002, 53, 35–57. [Google Scholar] [CrossRef]
- Helmersson, J.; Vessby, B.; Larsson, A.; Basu, S. Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation 2004, 109, 1729–1734. [Google Scholar] [CrossRef]
- Li, P.; Liu, S.; Lu, M.; Bandyopadhyay, G.; Oh, D.; Imamura, M.; Johnson, A.M.F.; Sears, D.; Shen, Z.; Cui, B.; et al. Hematopoietic-derived Galectin-3 causes cellular and systemic insulin resistance. Cell 2016, 167, e912. [Google Scholar] [CrossRef] [Green Version]
- Furukawa, K.; Ohmi, Y.; Ji, S.; Zhang, P.; Bhuiyan, R.H.; Ohkawa, Y.; Tajima, O.; Hashimoto, N.; Furukawa, K. Glycolipids: Essential regulator of neuro-inflammation, metabolism and gliomagenesis. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2479–2484. [Google Scholar] [CrossRef]
- Gora, S.; Maouche, S.; Atout, R.; Wanhendrick, K.; Lambeau, G.; Cambien, F.; Ninio, E.; Karabina, S.A. Phospholipolyzed LDL induces an inflammatory response in endothelial cells through endoplasmic reticulum stress signalig. FASEB J. 2010, 24, 3284–3297. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, H.; Ji, X.; Zhu, L.; Sun, Q.; Cong, Z.; Zhou, Y.; Liu, H.; Zhou, M. Differential Nrf2 expression between glioma stem cells and non-stem-like cells in glioblastoma. Oncol. Lett. 2014, 7, 693–698. [Google Scholar] [CrossRef] [Green Version]
- Devi, N.L.; Yadav, I.C.; Shihua, Q.; Dan, Y.; Zhang, G.; Raha, P. Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment. Chemosphere 2016, 144, 493–502. [Google Scholar] [CrossRef]
- Sims-Robinson, C.; Kim, B.; Feldman, E.L. Diabetes and cognitive dysfunction. In Neurobiology of Brain Disorders, 1st ed.; Zigmond, M.J., Rowland, L.P., Coyle, J.T., Eds.; Elsevier: London, UK, 2015; pp. 189–201. [Google Scholar]
- Zhang, S.; Xue, R.; Hu, R. The neuroprotective effect and action mechanism of polyphenols in diabetes mellitus; related cognitive dysfunction. Eur. J. Nutr. 2020, 59, 1295–1311. [Google Scholar] [CrossRef]
- Cheng, G.; Huang, C.; Deng, H.; Wang, H. Diabetes as a risk factor for dementia and mild cognitive impairment: A meta-analysis of longitudinal studies. Intern. Med. J. 2012, 42, 484–491. [Google Scholar] [CrossRef]
- Xue, M.; Xu, W.; Ou, Y.-N.; Cao, X.-P.; Tan, M.-S.; Tan, L.; Yu, J.T. Diabetes mellitus and risks of cognitive impairment and dementia: A systematic review and meta-analysis of 144 prospective studies. Ageing Res. Rev. 2019, 55, 100944. [Google Scholar] [CrossRef]
Measured Parameter | AA25mg/kg vs. Control | AA50mg/kg vs. Control |
---|---|---|
Glucagon immunopositivity | ↑ | ↑ |
Insulin immunopositivity | ↓ | ↓ |
iNOS immunopositivity | ↑ | ↑ |
CAT immunopositivity | n.s. | n.s. |
SOD1 immunopositivity | n.s. | n.s. |
SOD2 immunopositivity | n.s. | n.s. |
CYP2E1 immunopositivity | n.s. | ↓ |
Serum glucose | n.s. | n.s. |
Serum insulin | n.s. | n.s. |
Measured Parameter | 12 h AA Treatment vs. Control | 24 h AA Treatment vs. Control |
---|---|---|
Lipid peroxidation | ↑ | ↑ |
GSH | ↓ | ↓ |
-SH groups | n.s. | n.s. |
NO2 | ↑ | ↑ |
SOD activity | ↓ | ↓ |
CAT activity | ↓ | n.s. |
GST activity | n.s | ↑ |
iNOS expression | ↑ | ↑ |
SOD1 expression | ↑ | ↑ |
SOD2 expression | ↑ | ↑ |
CAT expression | n.s. | n.s. |
GSTP1 expression | n.s. | ↓ |
GSTA2 expression | n.s. | n.s. |
CYP2E1 expression | ↓ | ↓ |
Nrf2 expression | ↓ | ↓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marković Filipović, J.; Karan, J.; Ivelja, I.; Matavulj, M.; Stošić, M. Acrylamide and Potential Risk of Diabetes Mellitus: Effects on Human Population, Glucose Metabolism and Beta-Cell Toxicity. Int. J. Mol. Sci. 2022, 23, 6112. https://doi.org/10.3390/ijms23116112
Marković Filipović J, Karan J, Ivelja I, Matavulj M, Stošić M. Acrylamide and Potential Risk of Diabetes Mellitus: Effects on Human Population, Glucose Metabolism and Beta-Cell Toxicity. International Journal of Molecular Sciences. 2022; 23(11):6112. https://doi.org/10.3390/ijms23116112
Chicago/Turabian StyleMarković Filipović, Jelena, Jelena Karan, Ivana Ivelja, Milica Matavulj, and Milena Stošić. 2022. "Acrylamide and Potential Risk of Diabetes Mellitus: Effects on Human Population, Glucose Metabolism and Beta-Cell Toxicity" International Journal of Molecular Sciences 23, no. 11: 6112. https://doi.org/10.3390/ijms23116112
APA StyleMarković Filipović, J., Karan, J., Ivelja, I., Matavulj, M., & Stošić, M. (2022). Acrylamide and Potential Risk of Diabetes Mellitus: Effects on Human Population, Glucose Metabolism and Beta-Cell Toxicity. International Journal of Molecular Sciences, 23(11), 6112. https://doi.org/10.3390/ijms23116112