Influence of Insulin Receptor Single Nucleotide Polymorphisms on Glycaemic Control and Formation of Anti-Insulin Antibodies in Diabetes Mellitus
Abstract
:1. Introduction
2. Results
2.1. Disease-Associations of Polymorphisms in the Insulin- and the Insulin Receptor Encoding Genes
2.2. Relationship between SNPs in INSR and Glycaemic Control
2.3. Relationship between SNPs in INSR and sIR Levels
2.4. Influence of SNPs on Generation of IAs
3. Discussion
4. Materials and Methods
4.1. Diabetes Mellitus Patients and Healthy Controls
4.2. Measurement of Anti–Insulin Antibodies
4.3. Clinical Information
4.4. Single Nucleotide Polymorphisms and Genotyping
4.5. sIR Measurements
4.6. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mobasseri, M.; Shirmohammadi, M.; Amiri, T.; Vahed, N.; Fard, H.H.; Ghojazadeh, M. Prevalence and Incidence of Type 1 Diabetes in the World: A Systematic Review and Meta-Analysis. Health Promot. Perspect. 2020, 10, 98–115. [Google Scholar] [CrossRef] [PubMed]
- Van Belle, T.L.; Coppieters, K.T.; Von Herrath, M.G. Type 1 Diabetes: Etiology, Immunology, and Therapeutic Strategies. Physiol. Rev. 2011, 91, 79–118. [Google Scholar] [CrossRef] [PubMed]
- Cerf, M.E. Beta Cell Dysfunction and Insulin Resistance. Front. Endocrinol. 2013, 4, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kahn, S.E.; Cooper, M.E.; Del Prato, S. Pathophysiology and Treatment of Diabetes: Perspectives on the Past, Present and Future. Lancet 2014, 383, 1068–1083. [Google Scholar] [CrossRef] [Green Version]
- Kommoju, U.J.; Reddy, B.M. Genetic Etiology of Type 2 Diabetes Mellitus: A Review. Int. J. Diabetes Dev. Ctries. 2011, 31, 51–64. [Google Scholar] [CrossRef]
- Redondo, M.J.; Steck, A.K.; Pugliese, A. Genetics of Type 1 Diabetes. Pediatr. Diabetes 2018, 19, 346–353. [Google Scholar] [CrossRef]
- Jacobi, T.; Massier, L.; Klöting, N.; Horn, K.; Schuch, A.; Ahnert, P.; Engel, C.; Löffler, M.; Burkhardt, R.; Thiery, J.; et al. HLA Class II Allele Analyses Implicate Common Genetic Components in Type 1 and Non–Insulin-Treated Type 2 Diabetes. J. Clin. Endocrinol. Metab. 2020, 105, e245–e254. [Google Scholar] [CrossRef]
- Ma, Z.J.; Sun, P.; Guo, G.; Zhang, R.; Chen, L.M. Association of the HLA-DQA1 and HLA-DQB1 Alleles in Type 2 Diabetes Mellitus and Diabetic Nephropathy in the Han Ethnicity of China. J. Diabetes Res. 2013, 2013, 452537. [Google Scholar] [CrossRef]
- Williams, R.C.; Muller, Y.L.; Hanson, R.L.; Knowler, W.C.; Mason, C.C.; Bian, L.; Ossowski, V.; Wiedrich, K.; Chen, Y.F.; Marcovina, S.; et al. HLA-DRB1 Reduces the Risk of Type 2 Diabetes Mellitus by Increased Insulin Secretion. Diabetologia 2011, 54, 1684–1692. [Google Scholar] [CrossRef] [Green Version]
- Mianowska, B.; Szadkowska, A.; Pietrzak, I.; Zmysłowska, A.; Wegner, O.; Tomczonek, J.; Bodalski, J.; Młynarski, W. Immunogenicity of Different Brands of Human Insulin and Rapid-Acting Insulin Analogs in Insulin-Naïve Children with Type 1 Diabetes. Pediatr. Diabetes 2011, 12, 78–84. [Google Scholar] [CrossRef]
- Klingensmith, G.J. Insulin Antibodies-Are They Still with Us? Do They Matter? Pediatr. Diabetes 2011, 12, 75–77. [Google Scholar] [CrossRef] [PubMed]
- Home, P.; Derwahl, K.-M.; Ziemen, M.; Wernicke-Panten, K.; Pierre, S.; Kirchhein, Y.; Garg, S.K. Anti-Insulin Antibodies and Adverse Events with Biosimilar Insulin Lispro Compared with Humalog Insulin Lispro in People with Diabetes. Diabetes Technol. Ther. 2018, 20, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Fineberg, S.E.; Kawabata, T.T.; Finco-Kent, D.; Fountaine, R.J.; Finch, G.L.; Krasner, A.S. Immunological Responses to Exogenous Insulin. Endocr. Rev. 2007, 28, 625–652. [Google Scholar] [CrossRef] [PubMed]
- Bell, G.I.; Pictet, R.L.; Rutter, W.J.; Cordell, B.; Tischer, E.; Goodman, H.M. Sequence of the Human Insulin Gene. Nature 1980, 284, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.P.L.; Wang, H.; Liu, S.; Bode, B.; Reed, J.C.; Steed, R.D.; Anderson, S.W.; Steed, L.; Hopkins, D.; She, J.X. Association between Type 1 Diabetes and GWAS SNPs in the Southeast US Caucasian Population. Genes Immun. 2011, 12, 208–212. [Google Scholar] [CrossRef]
- Barrett, J.C.; Clayton, D.; Concannon, P.; Akolkar, B.; Jason, D.; Erlich, H.A.; Julier, C.; Morahan, G.; Nerup, J.; Plagnol, V.; et al. Genome-Wide Association Study and Meta-Analysis Finds over 40 Loci Affect Risk of Type 1 Diabetes. Nat. Genet. 2009, 41, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Julier, C.; Lucassen, A.; Villedieu, P.; Delepine, M.; Levy-Marchal, C.; Danzé, P.M.; Bianchi, F.; Boitard, C.; Froguel, P.; Bell, J.; et al. Multiple DNA Variant Association Analysis: Application to the Insulin Gene Region in Type I Diabetes. Am. J. Hum. Genet. 1994, 55, 1247–1254. [Google Scholar]
- Howson, J.; Walker, N.; Smyth, D.; Todd, J. Type I Diabetes Genetics Consortium Analysis of 19 Genes for Association with Type I Diabetes in the Type I Diabetes Genetics Consortium Families. Genes Immun. 2009, 10, S74–S84. [Google Scholar] [CrossRef] [Green Version]
- Lempainen, J.; Laine, A.P.; Hammais, A.; Toppari, J.; Simell, O.; Veijola, R.; Knip, M.; Ilonen, J. Non-HLA Gene Effects on the Disease Process of Type 1 Diabetes: From HLA Susceptibility to Overt Disease. J. Autoimmun. 2015, 61, 45–53. [Google Scholar] [CrossRef]
- Krischer, J.P.; Lynch, K.F.; Lernmark, A.; Hagopian, W.A.; Rewers, M.J.; She, J.X.; Toppari, J.; Ziegler, A.G.; Akolkar, B. Genetic and Environmental Interactions Modify the Risk of Diabetes-Related Autoimmunity by 6 Years of Age: The Teddy Study. Diabetes Care 2017, 40, 1194–1202. [Google Scholar] [CrossRef] [Green Version]
- Sokhi, J.; Sikka, R.; Raina, P.; Kaur, R.; Matharoo, K.; Arora, P.; Bhanwer, A.J.S. Association of Genetic Variants in INS (Rs689), INSR (Rs1799816) and PP1G.G (Rs1799999) with Type 2 Diabetes (T2D): A Case–Control Study in Three Ethnic Groups from North-West India. Mol. Genet. Genom. 2016, 291, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Meigs, J.B.; Dupuis, J.; Herbert, A.G.; Liu, C.; Wilson, P.W.F.; Cupples, L.A. The Insulin Gene Variable Number Tandem Repeat and Risk of Type 2 Diabetes in a Population-Based Sample of Families and Unrelated Men and Women. J. Clin. Endocrinol. Metab. 2005, 90, 1137–1143. [Google Scholar] [CrossRef] [PubMed]
- Cervin, C.; Lyssenko, V.; Bakhtadze, E.; Lindholm, E.; Nilsson, P.; Tuomi, T.; Cilio, C.M.; Groop, L. Genetic Similarities Between Latent Autoimmune Diabetes in Adults, Type 1 Diabetes, and Type 2 Diabetes. Control 2008, 57, 1433–1437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramu, D.; Perumal, V.; Paul, S.F.D. Association of Common Type 1 and Type 2 Diabetes Gene Variants with Latent Autoimmune Diabetes in Adults: A Meta-Analysis. J. Diabetes 2019, 11, 484–496. [Google Scholar] [CrossRef]
- Laugesen, E.; Østergaard, J.A.; Leslie, R.D.G. Latent Autoimmune Diabetes of the Adult: Current Knowledge and Uncertainty. Diabet. Med. 2015, 32, 843–852. [Google Scholar] [CrossRef]
- Carlsson, S. Etiology and Pathogenesis of Latent Autoimmune Diabetes in Adults (LADA) Compared to Type 2 Diabetes. Front. Physiol. 2019, 10, 320. [Google Scholar] [CrossRef] [Green Version]
- Belfiore, A.; Frasca, F.; Pandini, G.; Sciacca, L.; Vigneri, R. Insulin Receptor Isoforms and Insulin Receptor/Insulin-like Growth Factor Receptor Hybrids in Physiology and Disease. Endocr. Rev. 2009, 30, 586–623. [Google Scholar] [CrossRef] [Green Version]
- Seino, S.; Seino, M.; Nishi, S.; Bell, G.I. Structure of the Human Insulin Receptor Gene and Characterization of Its Promoter. Proc. Natl. Acad. Sci. USA 1989, 86, 114–118. [Google Scholar] [CrossRef] [Green Version]
- Häring, H.U. The Insulin Receptor: Signalling Mechanism and Contribution to the Pathogenesis of Insulin Resistance. Diabetologia 1991, 34, 848–861. [Google Scholar] [CrossRef] [Green Version]
- Group, T.S.I.R.S. Soluble Insulin Receptor Ectodomain Is Elevated in the Plasma of Patients with Diabetes. Diabetes 2007, 56, 2028–2035. [Google Scholar] [CrossRef] [Green Version]
- Hiriart, M.; Sanchez-Soto, C.; Diaz-Garcia, C.M.; Castanares, D.T.; Avitia, M.; Velasco, M.; Mas-Oliva, J.; Macias-Silva, M.; González-Villalpando, C.; Delgado-Coello, B.; et al. Hyperinsulinemia Is Associated with Increased Soluble Insulin Receptors Release from Hepatocytes. Front. Endocrinol. 2014, 5, 95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kanezaki, Y.; Matsushima, R.; Obata, T.; Nakaya, Y.; Matsumoto, T.; Ebina, Y. Injection of the Insulin Receptor α Subunit Increases Blood Glucose Levels in Mice. Biochem. Biophys. Res. Commun. 2003, 309, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, E.M.; Viard, V.; Morin, J.; Ferré, P.; Pénicaud, L.; Ramos, P.; Maika, S.D.; Ellis, L.; Hammer, R.E. A New Transgenic Mouse Model of Chronic Hyperglycemia. Diabetes 1994, 43, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.I.; Accili, D.; Cama, A.; Imano, E.; Kadowaki, H.; Kadowaki, T. Unusual Forms of Insulin Resistance. Annu. Rev. Med. 1991, 42, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.I.; Kadowaki, T.; Kadowaki, H.; Accili, D.; Cama, A.; McKeon, C. Mutations in Insulin-Receptor Gene in Insulin-Resistant Patients. Diabetes Care 1990, 13, 257–279. [Google Scholar] [CrossRef]
- Accili, D.; Frapier, C.; Mosthaf, L.; McKeon, C.; Elbein, S.C.; Permutt, M.A.; Ramos, E.; Lander, E.; Ullrich, A.; Taylor, S.I. A Mutation in the Insulin Receptor Gene That Impairs Transport of the Receptor to the Plasma Membrane and Causes Insulin-Resistant Diabetes. EMBO J. 1989, 8, 2509–2517. [Google Scholar] [CrossRef]
- Kadowaki, T.; Kadowaki, H.; Rechler, M.M.; Serrano-Rios, M.; Roth, J.; Gorden, P.; Taylor, S.I. Five Mutant Alleles of the Insulin Receptor Gene in Patients with Genetic Forms of Insulin Resistance. J. Clin. Investig. 1990, 86, 254–264. [Google Scholar] [CrossRef] [Green Version]
- ’T Hart, L.M.; Stolk, R.P.; Dekker, J.M.; Nijpels, G.; Grobbee, D.E.; Heine, R.J.; Maassen, J.A. Prevalence of Variants in Candidate Genes for Type 2 Diabetes Mellitus in the Netherlands: The Rotterdam Study and the Hoorn Study. J. Clin. Endocrinol. Metab. 1999, 84, 1002–1006. [Google Scholar] [CrossRef]
- Morgan, R.; Bishop, A.; Owens, D.R.; Luzio, S.D.; Peters, J.R.; Rees, A. Allelic Variants at Insulin-Receptor and Insulin Gene Loci and Susceptibility to NIDDM in Welsh Population. Diabetes 1990, 39, 1479–1484. [Google Scholar] [CrossRef]
- Sesti, G.; Federici, M.; Lauro, D.; Sbraccia, P.; Lauro, R. Molecular Mechanism of Insulin Resistance in Type 2 Diabetes Mellitus: Role of the Insulin Receptor Variant Forms. Diabetes Metab. Res. Rev. 2001, 17, 363–373. [Google Scholar] [CrossRef]
- O’Rahilly, S.; Choi, W.H.; Patel, P.; Turner, R.C.; Flier, J.S.; Moller, D.E. Detection of Mutations in Insulin-Receptor Gene in NIDDM Patients by Analysis of Single-Stranded Conformation Polymorphisms. Diabetes 1991, 40, 777–782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordwall, M.; Abrahamsson, M.; Dhir, M.; Fredrikson, M.; Ludvigsson, J.; Arnqvist, H.J. Impact of HbA1c, Followed from Onset of Type 1 Diabetes, on the Development of Severe Retinopathy and Nephropathy: The Viss Study (Vascular Diabetic Complications in Southeast Sweden). Diabetes Care 2015, 38, 308–315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghavami, H.; Ahmadi, F.; Mehin, S.H.; Meamarian, R.; Entezami, H. Assessment of the Relation between Diabetic Neuropathy & HbA1C Concentration. Razi J. Med. Sci. 2007, 13, 141–147. [Google Scholar]
- Braatvedt, G.D.; Cundy, T.; Crooke, M.; Florkowski, C.; Mann, J.I.; Lunt, H.; Jackson, R.; Orr-Walker, B.; Kenealy, T.; Drury, P.L. Understanding the New HbA1c Units for the Diagnosis of Type 2 Diabetes. N. Z. Med. J. 2012, 125, 70–80. [Google Scholar]
- Andersen, M.K.; Lundgren, V.; Turunen, J.A.; Forsblom, C.; Isomaa, B.; Groop, P.H.; Groop, L.; Tuomi, T. Latent Autoimmune Diabetes in Adults Differs Genetically from Classical Type 1 Diabetes Diagnosed after the Age of 35 Years. Diabetes Care 2010, 33, 2062–2064. [Google Scholar] [CrossRef] [Green Version]
- Meigs, J.B.; Shrader, P.; Sullivan, L.M.; McAteer, J.B.; Fox, C.S.; Dupuis, J.; Manning, A.K.; Florez, J.C.; Wilson, P.W.F.; D’Agostino, R.B.; et al. Genotype Score in Addition to Common Risk Factors for Prediction of Type 2 Diabetes. N. Engl. J. Med. 2008, 359, 2208–2219. [Google Scholar] [CrossRef]
- Fabregat, M.; Fernandez, M.; Javiel, G.; Vitarella, G.; Mimbacas, A. The Genetic Profile from HLA and Non-HLA Loci Allows Identification of Atypical Type 2 Diabetes Patients. J. Diabetes Res. 2015, 2015, 485132. [Google Scholar] [CrossRef] [Green Version]
- Zoungas, S.; Chalmers, J.; Ninomiya, T.; Li, Q.; Cooper, M.E.; Colagiuri, S.; Fulcher, G.; De Galan, B.E.; Harrap, S.; Hamet, P.; et al. Association of HbA 1c Levels with Vascular Complications and Death in Patients with Type 2 Diabetes: Evidence of Glycaemic Thresholds. Diabetologia 2012, 55, 636–643. [Google Scholar] [CrossRef]
- Hunt, R.; Sauna, Z.E.; Ambudkar, S.V.; Gottesman, M.M.; Kimchi-Sarfaty, C. Silent (Synonymous) SNPs: Should We Care about Them? Methods Mol. Biol. 2009, 578, 23–39. [Google Scholar] [CrossRef]
- Malodobra, M.; Pilecka, A.; Gworys, B.; Adamiec, R. Single Nucleotide Polymorphisms within Functional Regions of Genes Implicated in Insulin Action and Association with the Insulin Resistant Phenotype. Mol. Cell. Biochem. 2011, 349, 187–193. [Google Scholar] [CrossRef]
- Lindholm, A.; Jensen, L.B.; Home, P.D.; Raskin, P.; Boehm, B.O.; Råstam, J. Immune Responses to Insulin Aspart and Biphasic Insulin Aspart in People with Type 1 and Type 2 Diabetes. Diabetes Care 2002, 25, 876–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- James, E.A. Direct Analysis of Insulin-Specific T Cells Provides New Insights. Diabetes 2017, 66, 2940–2941. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Chow, I.T.; Sosinowski, T.; Torres-Chinn, N.; Greenbaum, C.J.; James, E.A.; Kappler, J.W.; Davidson, H.W.; Kwok, W.W. Autoreactive T Cells Specific for Insulin B:11-23 Recognize a Low-Affinity Peptide Register in Human Subjects with Autoimmune Diabetes. Proc. Natl. Acad. Sci. USA 2014, 111, 14840–14845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, H.J.; Sie, C.; Schumann, E.; Witte, A.-K.; Dressel, R.; van den Brandt, J.; Reichardt, H.M. The Insulin Receptor Plays a Critical Role in T Cell Function and Adaptive Immunity. J. Immunol. 2017, 198, 1910–1920. [Google Scholar] [CrossRef] [Green Version]
- Tsai, S.; Clemente-Casares, X.; Zhou, A.C.; Lei, H.; Ahn, J.J.; Chan, Y.T.; Choi, O.; Luck, H.; Woo, M.; Dunn, S.E.; et al. Insulin Receptor-Mediated Stimulation Boosts T Cell Immunity during Inflammation and Infection. Cell Metab. 2018, 28, 922–934.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinhas-Hamiel, O.; Hamiel, U.; Boyko, V.; Graph-Barel, C.; Reichman, B.; Lerner-Geva, L. Trajectories of HbA1c Levels in Children and Youth with Type 1 Diabetes. PLoS ONE 2014, 9, e109109. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Fu, H.; Fu, X.; Zhang, J.; Zhang, P.; Yang, S.; Zeng, Z.; Fu, N.; Guo, Z. Glycosylated Hemoglobin Levels and the Risk for Contrast-Induced Nephropathy in Diabetic Patients Undergoing Coronary Arteriography/Percutaneous Coronary Intervention. BMC Nephrol. 2021, 22, 206. [Google Scholar] [CrossRef]
- Farooque, U.; Lohano, A.K.; Hussain Rind, S.; Rind, M.S.; Karimi, S.; Jaan, A.; Yasmin, F.; Cheema, O. Correlation of Hemoglobin A1c With Wagner Classification in Patients With Diabetic Foot. Cureus 2020, 6, 4–13. [Google Scholar] [CrossRef]
- Food and Drug Administration. Immunogenicity Testing of Therapeutic Protein Products–Developing and Validating Assays for Anti-Drug Antibody Detection, Guidance for Industry; FDA: Montgomery County, MD, USA, 2019. [Google Scholar]
- European Medicines Agency. Guideline on Immunogenicity Assessment of Biotechnology-Derived Therapeutic Proteins; EMA: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Sherry, S.T.; Ward, M.; Kholodov, M.; Baker, J.; Phan, L.; Smigielski, E.M.; Sirotkin, K.; Res, K.S.G. DbSNP: The NCBI Database of Genetic Variation. Nucleic Acids Res. 2001, 29, 308–311. [Google Scholar] [CrossRef] [Green Version]
- Altshuler, D.L.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Collins, F.S.; De La Vega, F.M.; Donnelly, P.; Egholm, M.; et al. A Map of Human Genome Variation from Population-Scale Sequencing. Nature 2010, 467, 1061–1073. [Google Scholar] [CrossRef] [Green Version]
- Enevold, C.; Oturai, A.B.; Sørensen, P.S.; Ryder, L.P.; Koch-Henriksen, N.; Bendtzen, K. Multiple Sclerosis and Polymorphisms of Innate Pattern Recognition Receptors TLR1-10, NOD1-2, DDX58, and IFIH1. J. Neuroimmunol. 2009, 212, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, K.M.; Mannucci, A.; Kimpton, C.P.; Gill, P. A Rapid and Quantitative DNA Sex Test: Fluorescence-Based PCR Analysis of X-Y Homologous Gene Amelogenin. Biotechniques 1993, 15, 636–638. [Google Scholar] [PubMed]
Variable | Healthy Controls (n = 79) | T1D (n = 100) | T2D (n = 101) | p-Value |
---|---|---|---|---|
Age, years, mean ± SD | n.a. | 48 (15.5) | 66.8 (11.6) | <10−4 |
Female, n (%) | 32 (41) | 49 (49) | 34 (34) | 0.07 |
BMI, mean ± SD | n.a. | 26.6 ± 4.3 | 30.8 ± 6.0 | <10−4 |
HbA1c mmol/mol §, mean ± SD | n.a. | 63 ± 18.4 | 62.5 ± 15.6 | 0.94 |
Insulin dosage IU/kg ‖, mean ± SD | n.a. | 0.5 ± 0.3 | 0.8 ± 1.5 | 0.10 |
IA-positivity, n (%) | n.a. | 71 (71) | 31 (31) | <10−4 |
pp | pq | OR | 95% CI | p-Value | ||
---|---|---|---|---|---|---|
rs3842752 | ||||||
Healthy controls | 50 | 22 | 7 | |||
T1D | 76 | 23 | 1 | 0.50 | [0.29;0.87] | 0.01 |
T2D | 63 | 35 | 2 | 0.83 | [0.50;1.37] | 0.46 |
rs689 | ||||||
Healthy controls | 41 | 31 | 7 | |||
T1D | 73 | 24 | 3 | 0.44 | [0.26;0.75] | 0.002 |
T2D | 58 | 33 | 10 | 0.90 | [0.58;1.41] | 0.65 |
SNP | Minor Allele | HbA1c < 80 mmol/mol | HbA1c ≥ 80 mmol/mol | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
N | pp | pq | N | pp | pq | OR | 95% CI | p-value | ||||
T1D | ||||||||||||
rs2245649 | C | 63 | 55 | 8 | 0 | 19 | 13 | 5 | 1 | 5.35 | [1.52;18.75] | 0.009 |
rs2229429 | A | 63 | 41 | 21 | 1 | 19 | 8 | 8 | 3 | 3.10 | [1.25;7.67] | 0.01 |
T2D | ||||||||||||
rs2245649 | C | 77 | 69 | 8 | 0 | 15 | 11 | 4 | 0 | 3.58 | [0.85;15] | 0.08 |
rs2229429 | A | 77 | 57 | 20 | 0 | 15 | 11 | 3 | 1 | 1.67 | [0.50;5.61] | 0.41 |
Minor Allele | IAs Negative (n = 29) | IAs Positive (n = 71) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
pp | pq | pp | pq | OR | 95% CI | p-value | ||||
INSR | ||||||||||
rs2245649 | C | 18 | 10 | 1 | 63 | 7 | 1 | 0.28 | [0.11;0.72] | 0.008 |
rs2229429 | A | 11 | 14 | 4 | 48 | 22 | 1 | 0.30 | [0.14;0.65] | 0.002 |
Ref SNP ID | Gene | Location | Allele Substitution * | MAF | Function | Proposed Clinical Significance |
---|---|---|---|---|---|---|
rs3842752 | INS | chr11:2159843 | G > A | 0.21 | 3′ UTR variant | T1D [15,18], |
rs689 | INS | chr11:2160994 | A > T | 0.27 | Intron splice-site variant | T1D [19,20], T2D [21,22], LADA [23,24] |
rs2245649 | INSR | chr19:7163203 | T > C | 0.08 | Putative intron splice-site variant (α-subunit) | Insulin resistance [61] |
rs2229429 | INSR | chr19:7166377 | G > A | 0.19 | Exon synonymous | Insulin resistance [61] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massarenti, L.; Aniol-Nielsen, C.; Enevold, C.; Toft-Hansen, H.; Nielsen, C.H. Influence of Insulin Receptor Single Nucleotide Polymorphisms on Glycaemic Control and Formation of Anti-Insulin Antibodies in Diabetes Mellitus. Int. J. Mol. Sci. 2022, 23, 6481. https://doi.org/10.3390/ijms23126481
Massarenti L, Aniol-Nielsen C, Enevold C, Toft-Hansen H, Nielsen CH. Influence of Insulin Receptor Single Nucleotide Polymorphisms on Glycaemic Control and Formation of Anti-Insulin Antibodies in Diabetes Mellitus. International Journal of Molecular Sciences. 2022; 23(12):6481. https://doi.org/10.3390/ijms23126481
Chicago/Turabian StyleMassarenti, Laura, Christina Aniol-Nielsen, Christian Enevold, Henrik Toft-Hansen, and Claus Henrik Nielsen. 2022. "Influence of Insulin Receptor Single Nucleotide Polymorphisms on Glycaemic Control and Formation of Anti-Insulin Antibodies in Diabetes Mellitus" International Journal of Molecular Sciences 23, no. 12: 6481. https://doi.org/10.3390/ijms23126481
APA StyleMassarenti, L., Aniol-Nielsen, C., Enevold, C., Toft-Hansen, H., & Nielsen, C. H. (2022). Influence of Insulin Receptor Single Nucleotide Polymorphisms on Glycaemic Control and Formation of Anti-Insulin Antibodies in Diabetes Mellitus. International Journal of Molecular Sciences, 23(12), 6481. https://doi.org/10.3390/ijms23126481