Development of a Rapid Fluorescent Diagnostic System for Early Detection of the Highly Pathogenic Avian Influenza H5 Clade 2.3.4.4 Viruses in Chicken Stool
Abstract
:1. Introduction
2. Results
2.1. Generation of Recombinant Virus by Reverse Genetics and Antigen Expression in E. coli
2.2. Production and Screening of Mice mAbs
2.3. Characterization of mAbs
2.4. Screening of the Specific mAb Pair for FICT
2.5. Lysis Buffer Optimization
2.6. Specificity and LoD of FICT
2.7. Evaluation of FICT System in the Chicken Model
3. Discussion
4. Materials and Methods
4.1. Reagents
4.2. Cell and Virus Cultures
4.3. Generation of H5 HPAIVs Based on Reverse Genetics
4.4. Construction and Expression of the HA Globular Head Protein Domain
4.5. Mouse Immunization and Hybridoma Preparation
4.6. Indirect ELISA Assay
4.7. Sandwich Fluorescence-Linked Immunosorbent Assay (FLISA)
4.8. Western Blot Analysis
4.9. Immunofluorescence Assay (IFA)
4.10. Measurement of Binding Affinities
4.11. Conjugation of Eu NP and Gold (Au) NP Antibodies
4.12. Lateral Flow Test Strips for Fluorescent Immunochromatography
4.13. Spiked Sample Preparation
4.14. Reverse Transcription PCR (RT-PCR)
4.15. Evaluation of RDT Performance
4.16. Experimental Infection in the Chicken Model
4.17. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ku, A.; Chan, L. The first case of H5N1 avian influenza infection in a human with complications of adult respiratory distress syndrome and Reye’s syndrome. J. Paediatr. Child. Health 1999, 35, 207–209. [Google Scholar] [CrossRef]
- Luczo, J.M.; Tachedjian, M.; Harper, J.A.; Payne, J.S.; Butler, J.M.; Sapats, S.I.; Lowther, S.L.; Michalski, W.P.; Stambas, J.; Bingham, J. Evolution of high pathogenicity of H5 avian influenza virus: Haemagglutinin cleavage site selection of reverse-genetics mutants during passage in chickens. Sci. Rep. 2018, 8, 11518. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Antigenic and Genetic Characteristics of Zoonotic Influenza A Viruses and Development of Candidate Vaccine Viruses for Pandemic Preparedness. 2020. Available online: https://www.who.int/influenza/vaccines/virus/202002_zoonotic_vaccinevirusupdate.pdf (accessed on 1 December 2021).
- Saito, T.; Tanikawa, T.; Uchida, Y.; Takemae, N.; Kanehira, K.; Tsunekuni, R. Intracontinental and intercontinental dissemination of Asian H5 highly pathogenic avian influenza virus (clade 2.3.4.4) in the winter of 2014–2015. Rev. Med. Virol. 2015, 25, 388–405. [Google Scholar] [CrossRef]
- Dhingra, M.S.; Artois, J.; Robinson, T.P.; Linard, C.; Chaiban, C.; Xenarios, I.; Engler, R.; Liechti, R.; Kuznetsov, D.; Xiao, X.; et al. Global mapping of highly pathogenic avian influenza H5N1 and H5Nx clade 2.3.4.4 viruses with spatial cross-validation. eLife 2016, 5, e19571. [Google Scholar] [CrossRef] [PubMed]
- Yamaji, R.; Saad, M.D.; Davis, C.T.; Swayne, D.E.; Wang, D.; Wong, F.Y.; McCauley, J.W.; Peiris, J.M.; Webby, R.J.; Fouchier, R.; et al. Pandemic potential of highly pathogenic avian influenza clade 2.3.4.4 A(H5) viruses. Rev. Med. Virol. 2020, 30, e2099. [Google Scholar] [CrossRef] [Green Version]
- Pyankova, O.G.; Susloparov, I.M.; A Moiseeva, A.; Kolosova, N.P.; Onkhonova, G.S.; Danilenko, A.V.; Vakalova, E.V.; Shendo, G.L.; Nekeshina, N.N.; Noskova, L.N.; et al. Isolation of clade 2.3.4.4b A(H5N8), a highly pathogenic avian influenza virus, from a worker during an outbreak on a poultry farm, Russia, December 2020. Eurosurveillance 2021, 26, 2100439. [Google Scholar] [CrossRef]
- Xiao, C.; Xu, J.; Lan, Y.; Huang, Z.; Zhou, L.; Guo, Y.; Li, X.; Yang, L.; Gao, G.F.; Wang, D.; et al. Five Independent Cases of Human Infection with Avian Influenza H5N6—Sichuan Province, China, 2021. China CDC Wkly. 2021, 3, 751–756. [Google Scholar] [CrossRef]
- Isoda, N.; Twabela, A.T.; Bazarragchaa, E.; Ogasawara, K.; Hayashi, H.; Wang, Z.-J.; Kobayashi, D.; Watanabe, Y.; Saito, K.; Kida, H.; et al. Re-Invasion of H5N8 High Pathogenicity Avian Influenza Virus Clade 2.3.4.4b in Hokkaido, Japan, 2020. Viruses 2020, 12, 1439. [Google Scholar] [CrossRef]
- Jeong, S.; Lee, D.-H.; Kwon, J.-H.; Kim, Y.-J.; Lee, S.-H.; Cho, A.Y.; Kim, T.-H.; Park, J.-E.; Lee, S.-I.; Song, C.-S. Highly Pathogenic Avian Influenza Clade 2.3.4.4b Subtype H5N8 Virus Isolated from Mandarin Duck in South Korea, 2020. Viruses 2020, 12, 1389. [Google Scholar] [CrossRef]
- Ilyicheva, T.; Marchenko, V.; Pyankova, O.; Moiseeva, A.; Nhai, T.T.; Lan Anh, B.T.; Sau, T.K.; Kuznetsov, A.; Ryzhikov, A.; Maksyutov, R. Antibodies to Highly Pathogenic A/H5Nx (Clade 2.3.4.4) Influenza Viruses in the Sera of Vietnamese Residents. Pathogens 2021, 10, 394. [Google Scholar] [CrossRef] [PubMed]
- Thiviyanathan, V.; Gorenstein, D.G. Aptamers and the next generation of diagnostic reagents. Proteom. Clin. Appl. 2012, 6, 563–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Overton, T.W. Recombinant protein production in bacterial hosts. Drug Discov. Today 2014, 19, 590–601. [Google Scholar] [CrossRef]
- Rosano, G.L.; Ceccarelli, E.A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 2014, 5, 172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Margine, I.; Palese, P.; Krammer, F. Expression of functional recombinant hemagglutinin and neuraminidase proteins from the novel H7N9 influenza virus using the baculovirus expression system. J. Vis. Exp. 2013, 81, e51112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamada, S.; Yasuhara, A.; Kawaoka, Y. Soluble Recombinant Hemagglutinin Protein of H1N1pdm09 Influenza Virus Elicits Cross-Protection against a Lethal H5N1 Challenge in Mice. Front. Microbiol. 2019, 10, 2031. [Google Scholar] [CrossRef] [PubMed]
- Dlugolenski, D.; Hauck, R.; Hogan, R.J.; Michel, F.; Mundt, E. Production of H5-specific monoclonal antibodies and the development of a competitive enzyme-linked immunosorbent assay for detection of H5 antibodies in multiple species. Avian Dis. 2010, 54 (Suppl. S1), 644–649. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.-J.; Kang, H.; Dao, T.D.; Cuc, B.T.; Nguyen, A.T.V.; Tien, T.T.T.; Hang, N.L.K.; Phuong, H.V.M.; Thanh, L.T.; Mai, L.Q.; et al. Development of a smartphone-based rapid dual fluorescent diagnostic system for the simultaneous detection of influenza A and H5 subtype in avian influenza A-infected patients. Theranostics 2018, 8, 6132–6148. [Google Scholar] [CrossRef] [PubMed]
- Ramos, K.C.; Nishiyama, K.; Maeki, M.; Ishida, A.; Tani, H.; Kasama, T.; Baba, Y.; Tokeshi, M. Rapid, Sensitive, and Selective Detection of H5 Hemagglutinin from Avian Influenza Virus Using an Immunowall Device. ACS Omega 2019, 4, 16683–16688. [Google Scholar] [CrossRef] [Green Version]
- Bao, D.T.; Kim, D.T.H.; Park, H.; Cuc, B.T.; Ngoc, N.M.; Linh, N.T.P.; Huu, N.C.; Tien, T.T.T.; Anh, N.T.V.; Duy, N.T.V.; et al. Rapid Detection of Avian Influenza Virus by Fluorescent Diagnostic Assay using an Epitope-Derived Peptide. Theranostics 2017, 7, 1835–1846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sakurai, A.; Takayama, K.; Nomura, N.; Munakata, T.; Yamamoto, N.; Tamura, T.; Yamada, J.; Hashimoto, M.; Kuwahara, K.; Sakoda, Y.; et al. Broad-spectrum detection of H5 subtype influenza A viruses with a new fluorescent immunochromatography system. PLoS ONE 2013, 8, e76753. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mosleh, N.; Dadras, H.; Mohammadi, A. Molecular quantitation of H9N2 avian influenza virus in various organs of broiler chickens using TaqMan real time PCR. J. Mol. Genet. Med. 2009, 3, 152–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duong, B.T.; Than, D.D.; Ankhanbaatar, U.; Gombo-Ochir, D.; Shura, G.; Tsolmon, A.; Pun Mok, C.K.; Basan, G.; Yeo, S.-J.; Park, H. Assessing potential pathogenicity of novel highly pathogenic avian influenza (H5N6) viruses isolated from Mongolian wild duck feces using a mouse model. Emerg. Microbes Infect. 2022, 11, 1425–1434. [Google Scholar] [CrossRef]
- Lewis, N.S.; Banyard, A.C.; Whittard, E.; Karibayev, T.; Al Kafagi, T.; Chvala, I.; Byrne, A.; Meruyert Akberovna, S.; King, J.; Harder, T.; et al. Emergence and spread of novel H5N8, H5N5 and H5N1 clade 2.3.4.4 highly pathogenic avian influenza in 2020. Emerg. Microbes Infect. 2021, 10, 148–151. [Google Scholar] [CrossRef]
- Lee, T.H.Y.; Mitchell, A.; Lau, S.L.; An, H.; Rajeaskariah, P.; Wasinger, V.; Raftery, M.; Bryant, K.; Tedla, N. Glycosylation in a mammalian expression system is critical for the production of functionally active leukocyte immunoglobulin-like receptor A3 protein. J. Biol. Chem. 2013, 288, 32873–32885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hai, R.; Krammer, F.; Tan, G.S.; Pica, N.; Eggink, D.; Maamary, J.; Margine, I.; Albrecht, R.A.; Palese, P. Influenza viruses expressing chimeric hemagglutinins: Globular head and stalk domains derived from different subtypes. J. Virol. 2012, 86, 5774–5781. [Google Scholar] [CrossRef] [Green Version]
- Long, K.M.; Yang, J.; Byun, J.W.; Pyo, H.M.; Park, M.Y.; Ku, B.K.; Nah, J.; Ryoo, S.; Wee, S.H.; Choi, K.S.; et al. Safe and effective mouse footpad inoculation. Methods Mol. Biol. 2013, 1031, 97–100. [Google Scholar] [PubMed]
- Nguyen, Q.T.; Yang, J.; Byun, J.-W.; Pyo, H.M.; Park, M.-Y.; Ku, B.K.; Nah, J.; Ryoo, S.; Wee, S.-H.; Choi, K.-S.; et al. Development of Monoclonal Antibody Specific to Foot-and-Mouth Disease Virus Type A for Serodiagnosis. Pathogens 2019, 8, 301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeo, S.-J.; Bao, D.T.; Seo, G.-E.; Bui, C.T.; Kim, D.T.H.; Anh, N.T.V.; Tien, T.T.T.; Linh, N.T.P.; Sohn, H.-J.; Chong, C.-K.; et al. Improvement of a rapid diagnostic application of monoclonal antibodies against avian influenza H7 subtype virus using Europium nanoparticles. Sci. Rep. 2017, 7, 7933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, K.; Huits, R.; Phadungsombat, J.; Tuekprakhon, A.; Nakayama, E.E.; van den Berg, R.; Barbe, B.; Cnops, L.; Rahim, R.; Hasan, A.; et al. Promising application of monoclonal antibody against chikungunya virus E1-antigen across genotypes in immunochromatographic rapid diagnostic tests. Virol. J. 2020, 17, 90. [Google Scholar] [CrossRef]
- Takahashi, H.; Nagata, S.; Odagiri, T.; Kageyama, T. Establishment of the cross-clade antigen detection system for H5 subtype influenza viruses using peptide monoclonal antibodies specific for influenza virus H5 hemagglutinin. Biochem. Biophys. Res. Commun. 2018, 498, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Le, T.B.; Kim, H.K.; Na, W.; Le, V.P.; Song, M.-S.; Song, D.; Jeong, D.G.; Yoon, S.-W. Development of a Multiplex RT-qPCR for the Detection of Different Clades of Avian Influenza in Poultry. Viruses 2020, 12, 100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, F.; Barbanti, F.; Scaturro, M.; Fontana, S.; Di Martino, A.; Marsili, G.; Puzelli, S.; Calzoletti, L.; Facchini, M.; Di Mario, G.; et al. Multiplex Real-Time Reverse-Transcription Polymerase Chain Reaction Assays for Diagnostic Testing of Severe Acute Respiratory Syndrome Coronavirus 2 and Seasonal Influenza Viruses: A Challenge of the Phase 3 Pandemic Setting. J. Infect. Dis. 2021, 223, 765–774. [Google Scholar] [CrossRef] [PubMed]
- Sączyńska, V.; Bierczyńska-Krzysik, A.; Cecuda-Adamczewska, V.; Baran, P.; Porębska, A.; Florys, K.; Zieliński, M.; Płucienniczak, G. Production of highly and broad-range specific monoclonal antibodies against hemagglutinin of H5-subtype avian influenza viruses and their differentiation by mass spectrometry. Virol. J. 2018, 15, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lightowlers, M.W. Vaccines against cysticercosis and hydatidosis: Foundations in taeniid cestode immunology. Parasitol. Int. 2006, 55, S39–S43. [Google Scholar] [CrossRef]
- He, Y.; Wang, K.; Yan, N. The recombinant expression systems for structure determination of eukaryotic membrane proteins. Protein Cell 2014, 5, 658–672. [Google Scholar] [CrossRef] [Green Version]
- Hoffmann, E.; Neumann, G.; Kawaoka, Y.; Hobom, G.; Webster, R.G. A DNA transfection system for generation of influenza A virus from eight plasmids. Proc. Natl. Acad. Sci. USA 2000, 97, 6108–6113. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Hou, G.; Wang, Y.; Wang, S.; Cheng, S.; Peng, C.; Jiang, W. Protective efficacy of an inactivated chimeric H5 avian influenza vaccine against H5 highly pathogenic avian influenza virus clades 2.3.4.4 and 2.3.2.1. J. Gen. Virol. 2018, 99, 1600–1607. [Google Scholar] [CrossRef]
- Beltrán-Pavez, C.; Riquelme-Barrios, S.; Oyarzún-Arrau, A.; Gaete-Argel, A.; González-Stegmaier, R.; Cereceda-Solis, K.; Aguirre, A.; Travisany, D.; Palma-Vejares, R.; Barriga, G.P.; et al. Insights into neutralizing antibody responses in individuals exposed to SARS-CoV-2 in Chile. Sci. Adv. 2021, 7. [Google Scholar] [CrossRef]
- Montero, E.; Gonzalez, L.M.; Harrison, L.J.; Parkhouse, R.M.; Garate, T. Taenia solium cDNA sequence encoding a putative immunodiagnostic antigen for human cysticercosis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2003, 786, 255–269. [Google Scholar] [CrossRef]
- Jadhao, S.J.; Suarez, D. New approach to delist highly pathogenic avian influenza viruses from BSL3+ Select Agents to BSL2 non-select status for diagnostics and vaccines. Avian Dis. 2010, 54 (Suppl. S1), 302–306. [Google Scholar] [CrossRef]
- Jaiswal, S.; Khanna, N.; Swaminathan, S. High-level expression and one-step purification of recombinant dengue virus type 2 envelope domain III protein in Escherichia coli. Protein Expr. Purif. 2004, 33, 80–91. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.M.; Duong, B.T.; Azam, M.; Phuong, T.T.; Park, H.; Thuy, P.T.B.; Yeo, S.-J. Diagnostic Performance of Dengue Virus Envelope Domain III in Acute Dengue Infection. Int. J. Mol. Sci. 2019, 20, 3464. [Google Scholar] [CrossRef]
- Baek, Y.-G.; Lee, Y.-N.; Lee, D.-H.; Shin, J.-I.; Lee, J.-H.; Chung, D.; Lee, E.-K.; Heo, G.-B.; Sagong, M.; Kye, S.-J.; et al. Multiple Reassortants of H5N8 Clade 2.3.4.4b Highly Pathogenic Avian Influenza Viruses Detected in South Korea during the Winter of 2020–2021. Viruses 2021, 13, 490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, X.; Wang, X.; Ye, H.; Li, B.; Chen, Y.; Chen, J.; Zhang, T.; Qiu, Z.; Li, H.; et al. Genomic evolution, transmission dynamics, and pathogenicity of avian influenza A (H5N8) viruses emerging in China, 2020. Virus Evol. 2021, 7, veab046. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, K.; Takeda, Y.; Takahashi, K.; Fukuyama, M.; Maeki, M.; Ishida, A.; Tani, H.; Shigemura, K.; Hibara, A.; Ogawa, H.; et al. Non-competitive fluorescence polarization immunoassay for detection of H5 avian influenza virus using a portable analyzer. Anal. Bioanal. Chem. 2021, 413, 4619–4623. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.-T.; Bui, C.T.; Kim, D.T.H.; Nguyen, A.V.T.; Trinh, T.T.T.; Yeo, S.-J. Clinical evaluation of rapid fluorescent diagnostic immunochromatographic test for influenza A virus (H1N1). Sci. Rep. 2018, 8, 13468. [Google Scholar] [CrossRef]
- Zhang, P.; Vemula, S.V.; Zhao, J.; Du, B.; Mohan, H.; Liu, J.; El Mubarak, H.S.; Landry, M.L.; Hewlett, I. A highly sensitive europium nanoparticle-based immunoassay for detection of influenza A/B virus antigen in clinical specimens. J. Clin. Microbiol. 2014, 52, 4385–4387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nguyen, A.T.V.; Duong, B.T.; Park, H.; Yeo, S.-J. Development of a peptide aptamer pair-linked rapid fluorescent diagnostic system for Zika virus detection. Biosens. Bioelectron. 2022, 197, 113768. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.J.; Huong, D.T.; Hong, N.N.; Li, C.Y.; Choi, K.; Yu, K.; Choi, D.Y.; Chong, C.K.; Choi, H.S.; Mallik, S.K.; et al. Rapid and quantitative detection of zoonotic influenza A virus infection utilizing coumarin-derived dendrimer-based fluorescent immunochromatographic strip test (FICT). Theranostics 2014, 4, 1239–1249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawar, S.D.; Pande, S.A.; Tare, D.S.; Keng, S.S.; Kode, S.S.; Singh, D.K.; Mullick, J. Morphological and Biochemical Characteristics of Avian Faecal Droppings and Their Impact on Survival of Avian Influenza Virus. Food Environ. Virol. 2018, 10, 99–106. [Google Scholar] [CrossRef]
- Usui, T.; Soda, K.; Tomioka, Y.; Ito, H.; Yabuta, T.; Takakuwa, H.; Otsuki, K.; Ito, T.; Yamaguchi, T. Characterization of clade 2.3.4.4 H5N8 highly pathogenic avian influenza viruses from wild birds possessing atypical hemagglutinin polybasic cleavage sites. Virus Genes 2017, 53, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.W.; Root, J.J.; McCurdy, L.M.; Bentler, K.T.; Barrett, N.L.; VanDalen, K.K.; Dirsmith, K.L.; Shriner, S.A. Avian influenza A virus susceptibility, infection, transmission, and antibody kinetics in European starlings. PLoS Pathog. 2021, 17, e1009879. [Google Scholar] [CrossRef] [PubMed]
- Tuong, H.T.; Jeong, J.H.; Choi, Y.K.; Park, H.; Baek, Y.H.; Yeo, S.-J. Development of a Rapid Fluorescent Diagnostic System to Detect Subtype H9 Influenza A Virus in Chicken Feces. Int. J. Mol. Sci. 2021, 22, 8823. [Google Scholar] [CrossRef]
- Yeo, S.-J.; Hoang, V.T.; Duong, T.B.; Nguyen, N.M.; Tuong, H.T.; Azam, M.; Sung, H.W.; Park, H. Emergence of a Novel Reassortant H5N3 Avian Influenza Virus in Korean Mallard Ducks in 2018. Intervirology 2022, 65, 1–16. [Google Scholar] [CrossRef]
- Armbruster, D.A.; Pry, T. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 2008, 29 (Suppl. S1), S49–S52. [Google Scholar]
- Spackman, E.; Senne, D.A.; Myers, T.J.; Bulaga, L.L.; Garber, L.P.; Perdue, M.L.; Lohman, K.; Daum, L.T.; Suarez, D.L. Development of a real-time reverse transcriptase PCR assay for type A influenza virus and the avian H5 and H7 hemagglutinin subtypes. J. Clin. Microbiol. 2002, 40, 3256–3260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Clinical Specimens | Virus Infection Group | Sensitivity (%) | ||
---|---|---|---|---|
2 Days Post Infection | ||||
RT-PCR Test (Positive/Negative) | FICT Assay (Positive/Negative) | Au NPs-RDT (Positive/Negative) | ||
Feces samples | Normal a | (0/5) | 0% (0/5) | 0% (0/5) |
H9N2 b | (2/3) | 0% (0/3) | 0% (0/3) | |
H5N6 c | (4/4) | 100% (4/4) | 50% (2/4) | |
Cloacal samples | Normal | (0/3) | 0% (0/3) | 0% (0/3) |
H9N2 | (3/3) | 0% (0/3) | 0% (0/3) | |
H5N6 | (2/3) | 0% (0/3) | 0% (0/3) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duong, B.-T.; Than, D.-D.; Ju, B.-G.; Trinh, T.-T.T.; Mok, C.-K.P.; Jeong, J.-H.; Song, M.-S.; Baek, Y.-H.; Park, H.; Yeo, S.-J. Development of a Rapid Fluorescent Diagnostic System for Early Detection of the Highly Pathogenic Avian Influenza H5 Clade 2.3.4.4 Viruses in Chicken Stool. Int. J. Mol. Sci. 2022, 23, 6301. https://doi.org/10.3390/ijms23116301
Duong B-T, Than D-D, Ju B-G, Trinh T-TT, Mok C-KP, Jeong J-H, Song M-S, Baek Y-H, Park H, Yeo S-J. Development of a Rapid Fluorescent Diagnostic System for Early Detection of the Highly Pathogenic Avian Influenza H5 Clade 2.3.4.4 Viruses in Chicken Stool. International Journal of Molecular Sciences. 2022; 23(11):6301. https://doi.org/10.3390/ijms23116301
Chicago/Turabian StyleDuong, Bao-Tuan, Duc-Duong Than, Bae-Gum Ju, Thuy-Tien Thi Trinh, Chris-Ka Pun Mok, Ju-Hwan Jeong, Min-Suk Song, Yun-Hee Baek, Hyun Park, and Seon-Ju Yeo. 2022. "Development of a Rapid Fluorescent Diagnostic System for Early Detection of the Highly Pathogenic Avian Influenza H5 Clade 2.3.4.4 Viruses in Chicken Stool" International Journal of Molecular Sciences 23, no. 11: 6301. https://doi.org/10.3390/ijms23116301
APA StyleDuong, B.-T., Than, D.-D., Ju, B.-G., Trinh, T.-T. T., Mok, C.-K. P., Jeong, J.-H., Song, M.-S., Baek, Y.-H., Park, H., & Yeo, S.-J. (2022). Development of a Rapid Fluorescent Diagnostic System for Early Detection of the Highly Pathogenic Avian Influenza H5 Clade 2.3.4.4 Viruses in Chicken Stool. International Journal of Molecular Sciences, 23(11), 6301. https://doi.org/10.3390/ijms23116301