Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage
Abstract
:1. Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage
2. ICH Genomics
2.1. Genome-Wide Association Studies (GWAS) in ICH
2.2. Examples of Genetic Risk Factors for ICH
2.2.1. APOE Alleles
2.2.2. Nonlobar ICH Genetic Risk: 1q22
2.2.3. Risk Prediction Using Genetic Information
3. ICH Epigenomics
3.1. DNA Methylation (DNAm)
3.2. RNA-Based Epigenetic Mechanisms
3.3. Histone Modifications
4. Exome Wide Association Studies (EWAS)
5. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flaherty, M.L.; Kissela, B.; Woo, D.; Kleindorfer, D.; Alwell, K.; Sekar, P.; Moomaw, C.J.; Haverbusch, M.; Broderick, J.P. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology 2007, 68, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Mayo, N.E.; Nadeau, L.; Daskalopoulou, S.S.; Cote, R. The evolution of stroke in Quebec: A 15-year perspective. Neurology 2007, 68, 1122–1127. [Google Scholar] [CrossRef] [PubMed]
- Pantoni, L. Cerebral small vessel disease: From pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol. 2010, 9, 689–701. [Google Scholar] [CrossRef]
- Woo, D.; Falcone, G.J.; Devan, W.J.; Brown, W.M.; Biffi, A.; Howard, T.D.; Anderson, C.D.; Brouwers, H.B.; Valant, V.; Battey, T.W.; et al. Meta-analysis of Genome-wide Association Studies Identifies 1q22 as a Susceptibility Locus for Intracerebral Hemorrhage. Am. J. Hum. Genet. 2014, 94, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.B.; Woo, D.; Sekar, P.; Osborne, J.; Moomaw, C.J.; Langefeld, C.D.; Adeoye, O. Untreated Hypertension: A Powerful Risk Factor for Lobar and Nonlobar Intracerebral Hemorrhage in Whites, Blacks, and Hispanics. Circulation 2016, 134, 1444–1452. [Google Scholar] [CrossRef] [Green Version]
- Woo, D.; Haverbusch, M.; Sekar, P.; Kissela, B.; Khoury, J.; Schneider, A.; Kleindorfer, D.; Szaflarski, J.; Pancioli, A.; Jauch, E.; et al. Effect of Untreated Hypertension on Hemorrhagic Stroke. Stroke 2004, 35, 1703–1708. [Google Scholar] [CrossRef] [Green Version]
- Attems, J.; Jellinger, K.; Thal, D.; Van Nostrand, W. Review: Sporadic cerebral amyloid angiopathy. Neuropathol. Appl. Neurobiol. 2010, 37, 75–93. [Google Scholar] [CrossRef]
- Vinters, H.V. Cerebral amyloid angiopathy a critical review. Stroke 1987, 18, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Charidimou, A.; Imaizumi, T.; Moulin, S.; Biffi, A.; Samarasekera, N.; Yakushiji, Y.; Peeters, A.; Vandermeeren, Y.; Laloux, P.; Baron, J.C.; et al. Brain hemorrhage recurrence, small vessel disease type, and cerebral microbleeds: A meta-analysis. Neurology 2017, 89, 820–829. [Google Scholar] [CrossRef]
- Gross, B.A.; Jankowitz, B.T.; Friedlander, R.M. Cerebral Intraparenchymal Hemorrhage: A Review. JAMA—J. Am. Med. Assoc. 2019, 321, 1295–1303. [Google Scholar] [CrossRef]
- Moulin, S.; Labreuche, J.; Bombois, S.; Rossi, C.; Boulouis, G.; Hénon, H.; Duhamel, A.; Leys, D.; Cordonnier, C. Dementia risk after spontaneous intracerebral haemorrhage: A prospective cohort study. Lancet Neurol. 2016, 15, 820–829. [Google Scholar] [CrossRef]
- Van Asch, C.J.; Luitse, M.J.; Rinkel, G.J.; van der Tweel, I.; Algra, A.; Klijn, C.J. Incidence, case fatality, and functional outcome of intracerebral haemorrhage over time, according to age, sex, and ethnic origin: A systematic review and meta-analysis. Lancet Neurol. 2010, 9, 167–176. [Google Scholar] [CrossRef]
- O’Donnell, M.J.; Denis, X.; Liu, L.; Zhang, H.; Chin, S.L.; Rao-Melacini, P.; Rangarajan, S.; Islam, S.; Pais, P.; McQueen, M.J.; et al. Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): A case-control study. Lancet 2010, 376, 112–123. [Google Scholar] [CrossRef]
- Sacco, S.; Marini, C.; Toni, D.; Olivieri, L.; Carolei, A. Incidence and 10-year survival of intracerebral hemorrhage in a population-based registry. Stroke 2009, 40, 394–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolink, W.M.T.; Wiegertjes, K.; Rinkel, G.J.E.; Algra, A.; de Leeuw, F.E.; Klijn, C.J.M. Location-specific risk factors for intracerebral hemorrhage: Systematic review and meta-analysis. Neurology 2020, 95, e1807–e1818. [Google Scholar] [CrossRef] [PubMed]
- Zia, E.; Hedblad, B.; Pessah-Rasmussen, H.; Berglund, G.; Janzon, L.; Engström, G. Blood Pressure in Relation to the Incidence of Cerebral Infarction and Intracerebral Hemorrhage. Stroke 2007, 38, 2681–2685. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa, P.; Grassi, M.; Iacoviello, L.; Zedde, M.; Marcheselli, S.; Silvestrelli, G.; DeLodovici, M.L.; Sessa, M.; Zini, A.; Paciaroni, M.; et al. Alcohol intake and the risk of intracerebral hemorrhage in the elderly: The MUCH-Italy. Neurology 2018, 91, e227–e235. [Google Scholar] [CrossRef]
- Suh, I.; Jee, S.H.; Kim, H.C.; Nam, C.M.; Kim, I.S.; Appel, L.J. Low serum cholesterol and haemorrhagic stroke in men: Korea Medical Insurance Corporation Study. Lancet 2001, 357, 922–925. [Google Scholar] [CrossRef]
- Bai, Q.; Sheng, Z.; Liu, Y.; Zhang, R.; Yong, V.W.; Xue, M. Intracerebral haemorrhage: From clinical settings to animal models. Stroke Vasc. Neurol. 2020, 5, 388–395. [Google Scholar] [CrossRef] [Green Version]
- Senn, R.; Elkind, M.S.V.; Montaner, J.; Christ-Crain, M.; Katan, M. Potential role of blood biomarkers in the management of nontraumatic intracerebral hemorrhage. Cerebrovasc. Dis. 2014, 38, 395–409. [Google Scholar] [CrossRef] [Green Version]
- Ren, H.; Han, R.; Chen, X.; Liu, X.; Wan, J.; Wang, L.; Yang, X.; Wang, J. Potential therapeutic targets for intracerebral hemorrhage-associated inflammation: An update. J. Cereb. Blood Flow Metab. 2020, 40, 1752–1768. [Google Scholar] [CrossRef] [PubMed]
- Falcone, G.J.; Woo, D. Genetics of Spontaneous Intracerebral Hemorrhage. Stroke 2017, 48, 3420–3424. [Google Scholar] [CrossRef] [PubMed]
- Shao, Z.; Tu, S.; Shao, A. Pathophysiological Mechanisms and Potential Therapeutic Targets in Intracerebral Hemorrhage. Front. Pharmacol. 2019, 10, 1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Pérez, A.; Gaist, D.; Wallander, M.-A.; McFeat, G.; García-Rodríguez, L.A. Mortality after hemorrhagic stroke: Data from general practice (The Health Improvement Network). Neurology 2013, 81, 559–565. [Google Scholar] [CrossRef]
- Vahedi, K.; Kubis, N.; Boukobza, M.; Arnoult, M.; Massin, P.; Tournier-Lasserve, E.; Bousser, M.G. COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke 2007, 38, 1461–1464. [Google Scholar] [CrossRef] [Green Version]
- Sundquist, K.; Li, X.; Hemminki, K. Familial risk of ischemic and hemorrhagic stroke: A large-scale study of the Swedish population. Stroke 2006, 37, 1668–1673. [Google Scholar] [CrossRef] [Green Version]
- Woo, D.; Sauerbeck, L.R.; Kissela, B.M.; Khoury, J.C.; Szaflarski, J.P.; Gebel, J.; Shukla, R.; Pancioli, A.M.; Jauch, E.C.; Menon, A.G.; et al. Genetic and environmental risk factors for intracerebral hemorrhage: Preliminary results of a population-based study. Stroke 2002, 33, 1190–1195. [Google Scholar] [CrossRef] [Green Version]
- Devan, W.J.; Falcone, G.J.; Anderson, C.D.; Jagiella, J.M.; Schmidt, H.; Hansen, B.; Jimenez-Conde, J.; Steinhauer, E.G.; Cuadrado-Godia, E.; Soriano, C.; et al. Heritability estimates identify a substantial genetic contribution to risk and outcome of intracerebral hemorrhage. Stroke 2013, 44, 1578–1583. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Chang, K.-H.; Chen, C.-M. Genetic Polymorphisms Associated with Spontaneous Intracerebral Hemorrhage. Int. J. Mol. Sci. 2018, 19, 3879. [Google Scholar] [CrossRef] [Green Version]
- Hayes, B. Overview of statistical methods for genome-wide association studies (GWAS). Methods Mol. Biol. 2013, 1019, 149–169. [Google Scholar]
- Li, M.; Li, C.; Guan, W. Evaluation of coverage variation of SNP chips for genome-wide association studies. Eur. J. Hum. Genet. 2008, 16, 635–643. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone, G.J.; Malik, R.; Dichgans, M.; Rosand, J. Current concepts and clinical applications of stroke genetics. Lancet Neurol. 2014, 13, 405–418. [Google Scholar] [CrossRef]
- Chauhan, G.; Debette, S. Genetic Risk Factors for Ischemic and Hemorrhagic Stroke. Curr. Cardiol. Rep. 2016, 18, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zondervan, K.T.; Cardon, L.R. Designing candidate gene and genome-wide case–control association studies. Nat. Protoc. 2007, 2, 2492–2501. [Google Scholar] [CrossRef] [Green Version]
- Rannikmäe, K.; Davies, G.; Thomson, P.A.; Bevan, S.; Devan, W.J.; Falcone, G.J.; Traylor, M.; Anderson, C.D.; Battey, T.W.; Radmanesh, F.; et al. Common variation in COL4A1/COL4A2 is associated with sporadic cerebral small vessel disease. Neurology 2015, 84, 918–926. [Google Scholar] [CrossRef]
- Marini, S.; Devan, W.J.; Radmanesh, F.; Miyares, L.; Poterba, T.; Hansen, B.M.; Norrving, B.; Jimenez-Conde, J.; Giralt-Steinhauer, E.; Elosua, R.; et al. 17p12 Influences Hematoma Volume and Outcome in Spontaneous Intracerebral Hemorrhage. Stroke 2018, 49, 1618–1625. [Google Scholar] [CrossRef]
- Ma, Q.; Wang, Y.; Shen, Y.; Liu, X.; Zhu, X.; Zhang, H.; Liu, L.; Tan, X.; Wang, L.; Wang, X. The rs10947803 SNP of KCNK17 is associated with cerebral hemorrhage but not ischemic stroke in a Chinese population. Neurosci. Lett. 2013, 539, 82–85. [Google Scholar] [CrossRef]
- Anderson, C.D.; Falcone, G.J.; Phuah, C.; Ma, R.A.S.; Brouwers, H.B.; Bs, T.W.K.B.; Biffi, A.; Peloso, G.M.; Liu, D.J.; Ba, A.M.A.; et al. Genetic variants in CETP increase risk of intracerebral hemorrhage. Ann. Neurol. 2016, 80, 730–740. [Google Scholar] [CrossRef]
- Biffi, A.; Sonni, A.; Anderson, C.D.; Kissela, B.; Jagiella, J.M.; Schmidt, H.; Jimenez-Conde, J.; Bs, B.M.H.; Fernandez-Cadenas, I.; Msc, L.C.; et al. Variants at APOE influence risk of deep and lobar intracerebral hemorrhage. Ann. Neurol. 2010, 68, 934–943. [Google Scholar] [CrossRef] [Green Version]
- Marini, S.; Crawford, K.; Morotti, A.; Lee, M.J.; Pezzini, A.; Moomaw, C.J.; Flaherty, M.L.; Montaner, J.; Roquer, J.; Jiménez-Conde, J.; et al. Association of Apolipoprotein e with Intracerebral Hemorrhage Risk by Race/Ethnicity: A Meta-analysis. JAMA Neurol. 2019, 76, 480–491. [Google Scholar] [CrossRef]
- Biffi, A.; Shulman, J.M.; Jagiella, J.M.; Cortellini, L.; Ayres, A.M.; Schwab, K.; Brown, D.L.; Silliman, S.L.; Selim, M.; Worrall, B.B.; et al. Genetic variation at CR1 increases risk of cerebral amyloid angiopathy. Neurology 2012, 78, 334–341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phillips, M.C. Apolipoprotein e isoforms and lipoprotein metabolism. IUBMB Life 2014, 66, 616–623. [Google Scholar] [CrossRef] [PubMed]
- Mahley, R.W. Apolipoprotein E: Cholesterol transport protein with expanding role in cell biology. Science 1988, 240, 622–630. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, X.; Tang, Z.; Liu, J.; Yang, S.; Zhang, Y.; Wei, Y.; Luo, W.; Wang, J.; Li, J.; et al. Apolipoprotein e gene polymorphism and the risk of intracerebral hemorrhage: A meta-analysis of epidemiologic studies. Lipids Health Dis. 2014, 13, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenberg, S.M.; Vonsattel, J.P.G.; Segal, A.Z.; Chiu, R.I.; Clatworthy, A.E.; Liao, A.; Hyman, B.T.; Rebeck, G.W. Association of apolipoprotein E and ε2 vasculopathy in cerebral amyloid angiopathy. Neurology 1998, 50, 961–965. [Google Scholar] [CrossRef] [PubMed]
- Biffi, A.; Anderson, C.D.; Jagiella, J.M.; Schmidt, H.; Kissela, B.; Hansen, B.M.; Jimenez-Conde, J.; Pires, C.R.; Ayres, A.M.; Schwab, K.; et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: A genetic association study. Lancet Neurol. 2011, 10, 702–709. [Google Scholar] [CrossRef] [Green Version]
- Montaner, J. Genetics of intracerebral haemorrhage: A tsunami effect of APOE e2 genotype on brain bleeding size? Lancet Neurol. 2011, 10, 673–675. [Google Scholar] [CrossRef]
- Chung, J.; Marini, S.; Pera, J.; Norrving, B.; Jimenez-Conde, J.; Roquer, J.; Fernandez-Cadenas, I.; Tirschwell, D.L.; Selim, M.; Brown, D.; et al. Genome-wide association study of cerebral small vessel disease reveals established and novel loci. Brain 2019, 142, 3176–3189. [Google Scholar] [CrossRef]
- Falcone, G.J.; Biffi, A.; Devan, W.J.; Jagiella, J.M.; Schmidt, H.; Kissela, B.; Hansen, B.; Jimenez-Conde, J.; Steinhauer, E.G.; Elosua, R.; et al. Burden of Risk Alleles for Hypertension Increases Risk of Intracerebral Hemorrhage. Stroke 2012, 43, 2877–2883. [Google Scholar] [CrossRef]
- Falcone, G.J.; Biffi, A.; Devan, W.J.; Brouwers, H.B.; Anderson, C.D.; Valant, V.; Ayres, A.M.; Schwab, K.; Rost, N.S.; Goldstein, J.N.; et al. Burden of blood pressure-related alleles is associated with larger hematoma volume and worse outcome in intracerebral hemorrhage. Stroke 2013, 44, 321–326. [Google Scholar] [CrossRef] [Green Version]
- Falcone, G.J.; Kirsch, E.; Acosta, J.N.; Ms, R.B.N.; Bs, A.L.; Marini, S.; Chung, J.; Selim, M.; Meschia, J.F.; Brown, D.L.; et al. Genetically Elevated LDL Associates with Lower Risk of Intracerebral Hemorrhage. Ann. Neurol. 2020, 88, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.D.; Paternoster, L.; Relton, C. When will mendelian randomization become relevant for clinical practice and public health? JAMA—J. Am. Med. Assoc. 2017, 317, 589–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montaner, J.; Ramiro, L.; Simats, A.; Tiedt, S.; Makris, K.; Jickling, G.C.; Debette, S.; Sanchez, J.-C.; Bustamante, A. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat. Rev. Neurol. 2020, 16, 247–264. [Google Scholar] [CrossRef] [PubMed]
- Feil, R.; Fraga, M.F. Epigenetics and the environment: Emerging patterns and implications. Nat. Rev. Genet. 2012, 13, 97–109. [Google Scholar] [CrossRef]
- Soriano-Tárraga, C.; Lazcano, U.; Giralt-Steinhauer, E.; Avellaneda-Gómez, C.; Ois, Á.; Rodríguez-Campello, A.; Cuadrado-Godia, E.; Gómez-González, A.; Fernández-Sanlés, A.; Elosua, R.; et al. Identification of 20 novel loci associated with ischaemic stroke. Epigenome-wide association study. Epigenetics 2020, 15, 988–997. [Google Scholar] [CrossRef]
- Qureshi, I.A.; Mehler, M.F. Emerging role of epigenetics in stroke: Part 1: DNA methylation and chromatin modifications. Arch Neurol. 2010, 67, 1316–1322. [Google Scholar] [CrossRef] [Green Version]
- Portela, A.; Esteller, M. Epigenetic modifications and human disease. Nat. Biotechnol. 2010, 28, 1057–1068. [Google Scholar] [CrossRef]
- Baccarelli, A.; Wright, R.; Bollati, V.; Litonjua, A.; Zanobetti, A.; Tarantini, L.; Sparrow, D.; Vokonas, P.; Schwartz, J. Ischemic heart disease and stroke in relation to blood DNA methylation. Epidemiology 2010, 21, 819–828. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Kumar, J.; Garg, G.; Kumar, A.; Patowary, A.; Karthikeyan, G.; Ramakrishnan, L.; Brahmachari, V.; Sengupta, S. Detection of Altered Global DNA Methylation in Coronary Artery Disease Patients. DNA Cell Biol. 2008, 27, 357–365. [Google Scholar] [CrossRef]
- Smolarek, I.; Wyszko, E.; Barciszewska, A.-M.; Nowak, S.; Gawronska, I.; Jabłecka, A.; Barciszewska, M.Z. Global DNA methylation changes in blood of patients with essential hypertension. Med. Sci. Monit. 2010, 16, CR149–CR155. [Google Scholar]
- Zaina, S.; Heyn, H.; Carmona, F.J.; Varol, N.; Sayols, S.; Condom, E.; Ramírez-Ruz, J.; Gomez, A.; Gonçalves, I.; Moran, S.; et al. DNA methylation map of human atherosclerosis. Circ. Cardiovasc. Genet. 2014, 7, 692–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Long, H.; Wang, S.; Xiao, W.; Xiong, M.; Liu, J.; Chen, L.; Chen, R.; Wei, X.; Shu, Y.; et al. Genome-Wide DNA Methylation Pattern in Whole Blood Associated with Primary Intracerebral Hemorrhage. Front. Immunol. 2021, 12, 702244. [Google Scholar] [CrossRef] [PubMed]
- Birney, E.; Stamatoyannopoulos, J.A.; Dutta, A.; Guigó, R.; Gingeras, T.R.; Margulies, E.H.; Weng, Z.; Snyder, M.; Dermitzakis, E.T.; Thurman, R.E.; et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 2007, 447, 799–816. [Google Scholar] [PubMed] [Green Version]
- Amaral, P.P.; Dinger, M.E.; Mercer, T.R.; Mattick, J.S. The Eukaryotic Genome as an RNA Machine. Science 2008, 319, 1787–1789. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, I.A.; Mehler, M.F. The emerging role of epigenetics in stroke: II. RNA regulatory circuitry. Arch. Neurol. 2010, 67, 1435–1441. [Google Scholar] [CrossRef] [Green Version]
- Jeyaseelan, K.; Lim, K.Y.; Armugam, A. MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 2008, 39, 959–966. [Google Scholar] [CrossRef] [Green Version]
- Fullerton, J.L.; Thomas, J.M.; Gonzalez-Trueba, L.; Trivett, C.; van Kralingen, J.C.; Allan, S.M.; Quinn, T.J.; Work, L.M. Systematic review: Association between circulating microRNA expression & stroke. J. Cereb. Blood Flow Metab. 2022, 42, 935–951. [Google Scholar]
- Fu, X.; Niu, T.; Li, X. MicroRNA-126-3p Attenuates Intracerebral Hemorrhage-Induced Blood-Brain Barrier Disruption by Regulating VCAM-1 Expression. Front. Neurosci. 2019, 13, 866. [Google Scholar] [CrossRef] [Green Version]
- Kong, F.; Zhou, J.; Zhou, W.; Guo, Y.; Li, G.; Yang, L. Protective role of microRNA-126 in intracerebral hemorrhage. Mol. Med. Rep. 2017, 15, 1419–1425. [Google Scholar] [CrossRef] [Green Version]
- Pogue, A.I.; Li, Y.Y.; Cui, J.-G.; Zhao, Y.; Kruck, T.P.; Percy, M.E.; Tarr, M.A.; Lukiw, W.J. Characterization of an NF-κB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J. Inorg. Biochem. 2009, 103, 1591–1595. [Google Scholar] [CrossRef]
- Liu, X.S.; Chopp, M.; Pan, W.L.; Wang, X.L.; Fan, B.Y.; Zhang, Y.; Kassis, H.; Zhang, R.L.; Zhang, X.M.; Zhang, Z.G. MicroRNA-146a Promotes Oligodendrogenesis in Stroke. Mol. Neurobiol. 2017, 54, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Zheng, H.-W.; Wang, Y.-L.; Lin, J.-X.; Li, N.; Zhao, X.-Q.; Liu, G.-F.; Liu, L.-P.; Jiao, Y.; Gu, W.-K.; Wang, D.Z.; et al. Circulating MicroRNAs as Potential Risk Biomarkers for Hematoma Enlargement after Intracerebral Hemorrhage. CNS Neurosci. Ther. 2012, 18, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Wang, J.L.; He, Z.Y.; Jin, F.; Tang, L. Association of altered serum micro RNAs with perihematomal edema after acute intracerebral hemorrhage. PLoS ONE 2015, 10, e0133783. [Google Scholar]
- Hu, Y.-L.; Wang, H.; Huang, Q.; Wang, G.; Zhang, H.-B. MicroRNA-23a-3p promotes the perihematomal edema formation after intracerebral hemorrhage via ZO-1. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 2809–2816. [Google Scholar]
- Maimaijiang, A.; Geng, D.; Yimamu, Y.; Lin, L.; Li, D.; Zhang, Y. Prognostic value of serum miR-155 in intracerebral hemorrhage. Int. J. Clin. Exp. Pathol. 2017, 10, 3845–3850. [Google Scholar]
- Gareev, I.; Yang, G.; Sun, J.; Beylerli, O.; Chen, X.; Zhang, D.; Zhao, B.; Zhang, R.; Sun, Z.; Yang, Q.; et al. Circulating MicroRNAs as Potential Noninvasive Biomarkers of Spontaneous Intracerebral Hemorrhage. World Neurosurg. 2020, 133, e369–e375. [Google Scholar] [CrossRef] [PubMed]
- Bali, K.K.; Kuner, R. Noncoding RNAs: Key molecules in understanding and treating pain. Trends Mol. Med. 2014, 20, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Batista, P.J.; Chang, H.Y. Long Noncoding RNAs: Cellular Address Codes in Development and Disease. Cell 2013, 152, 1298–1307. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wang, H. Long Non-coding RNA in CNS Injuries: A New Target for Therapeutic Intervention. Mol. Ther.-Nucleic Acids 2019, 17, 754–766. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.; Wu, J.; Lu, X.; Xiong, S.; Xu, X. Identification of novel biomarkers for intracerebral hemorrhage via long noncoding RNA-associated competing endogenous RNA network. Mol. Omi. 2022, 18, 71–82. [Google Scholar] [CrossRef]
- Bai, C.; Liu, T.; Sun, Y.; Li, H.; Xiao, N.; Zhang, M.; Feng, Y.; Xu, H.; Ge, J.; Wang, X.; et al. Identification of circular RNA expression profiles and potential biomarkers for intracerebral hemorrhage. Epigenomics 2021, 13, 379–395. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Fan, B.; Chopp, M.; Zhang, Z. Epigenetic mechanisms underlying adult post stroke neurogenesis. Int. J. Mol. Sci. 2020, 21, 6179. [Google Scholar] [CrossRef] [PubMed]
- Langley, B.; Brochier, C.; Rivieccio, M.A. Targeting Histone Deacetylases as a Multifaceted Approach to Treat the Diverse Outcomes of Stroke. Stroke 2009, 40, 2899–2905. [Google Scholar] [CrossRef] [PubMed]
- Stanzione, R.; Cotugno, M.; Bianchi, F.; Marchitti, S.; Forte, M.; Volpe, M.; Rubattu, S. Pathogenesis of Ischemic Stroke: Role of Epigenetic Mechanisms. Genes 2020, 11, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.; Zheng, S.; Zhang, L.; Xiao, H.; Gan, H.; Chen, H.; Zhai, X.; Liang, P.; Zhao, J.; Li, Y. Histone Deacetylation Alleviates Inflammation After Intracerebral Hemorrhage via the PTPN22/NLRP3 Pathway in Rats. Neuroscience 2020, 432, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Yamada, Y.; Sakuma, J.; Takeuchi, I.; Yasukochi, Y.; Kato, K.; Oguri, M.; Fujimaki, T.; Horibe, H.; Muramatsu, M.; Sawabe, M.; et al. Identification of six polymorphisms as novel susceptibility loci for ischemic or hemorrhagic stroke by exome-wide association studies. Int. J. Mol. Med. 2017, 39, 1477–1491. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Kato, K.; Oguri, M.; Horibe, H.; Fujimaki, T.; Yasukochi, Y.; Takeuchi, I.; Sakuma, J. Identification of nine genes as novel susceptibility loci for early-onset ischemic stroke, intracerebral hemorrhage, or subarachnoid hemorrhage. Biomed. Rep. 2018, 9, 8–20. [Google Scholar] [CrossRef] [Green Version]
- Radmanesh, F.; Falcone, G.J.; Anderson, C.D.; McWilliams, D.; Devan, W.J.; Brown, W.M.; Battey, T.W.; Ayres, A.M.; Raffeld, M.R.; Schwab, K.; et al. Rare Coding Variation and Risk of Intracerebral Hemorrhage. Stroke 2015, 46, 2299–2301. [Google Scholar] [CrossRef] [Green Version]
- Miyares, L.C.; Falcone, G.J.; Leasure, A.; Adeoye, O.; Shi, F.-D.; Kittner, S.J.; Langefeld, C.; Vagal, A.; Sheth, K.N.; Woo, D. Race/ethnicity influences outcomes in young adults with supratentorial intracerebral hemorrhage. Neurology 2020, 94, e1271–e1280. [Google Scholar] [CrossRef]
ICH Phenotype Studied (n) | MiRNA | Upregulated or Downregulated | Study Population/Ancestry [Ref] |
---|---|---|---|
HE in patients with ICH (n = 30) vs. Non-HE in ICH patients (n = 49) HE-ICH vs. healthy controls (n = 30) | miRNA-29c miRNA-29c | Upregulated | China [72] |
Hematoma volume (n = 33) vs. healthy controls (n = 18) Perihematomal edema | miRNA-126 miRNA-146a miRNA-let-7a miRNA-26a miRNA-126 | Downregulated | China [73] |
ICH patients (n = 30) vs. control (n = 30) Perihematomal edema | miRNA-23a-3p miRNA-130a miRNA-26a miRNA-146a miRNA- 23a-3p | Upregulated Downregulated Upregulated | China [74] |
ICH patients (n = 80) vs. healthy control (n = 30) | miRNA-155 | Upregulated | China [75] |
ICH patients (n = 106) vs. healthy control (n = 50) | miRNA-145 miRNA-223, and miRNA-155 miRNA-181b | Upregulated Downregulated | China [76] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giralt-Steinhauer, E.; Jiménez-Balado, J.; Fernández-Pérez, I.; Rey Álvarez, L.; Rodríguez-Campello, A.; Ois, Á.; Cuadrado-Godia, E.; Jiménez-Conde, J.; Roquer, J. Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. Int. J. Mol. Sci. 2022, 23, 6479. https://doi.org/10.3390/ijms23126479
Giralt-Steinhauer E, Jiménez-Balado J, Fernández-Pérez I, Rey Álvarez L, Rodríguez-Campello A, Ois Á, Cuadrado-Godia E, Jiménez-Conde J, Roquer J. Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. International Journal of Molecular Sciences. 2022; 23(12):6479. https://doi.org/10.3390/ijms23126479
Chicago/Turabian StyleGiralt-Steinhauer, Eva, Joan Jiménez-Balado, Isabel Fernández-Pérez, Lucía Rey Álvarez, Ana Rodríguez-Campello, Ángel Ois, Elisa Cuadrado-Godia, Jordi Jiménez-Conde, and Jaume Roquer. 2022. "Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage" International Journal of Molecular Sciences 23, no. 12: 6479. https://doi.org/10.3390/ijms23126479
APA StyleGiralt-Steinhauer, E., Jiménez-Balado, J., Fernández-Pérez, I., Rey Álvarez, L., Rodríguez-Campello, A., Ois, Á., Cuadrado-Godia, E., Jiménez-Conde, J., & Roquer, J. (2022). Genetics and Epigenetics of Spontaneous Intracerebral Hemorrhage. International Journal of Molecular Sciences, 23(12), 6479. https://doi.org/10.3390/ijms23126479