G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom
Abstract
:1. Introduction
2. Phosphorylation and Internalization of RGS1 in an Arrestin-like Mechanism
3. Phosphorylation as a Switch Mechanism of AtGPA1
4. Stress Responses through XLG Phosphorylation
5. Gβγ Specificity and Function
6. G-Paradox and Four-State Model
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
GPA1 | Heterotrimeric G-protein Alpha Subunit |
AGB1 | Heterotrimeric G-protein Beta Subunit |
AGG | Heterotrimeric G-protein Gamma Subunit |
RGS | Regulator of G Signaling |
XLG | Extra-Large G Protein |
CME | Clathrin-Mediated Endocytosis |
SDE | Sterol-Dependent Endocytosis |
GPCR | G-Protein-Coupled Receptor |
GEF | Guanine Nucleotide Exchange Factor |
RLK | Receptor-Like Kinase |
V2R | V2 Vasopressin Receptor |
GRK | GPCR Kinase |
FLS2 | FLAGELLIN-SENSITIVE 2 |
BAK1 | BRI1-ASSOCIATED RECEPTOR KINASE 1 |
NFR1 | Nod Factor Receptor 1 |
ABA | Abscisic Acid |
VPS26 | Vacuolar Sorting Proteins 26 |
WNK | WITH NO LYSINE KINASE |
GNBP | Guanine Nucleotide-Binding Protein |
EGFR | Epidermal Growth Factor Receptor |
GSK | Glycogen Synthase Kinase |
PKA | Protein Kinase A |
IAA | Indole-3-Acetic Acid |
CERK1 | Chitin Elicitor Receptor Kinase 1 |
JA | Jasmonic Acid |
GA | Gibberellic Acid |
GAP | GTPase Activating Protein |
MS | Mass Spectrometry |
References
- Žádníková, P.; Smet, D.; Zhu, Q.; Van Der Straeten, D.; Benková, E. Strategies of seedlings to overcome their sessile nature: Auxin in mobility control. Front. Plant Sci. 2015, 6, 218. [Google Scholar] [CrossRef] [PubMed]
- Kaziro, Y.; Itoh, H.; Kozasa, T.; Nakafuku, M.; Satoh, T. Structure and function of signal-transducing GTP-binding proteins. Annu. Rev. Biochem. 1991, 60, 349–400. [Google Scholar] [CrossRef] [PubMed]
- Ross, E.M. Coordinating speed and amplitude in G-protein signaling. Curr. Biol. 2008, 18, R777–R783. [Google Scholar] [CrossRef] [PubMed]
- McCudden, C.R.; Hains, M.D.; Kimple, R.J.; Siderovski, D.P.; Willard, F.S. G-protein signaling: Back to the future. Cell. Mol. Life Sci. 2005, 62, 551–577. [Google Scholar] [CrossRef] [PubMed]
- Oldham, W.M.; Hamm, H.E. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2008, 9, 60–71. [Google Scholar] [CrossRef]
- Temple, B.R.; Jones, C.D.; Jones, A.M. Evolution of a signaling nexus constrained by protein interfaces and conformational states. PLoS Comp. Biol. 2010, 6, e1000962. [Google Scholar] [CrossRef]
- de Mendoza, A.; Sebé-Pedrós, A.; Ruiz-Trillo, I. The evolution of the GPCR signaling system in eukaryotes: Modularity, conservation, and the transition to metazoan multicellularity. Genome Biol. Evol. 2014, 6, 606–619. [Google Scholar] [CrossRef]
- Trusov, Y.; Botella, J.R. Plant G-Proteins Come of Age: Breaking the Bond with Animal Models. Front. Chem. 2016, 4, 24. [Google Scholar] [CrossRef]
- Urano, D.; Jones, A.M. Heterotrimeric G protein-coupled signaling in plants. Annu. Rev. Plant Biol. 2014, 65, 365–384. [Google Scholar] [CrossRef]
- Chakravorty, D.; Assmann, S. G protein subunit phosphorylation as a regulatory mechanism in heterotrimeric G protein signaling in mammals, yeast, and plants. Biochem. J. 2018, 475, 3331–3357. [Google Scholar] [CrossRef]
- Jones, J.C.; Temple, B.R.S.; Jones, A.M.; Dohlman, H.G. Functional reconstitution of an atypical G protein heterotrimer and regulator of G protein signaling protein (RGS1) from Arabidopsis thaliana. J. Biol. Chem. 2011, 286, 13143–13150. [Google Scholar] [CrossRef] [PubMed]
- Bradford, W.; Buckholz, A.; Morton, J.; Price, C.; Jones, A.M.; Urano, D. Eukaryotic G protein signaling evolved to require G protein-coupled receptors for activation. Sci. Signal. 2013, 6, ra37. [Google Scholar] [CrossRef] [PubMed]
- Urano, D.; Fu, Y.; Jones, A.M. Activation of an unusual G-protein in the simple protist Trichomonas vaginalis. Cell Cycle 2013, 12, 3127–3128. [Google Scholar] [CrossRef] [PubMed]
- Urano, D.; Phan, N.; Jones, J.C.; Yang, J.; Huang, J.; Grigston, J.; Taylor, J.P.; Jones, A.M. Endocytosis of the seven-transmembrane RGS1 protein activates G-protein-coupled signalling in Arabidopsis. Nat. Cell Biol. 2012, 14, 1079–1088. [Google Scholar] [CrossRef]
- Tunc-Ozdemir, M.; Li, B.; Jaiswal, D.K.; Urano, D.; Jones, A.M.; Torres, M.P. Predicted functional implications of phosphorylation of regulator of G protein signaling protein in plants. Front. Plant Sci. 2017, 8, 1456. [Google Scholar] [CrossRef]
- Jia, H.; Song, G.; Werth, E.G.; Walley, J.W.; Hicks, L.M.; Jones, A.M. Receptor-Like Kinase Phosphorylation of Arabidopsis Heterotrimeric G-Protein Gα -Subunit AtGPA1. Proteomics 2019, 19, e1900265. [Google Scholar] [CrossRef]
- Latorraca, N.R.; Venkatakrishnan, A.J.; Dror, R.O. GPCR dynamics: Structures in motion. Chem. Rev. 2017, 117, 139–155. [Google Scholar] [CrossRef]
- Mahoney, J.P.; Sunahara, R.K. Mechanistic insights into GPCR-G protein interactions. Curr. Opin. Struct. Biol. 2016, 41, 247–254. [Google Scholar] [CrossRef]
- Carman, C.V.; Benovic, J.L. G-protein-coupled receptors: Turn-ons and turn-offs. Curr. Opin. Neurobiol. 1998, 8, 335–344. [Google Scholar] [CrossRef]
- Peterson, Y.K.; Luttrell, L.M. The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling. Pharmacol. Rev. 2017, 69, 256–297. [Google Scholar] [CrossRef]
- Latorraca, N.R.; Masureel, M.; Hollingsworth, S.A.; Heydenreich, F.M.; Suomivuori, C.-M.; Brinton, C.; Townshend, R.J.L.; Bouvier, M.; Kobilka, B.K.; Dror, R.O. How GPCR Phosphorylation Patterns Orchestrate Arrestin-Mediated Signaling. Cell 2020, 183, 1813–1825.e18. [Google Scholar] [CrossRef]
- Johnston, C.A.; Taylor, J.P.; Gao, Y.; Kimple, A.J.; Grigston, J.C.; Chen, J.-G.; Siderovski, D.P.; Jones, A.M.; Willard, F.S. GTPase acceleration as the rate-limiting step in Arabidopsis G protein-coupled sugar signaling. Proc. Natl. Acad. Sci. USA 2007, 104, 17317–17322. [Google Scholar] [CrossRef]
- Chen, J.-G.; Jones, A.M. AtRGS1 function in Arabidopsis thaliana. Methods Enzymol. 2004, 389, 338–350. [Google Scholar] [CrossRef]
- Cao-Pham, A.H.; Urano, D.; Ross-Elliott, T.J.; Jones, A.M. Nudge-nudge, WNK-WNK (kinases), say no more? New Phytol. 2018, 220, 35–48. [Google Scholar] [CrossRef]
- Benschop, J.J.; Mohammed, S.; O’Flaherty, M.; Heck, A.J.R.; Slijper, M.; Menke, F.L.H. Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Mol. Cell. Proteom. 2007, 6, 1198–1214. [Google Scholar] [CrossRef]
- Mergner, J.; Frejno, M.; List, M.; Papacek, M.; Chen, X.; Chaudhary, A.; Samaras, P.; Richter, S.; Shikata, H.; Messerer, M.; et al. Mass-spectrometry-based draft of the Arabidopsis proteome. Nature 2020, 579, 409–414. [Google Scholar] [CrossRef]
- Liang, X.; Ma, M.; Zhou, Z.; Wang, J.; Yang, X.; Rao, S.; Bi, G.; Li, L.; Zhang, X.; Chai, J.; et al. Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Res. 2018, 28, 529–543. [Google Scholar] [CrossRef]
- Sugiyama, N.; Nakagami, H.; Mochida, K.; Daudi, A.; Tomita, M.; Shirasu, K.; Ishihama, Y. Large-scale phosphorylation mapping reveals the extent of tyrosine phosphorylation in Arabidopsis. Mol. Syst. Biol. 2008, 4, 193. [Google Scholar] [CrossRef]
- Chen, Y.; Hoehenwarter, W.; Weckwerth, W. Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment. Plant J. 2010, 63, 39. [Google Scholar] [CrossRef]
- Roitinger, E.; Hofer, M.; Köcher, T.; Pichler, P.; Novatchkova, M.; Yang, J.; Schlögelhofer, P.; Mechtler, K. Quantitative phosphoproteomics of the ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia-mutated and rad3-related (ATR) dependent DNA damage response in Arabidopsis thaliana. Mol. Cell. Proteom. 2015, 14, 556–571. [Google Scholar] [CrossRef]
- Nakagami, H.; Sugiyama, N.; Mochida, K.; Daudi, A.; Yoshida, Y.; Toyoda, T.; Tomita, M.; Ishihama, Y.; Shirasu, K. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol. 2010, 153, 1161–1174. [Google Scholar] [CrossRef]
- Van Leene, J.; Han, C.; Gadeyne, A.; Eeckhout, D.; Matthijs, C.; Cannoot, B.; De Winne, N.; Persiau, G.; Van De Slijke, E.; Van de Cotte, B.; et al. Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants 2019, 5, 316–327. [Google Scholar] [CrossRef]
- Xue, J.; Gong, B.-Q.; Yao, X.; Huang, X.; Li, J.-F. BAK1-mediated phosphorylation of canonical G protein alpha during flagellin signaling in Arabidopsis. J. Integr. Plant Biol. 2020, 62, 690–701. [Google Scholar] [CrossRef]
- Engelsberger, W.R.; Schulze, W.X. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J. 2012, 69, 978–995. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Sun, Y.; Li, L.; Macho, A.P.; Han, Z.; Hu, Z.; Zipfel, C.; Zhou, J.-M.; Chai, J. Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 2013, 342, 624–628. [Google Scholar] [CrossRef]
- Marcec, M.J.; Tanaka, K. Crosstalk between Calcium and ROS Signaling during Flg22-Triggered Immune Response in Arabidopsis Leaves. Plants 2021, 11, 14. [Google Scholar] [CrossRef]
- Tunc-Ozdemir, M.; Jones, A.M. BRL3 and AtRGS1 cooperate to fine tune growth inhibition and ROS activation. PLoS ONE 2017, 12, e0177400. [Google Scholar] [CrossRef]
- Ghusinga, K.R.; Paredes, F.; Jones, A.M.; Colaneri, A. Reported differences in the flg22 response of the null mutation of AtRGS1 correlates with fixed genetic variation in the background of Col-0 isolates. Plant Signal. Behav. 2021, 16, 1878685. [Google Scholar] [CrossRef]
- Tunc-Ozdemir, M.; Urano, D.; Jaiswal, D.K.; Clouse, S.D.; Jones, A.M. Direct Modulation of Heterotrimeric G Protein-coupled Signaling by a Receptor Kinase Complex. J. Biol. Chem. 2016, 291, 13918–13925. [Google Scholar] [CrossRef]
- Choudhury, S.R.; Pandey, S. Phosphorylation-Dependent Regulation of G-Protein Cycle during Nodule Formation in Soybean. Plant Cell 2015, 27, 3260–3276. [Google Scholar] [CrossRef]
- Durek, P.; Schmidt, R.; Heazlewood, J.L.; Jones, A.; MacLean, D.; Nagel, A.; Kersten, B.; Schulze, W.X. PhosPhAt: The Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Res. 2010, 38, D828–D834. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, L.; Li, S.; Zhang, Y.; Xu, R.; Liu, Z.; Liu, W.; Kong, J.; Huang, X.; Wang, Y.; et al. BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis. Nat. Commun. 2018, 9, 1522. [Google Scholar] [CrossRef]
- Al-Momani, S.; Qi, D.; Ren, Z.; Jones, A.R. Comparative qualitative phosphoproteomics analysis identifies shared phosphorylation motifs and associated biological processes in evolutionary divergent plants. J. Proteom. 2018, 181, 152–159. [Google Scholar] [CrossRef]
- Bhaskara, G.B.; Wen, T.-N.; Nguyen, T.T.; Verslues, P.E. Protein Phosphatase 2Cs and Microtubule-Associated Stress Protein 1 Control Microtubule Stability, Plant Growth, and Drought Response. Plant Cell 2017, 29, 169–191. [Google Scholar] [CrossRef]
- Reiland, S.; Finazzi, G.; Endler, A.; Willig, A.; Baerenfaller, K.; Grossmann, J.; Gerrits, B.; Rutishauser, D.; Gruissem, W.; Rochaix, J.-D.; et al. Comparative phosphoproteome profiling reveals a function of the STN8 kinase in fine-tuning of cyclic electron flow (CEF). Proc. Natl. Acad. Sci. USA 2011, 108, 12955–12960. [Google Scholar] [CrossRef]
- Liang, X.; Ding, P.; Lian, K.; Wang, J.; Ma, M.; Li, L.; Li, L.; Li, M.; Zhang, X.; Chen, S.; et al. Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. eLife 2016, 5, e13568. [Google Scholar] [CrossRef]
- Wang, X.; Bian, Y.; Cheng, K.; Gu, L.-F.; Ye, M.; Zou, H.; Sun, S.S.-M.; He, J.-X. A large-scale protein phosphorylation analysis reveals novel phosphorylation motifs and phosphoregulatory networks in Arabidopsis. J. Proteom. 2013, 78, 486–498. [Google Scholar] [CrossRef]
- Menz, J.; Li, Z.; Schulze, W.X.; Ludewig, U. Early nitrogen-deprivation responses in Arabidopsis roots reveal distinct differences on transcriptome and (phospho-) proteome levels between nitrate and ammonium nutrition. Plant J. 2016, 88, 717–734. [Google Scholar] [CrossRef]
- Reiland, S.; Messerli, G.; Baerenfaller, K.; Gerrits, B.; Endler, A.; Grossmann, J.; Gruissem, W.; Baginsky, S. Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiol. 2009, 150, 889–903. [Google Scholar] [CrossRef]
- Mithoe, S.C.; Boersema, P.J.; Berke, L.; Snel, B.; Heck, A.J.R.; Menke, F.L.H. Targeted quantitative phosphoproteomics approach for the detection of phospho-tyrosine signaling in plants. J. Proteome Res. 2012, 11, 438–448. [Google Scholar] [CrossRef]
- Wang, P.; Xue, L.; Batelli, G.; Lee, S.; Hou, Y.-J.; Van Oosten, M.J.; Zhang, H.; Tao, W.A.; Zhu, J.-K. Quantitative phosphoproteomics identifies SnRK2 protein kinase substrates and reveals the effectors of abscisic acid action. Proc. Natl. Acad. Sci. USA 2013, 110, 11205–11210. [Google Scholar] [CrossRef]
- Xue, L.; Wang, P.; Wang, L.; Renzi, E.; Radivojac, P.; Tang, H.; Arnold, R.; Zhu, J.-K.; Tao, W.A. Quantitative measurement of phosphoproteome response to osmotic stress in arabidopsis based on Library-Assisted eXtracted Ion Chromatogram (LAXIC). Mol. Cell. Proteom. 2013, 12, 2354–2369. [Google Scholar] [CrossRef]
- Bologna, Z.; Teoh, J.-P.; Bayoumi, A.S.; Tang, Y.; Kim, I.-M. Biased G Protein-Coupled Receptor Signaling: New Player in Modulating Physiology and Pathology. Biomol. Ther. 2017, 25, 12–25. [Google Scholar] [CrossRef]
- Watkins, J.M.; Ross-Elliott, T.J.; Shan, X.; Lou, F.; Dreyer, B.; Tunc-Ozdemir, M.; Jia, H.; Yang, J.; Oliveira, C.C.; Wu, L.; et al. Differential regulation of G protein signaling in Arabidopsis through two distinct pathways that internalize AtRGS1. Sci. Signal. 2021, 14, eabe4090. [Google Scholar] [CrossRef]
- Laporte, S.A.; Miller, W.E.; Kim, K.-M.; Caron, M.G. beta-Arrestin/AP-2 interaction in G protein-coupled receptor internalization: Identification of a beta-arrestin binging site in beta 2-adaptin. J. Biol. Chem. 2002, 277, 9247–9254. [Google Scholar] [CrossRef]
- Zelazny, E.; Santambrogio, M.; Gaude, T. Retromer association with membranes: Plants have their own rules! Plant Signal. Behav. 2013, 8, e25312. [Google Scholar] [CrossRef]
- Gallon, M.; Clairfeuille, T.; Steinberg, F.; Mas, C.; Ghai, R.; Sessions, R.B.; Teasdale, R.D.; Collins, B.M.; Cullen, P.J. A unique PDZ domain and arrestin-like fold interaction reveals mechanistic details of endocytic recycling by SNX27-retromer. Proc. Natl. Acad. Sci. USA 2014, 111, E3604–E3613. [Google Scholar] [CrossRef]
- van Koppen, C.J.; Jakobs, K.H. Arrestin-independent internalization of G protein-coupled receptors. Mol. Pharmacol. 2004, 66, 365–367. [Google Scholar] [CrossRef]
- Watkins, J.M.; Clark, N.M.; Song, G.; Oliveira, C.C.; Mishra, B.; Brachova, L.; Seifert, C.M.; Mitchell, M.S.; dos Reis, P.A.B.; Urano, D.; et al. Phosphorylation dynamics in a flg22-induced, heterotrimeric G-protein dependent signaling network in Arabidopsis thaliana reveals a candidate PP2A phosphatase involved in AtRGS1 trafficking. BioRxiv 2021. [Google Scholar] [CrossRef]
- Vetter, I.R.; Wittinghofer, A. The guanine nucleotide-binding switch in three dimensions. Science 2001, 294, 1299–1304. [Google Scholar] [CrossRef]
- Sprang, S.R. G protein mechanisms: Insights from structural analysis. Annu. Rev. Biochem. 1997, 66, 639–678. [Google Scholar] [CrossRef]
- Simanshu, D.K.; Nissley, D.V.; McCormick, F. RAS proteins and their regulators in human disease. Cell 2017, 170, 17–33. [Google Scholar] [CrossRef]
- Chen, Z.; Singer, W.D.; Sternweis, P.C.; Sprang, S.R. Structure of the p115RhoGEF rgRGS domain-Galpha13/i1 chimera complex suggests convergent evolution of a GTPase activator. Nat. Struct. Mol. Biol. 2005, 12, 191–197. [Google Scholar] [CrossRef]
- Mittal, V.; Linder, M.E. The RGS14 GoLoco domain discriminates among Galphai isoforms. J. Biol. Chem. 2004, 279, 46772–46778. [Google Scholar] [CrossRef]
- Marotti, L.A.; Newitt, R.; Wang, Y.; Aebersold, R.; Dohlman, H.G. Direct identification of a G protein ubiquitination site by mass spectrometry. Biochemistry 2002, 41, 5067–5074. [Google Scholar] [CrossRef]
- Van Eps, N.; Oldham, W.M.; Hamm, H.E.; Hubbell, W.L. Structural and dynamical changes in an alpha-subunit of a heterotrimeric G protein along the activation pathway. Proc. Natl. Acad. Sci. USA 2006, 103, 16194–16199. [Google Scholar] [CrossRef]
- Li, B.; Tunc-Ozdemir, M.; Urano, D.; Jia, H.; Werth, E.G.; Mowrey, D.D.; Hicks, L.M.; Dokholyan, N.V.; Torres, M.P.; Jones, A.M. Tyrosine phosphorylation switching of a G protein. J. Biol. Chem. 2018, 293, 4752–4766. [Google Scholar] [CrossRef]
- Poppleton, H.; Sun, H.; Fulgham, D.; Bertics, P.; Patel, T.B. Activation of Gsalpha by the epidermal growth factor receptor involves phosphorylation. J. Biol. Chem. 1996, 271, 6947–6951. [Google Scholar] [CrossRef]
- Huang, S.; Benben, A.; Green, R.; Cheranda, N.; Lee, G.; Joseph, B.; Keaveney, S.; Wang, Y. Phosphorylation of the Gα protein Gpa2 promotes protein kinase A signaling in yeast. J. Biol. Chem. 2019, 294, 18836–18845. [Google Scholar] [CrossRef]
- Rudrabhatla, P.; Reddy, M.M.; Rajasekharan, R. Genome-wide analysis and experimentation of plant serine/ threonine/tyrosine-specific protein kinases. Plant Mol. Biol. 2006, 60, 293–319. [Google Scholar] [CrossRef]
- Chakravorty, D.; Gookin, T.E.; Milner, M.J.; Yu, Y.; Assmann, S.M. Extra-Large G Proteins Expand the Repertoire of Subunits in Arabidopsis Heterotrimeric G Protein Signaling. Plant Physiol. 2015, 169, 512–529. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.R.; Assmann, S.M. Arabidopsis thaliana “extra-large GTP-binding protein” (AtXLG1): A new class of G-protein. Plant Mol. Biol. 1999, 40, 55–64. [Google Scholar] [CrossRef]
- Lou, F.; Abramyan, T.M.; Jia, H.; Tropsha, A.; Jones, A.M. An atypical heterotrimeric Gα protein has substantially reduced nucleotide binding but retains nucleotide-independent interactions with its cognate RGS protein and Gβγ dimer. J. Biomol. Struct. Dyn. 2020, 38, 5204–5218. [Google Scholar] [CrossRef] [PubMed]
- Heo, J.B.; Sung, S.; Assmann, S.M. Ca2+-dependent GTPase, extra-large G protein 2 (XLG2), promotes activation of DNA-binding protein related to vernalization 1 (RTV1), leading to activation of floral integrator genes and early flowering in Arabidopsis. J. Biol. Chem. 2012, 287, 8242–8253. [Google Scholar] [CrossRef] [PubMed]
- Urano, D.; Maruta, N.; Trusov, Y.; Stoian, R.; Wu, Q.; Liang, Y.; Jaiswal, D.K.; Thung, L.; Jackson, D.; Botella, J.R.; et al. Saltational evolution of the heterotrimeric G protein signaling mechanisms in the plant kingdom. Sci. Signal. 2016, 9, ra93. [Google Scholar] [CrossRef] [PubMed]
- Petutschnig, E.; Anders, J.; Stolze, M.; Meusel, C.; Hacke, R.; Schwier, M.; Gippert, A.-L.; Kroll, S.; Fasshauer, P.; Wiermer, M.; et al. Extra Large G-protein 2 (XLG2) mediates cell death and hyperimmunity via a novel, apoplastic ROS-independent pathway in Arabidopsis thaliana. BioRxiv 2021. [Google Scholar] [CrossRef]
- Kamal, M.M.; Ishikawa, S.; Takahashi, F.; Suzuki, K.; Kamo, M.; Umezawa, T.; Shinozaki, K.; Kawamura, Y.; Uemura, M. Large-Scale Phosphoproteomic Study of Arabidopsis Membrane Proteins Reveals Early Signaling Events in Response to Cold. Int. J. Mol. Sci. 2020, 21, 8631. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Gao, Y.; Jones, A.M. Extra Large G-Protein Interactome Reveals Multiple Stress Response Function and Partner-Dependent XLG Subcellular Localization. Front. Plant Sci. 2017, 8, 1015. [Google Scholar] [CrossRef]
- Lease, K.A.; Wen, J.; Li, J.; Doke, J.T.; Liscum, E.; Walker, J.C. A mutant Arabidopsis heterotrimeric G-protein beta subunit affects leaf, flower, and fruit development. Plant Cell 2001, 13, 2631–2641. [Google Scholar] [CrossRef]
- Clapham, D.E.; Neer, E.J. G protein beta gamma subunits. Annu. Rev. Pharmacol. Toxicol. 1997, 37, 167–203. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Wang, S.; Asami, T.; Chen, J.-G. Loss-of-function mutations in the Arabidopsis heterotrimeric G-protein alpha subunit enhance the developmental defects of brassinosteroid signaling and biosynthesis mutants. Plant Cell Physiol. 2008, 49, 1013–1024. [Google Scholar] [CrossRef] [PubMed]
- Cho, Y.; Yu, C.-Y.; Iwasa, T.; Kanehara, K. Heterotrimeric G protein subunits differentially respond to endoplasmic reticulum stress in Arabidopsis. Plant Signal. Behav. 2015, 10, e1061162. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Chen, M.; Xu, D.; Fang, G.; Wang, E.; Gao, S.; Xu, Z.; Li, L.; Zhang, X.; Min, D.; et al. G-protein β subunit AGB1 positively regulates salt stress tolerance in Arabidopsis. J. Integr. Agric. 2015, 14, 314–325. [Google Scholar] [CrossRef]
- Maruta, N.; Trusov, Y.; Brenya, E.; Parekh, U.; Botella, J.R. Membrane-localized extra-large G proteins and Gbg of the heterotrimeric G proteins form functional complexes engaged in plant immunity in Arabidopsis. Plant Physiol. 2015, 167, 1004–1016. [Google Scholar] [CrossRef]
- Trusov, Y.; Rookes, J.E.; Tilbrook, K.; Chakravorty, D.; Mason, M.G.; Anderson, D.; Chen, J.-G.; Jones, A.M.; Botella, J.R. Heterotrimeric G protein gamma subunits provide functional selectivity in Gbetagamma dimer signaling in Arabidopsis. Plant Cell 2007, 19, 1235–1250. [Google Scholar] [CrossRef]
- Chakravorty, D.; Trusov, Y.; Zhang, W.; Acharya, B.R.; Sheahan, M.B.; McCurdy, D.W.; Assmann, S.M.; Botella, J.R. An atypical heterotrimeric G-protein γ-subunit is involved in guard cell K+-channel regulation and morphological development in Arabidopsis thaliana. Plant J. 2011, 67, 840–851. [Google Scholar] [CrossRef]
- Li, S.; Liu, W.; Zhang, X.; Liu, Y.; Li, N.; Li, Y. Roles of the Arabidopsis G protein γ subunit AGG3 and its rice homologs GS3 and DEP1 in seed and organ size control. Plant Signal. Behav. 2012, 7, 1357–1359. [Google Scholar] [CrossRef]
- Maruta, N.; Trusov, Y.; Chakravorty, D.; Urano, D.; Assmann, S.M.; Botella, J.R. Nucleotide exchange-dependent and nucleotide exchange-independent functions of plant heterotrimeric GTP-binding proteins. Sci. Signal. 2019, 12, eaav9526. [Google Scholar] [CrossRef]
- Yu, T.-Y.; Shi, D.-Q.; Jia, P.-F.; Tang, J.; Li, H.-J.; Liu, J.; Yang, W.-C. The arabidopsis receptor kinase ZAR1 is required for zygote asymmetric division and its daughter cell fate. PLoS Genet. 2016, 12, e1005933. [Google Scholar] [CrossRef]
- Tsugama, D.; Liu, S.; Takano, T. Arabidopsis heterotrimeric G protein β subunit, AGB1, regulates brassinosteroid signalling independently of BZR1. J. Exp. Bot. 2013, 64, 3213–3223. [Google Scholar] [CrossRef] [PubMed]
- Adjobo-Hermans, M.J.W.; Goedhart, J.; Gadella, T.W.J. Plant G protein heterotrimers require dual lipidation motifs of Galpha and Ggamma and do not dissociate upon activation. J. Cell Sci. 2006, 119, 5087–5097. [Google Scholar] [CrossRef] [PubMed]
- Oki, K.; Fujisawa, Y.; Kato, H.; Iwasaki, Y. Study of the constitutively active form of the alpha subunit of rice heterotrimeric G proteins. Plant Cell Physiol. 2005, 46, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Maruta, N.; Trusov, Y.; Urano, D.; Chakravorty, D.; Assmann, S.M.; Jones, A.M.; Botella, J.R. GTP binding by Arabidopsis extra-large G protein 2 is not essential for its functions. Plant Physiol. 2021, 186, 1240–1253. [Google Scholar] [CrossRef]
- Ghusinga, K.R.; Elston, T.C.; Jones, A.M. Towards resolution of a paradox in plant G-protein signaling. Plant Physiol. 2022, 188, 807–815. [Google Scholar] [CrossRef]
- Liao, K.-L.; Jones, R.D.; McCarter, P.; Tunc-Ozdemir, M.; Draper, J.A.; Elston, T.C.; Kramer, D.; Jones, A.M. A shadow detector for photosynthesis efficiency. J. Theor. Biol. 2017, 414, 231–244. [Google Scholar] [CrossRef]
Protein | Residue | Detected In Vivo? | In Vitro Kinase | Conservation Score (Plants Only) * | Conservation Score (Eukaryotes, Excluding Plants) * |
---|---|---|---|---|---|
AtRGS1 | Ser278 | Yes [25] | BRL3, BIK1, PBL1 [15,27] | −0.861 | |
Ser339 | No [15] | BRL3 [15] | 0.714 | −1.131 | |
Ser365 | No [15] | BRL3 [15] | −1.373 | 0.444 | |
Thr375 | No [15] | BRL3 [15] | −1.016 | −0.162 | |
Thr379 | No [15] | BRL3 [15] | −0.582 | 0.483 | |
Ser405 | No [15] | BRL3 [15] | −0.981 | 0.959 | |
Ser406 | No [15] | BRL3 [15] | −1.139 | −0.559 | |
Ser417 | Yes [26] | BRL3, BIK1 [15,27] | 1.798 | ||
Ser428 | Yes [26] | BRL3, PEPR1, WNK8, BIK1, PBL1 [11,14,27] | −0.211 | ||
Ser430 | Yes [26,27] | BRL3, BIK1, PBL1 [15,27] | −1.116 | ||
Ser431 | Yes [26,27] | BRL3, BIK1, PBL1 [15,27] | −0.853 | ||
Ser435 | Yes [26] | BRL3, WNK8 [11,14,27] | −1.048 | ||
Ser436 | Yes [26] | BRL3, WNK8 [11,14] | −0.097 | ||
Ser450 | Yes [27] | BIK1, PBL1 [27] | 1.297 | ||
Ser452 | Yes [27] | BIK1, PBL1 [27] | 1.897 | ||
Ser453 | Yes [27] | BRL3, BIK1, PBL1 [15,27] | 0.429 | ||
AtGPA1 | Ser8 | No [16] | BAK1, PSY1R, PEPR1, BRL3, BRI1, XIP1, AT2G19230, AT2G37050, AT5G62710 [16] | 1.567 | −0.741 |
Thr12 | Yes [28,31] | BAK1, SERK1, PSY1R, PEPR1, BRL3, XIP1, AT2G19230, AT2G37050, AT5G62710 [16] | 2.432 | 2.226 | |
Thr15 | Yes [30,32] | BAK1, SERK1, PSY1R, BRI1, XIP1, AT2G19230, AT2G37050, AT5G62710 [16] | 3.816 | 0.489 | |
Thr19 | Yes [29] | BAK1, SERK1, PSY1R, BRL3, BRI1, XIP1, AT2G19230, AT2G37050, AT5G62710 [16] | 1.349 | 0.949 | |
Ser49 | Yes [42] | −0.658 | −0.908 | ||
Ser52 | No [16] | BRL3, AT2G19230, AT5G62710 [16] | −0.167 | −0.945 | |
Thr53 | No [16] | BRI1 [16] | −0.974 | −0.942 | |
Ser73 | No [16] | BAK1 [16] | 0.293 | 0.322 | |
Thr85 | No [16] | BAK1, PSY1R, BRL3, BRI1, AT2G19230, AT5G62710 [16] | −0.588 | −0.792 | |
Thr93 | No [16] | BAK1, SERK1, PSY1R, BRL3, BRI1, XIP1, AT2G19230 [16] | 0.609 | −0.700 | |
Thr101 | No [16] | BAK1, XIP1 [16] | 5.029 | 0.514 | |
Ser103 | No [16] | AT2G19230 [16] | −0.179 | 1.321 | |
Ser109 | No [16] | BAK1, SERK1, BRL3, AT5G62710 [16] | −0.428 | 1.116 | |
Ser110 | No [16] | BRI1 [16] | 5.031 | 0.509 | |
Ser112 | No [16] | SERK1, AT2G19230, AT2G37050, AT5G62710 [16] | 0.333 | −0.266 | |
Thr141 | No [16] | BAK1, BRL3 [16] | 0.345 | 1.160 | |
Thr164 | No [16] | SERK1, XIP1, AT5G10290, AT2G37050, AT5G62710 [16] | −0.007 | −0.847 | |
Tyr166 | Yes [29] | −0.673 | −0.929 | ||
Ser175 | No [16] | AT5G62710 [16] | −0.464 | 0.857 | |
Thr193 | No [16] | BRI1 [16] | −0.985 | −0.942 | |
Thr194 | No [16] | BRI1 [16] | −0.680 | −0.807 | |
Ser314 | Yes [26] | BAK1, AT5G62710 [16] | 0.146 | 0.303 | |
Ser315 | No [16] | BAK1, AT5G62710 [16] | 0.349 | −0.304 | |
Thr339 | No [16] | BAK1 [16] | 0.079 | 1.063 | |
Thr353 | No [16] | BRI1 [16] | −0.311 | −0.898 | |
AtAGB1 | Ser2 | Yes [26] | −0.301 | 1.319 | |
Ser4 | Yes [26] | 2.106 | 1.568 | ||
Thr14 | No [43] | BRI1 [43] | 1.347 | −0.356 | |
Thr16 | No [43] | BRI1 [43] | 0.838 | −0.137 | |
Thr34 | No [43] | BRI1 [43] | −0.110 | −0.003 | |
Ser40 | No [43] | BRI1 [43] | 0.520 | 0.002 | |
Thr46 | No [43] | BRI1 [43] | 2.140 | 0.422 | |
Ser49 | No [43] | BRI1 [43] | 1.972 | 0.304 | |
Thr53 | No [43] | BRI1 [43] | 0.048 | 1.096 | |
Thr65 | No [43] | BRI1 [43] | 0.034 | −0.538 | |
Ser70 | No [43] | BRI1 [43] | −0.421 | −0.529 | |
Ser82 | No [43] | BRI1 [43] | −1.179 | −0.624 | |
Thr100 | No [43] | BRI1 [43] | 0.228 | −0.127 | |
Thr243 | No [43] | BRI1 [43] | −0.687 | −0.561 | |
Thr253 | No [43] | BRI1 [43] | 0.776 | −0.327 | |
AtAGG2 | Ser6 | Yes [26] | 1.889 | −0.927 | |
Ser8 | Yes [25] | 0.223 | −0.428 | ||
Ser9 | Yes [42] | 1.827 | 0.045 | ||
AtAGG3 | Ser21 | No [43] | BRI1 [43] | −0.967 | 1.287 |
Ser22 | No [43] | BRI1 [43] | −0.933 | 0.097 | |
Ser37 | Yes [26] | BRI1 [43] | −1.522 | 1.643 | |
Ser78 | No [43] | BRI1 [43] | 1.621 | −2.114 | |
Thr92 | No [43] | BRI1 [43] | 0.913 | −1.267 | |
AtXLG1 | Ser462 | Yes [26] | 1.114 | 3.103 | |
Ser471 | Yes [26] | 0.233 | 1.061 | ||
Tyr876 | Yes [42] | 1.458 | 2.004 | ||
Tyr879 | Yes [42] | 0.231 | 1.367 | ||
Tyr887 | Yes [42] | −0.188 | −0.128 | ||
AtXLG2 | Ser13 | Yes [30,41,44] | 0.644 | ||
Ser23 | Yes [30,45,46] | 1.892 | |||
Ser38 | Yes [26] | −0.937 | |||
Ser69 | Yes [47] | 0.404 | |||
Ser71 | Yes [48] | 0.556 | |||
Ser72 | Yes [47] | 0.542 | |||
Ser75 | Yes [30,44] | 0.689 | |||
Ser141 | Yes [26] | 1.825 | |||
Ser148 | Yes [47] | BIK1 [47] | −0.079 | ||
Ser150 | Yes [47] | BIK1 [47] | 1.152 | ||
Ser151 | Yes [30,44] | 1.467 | |||
Ser154 | Yes [30,44] | 1.143 | |||
Ser156 | Yes [47] | 1.919 | |||
Ser169 | Yes [30,44,46,48,49,50] | 0.681 | |||
Ser191 | Yes [47] | 0.865 | |||
Ser194 | Yes [26] | 1.539 | |||
Ser489 | Yes [47] | −0.520 | −1.243 | ||
Ser530 | Yes [51] | 0.991 | 0.644 | ||
Thr773 | Yes [47] | 0.655 | 0.550 | ||
Ser774 | Yes [47] | 0.190 | −0.397 | ||
AtXLG3 | Ser78 | Yes [26] | 1.823 | ||
Ser82 | Yes [26] | −0.216 | |||
Ser85 | Yes [26] | 0.112 | |||
Ser99 | Yes [26] | 1.173 | |||
Ser101 | Yes [26] | 1.432 | |||
Ser103 | Yes [26] | −0.082 | |||
Ser107 | Yes [26] | −0.421 | |||
Ser243 | Yes [26] | −0.533 | |||
Ser416 | Yes [26] | 0.247 | −1.125 | ||
Ser506 | Yes [52,53] | 0.846 | −1.221 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, C.C.; Jones, A.M.; Fontes, E.P.B.; Reis, P.A.B.d. G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. Int. J. Mol. Sci. 2022, 23, 6544. https://doi.org/10.3390/ijms23126544
Oliveira CC, Jones AM, Fontes EPB, Reis PABd. G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. International Journal of Molecular Sciences. 2022; 23(12):6544. https://doi.org/10.3390/ijms23126544
Chicago/Turabian StyleOliveira, Celio Cabral, Alan M. Jones, Elizabeth Pacheco Batista Fontes, and Pedro A. Braga dos Reis. 2022. "G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom" International Journal of Molecular Sciences 23, no. 12: 6544. https://doi.org/10.3390/ijms23126544
APA StyleOliveira, C. C., Jones, A. M., Fontes, E. P. B., & Reis, P. A. B. d. (2022). G-Protein Phosphorylation: Aspects of Binding Specificity and Function in the Plant Kingdom. International Journal of Molecular Sciences, 23(12), 6544. https://doi.org/10.3390/ijms23126544